![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > paddval0 | Structured version Visualization version GIF version |
Description: Projective subspace sum with at least one empty set. (Contributed by NM, 11-Jan-2012.) |
Ref | Expression |
---|---|
padd0.a | β’ π΄ = (AtomsβπΎ) |
padd0.p | β’ + = (+πβπΎ) |
Ref | Expression |
---|---|
paddval0 | β’ (((πΎ β π΅ β§ π β π΄ β§ π β π΄) β§ Β¬ (π β β β§ π β β )) β (π + π) = (π βͺ π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | padd0.a | . . . 4 β’ π΄ = (AtomsβπΎ) | |
2 | padd0.p | . . . 4 β’ + = (+πβπΎ) | |
3 | 1, 2 | elpadd0 39136 | . . 3 β’ (((πΎ β π΅ β§ π β π΄ β§ π β π΄) β§ Β¬ (π β β β§ π β β )) β (π β (π + π) β (π β π β¨ π β π))) |
4 | elun 4140 | . . 3 β’ (π β (π βͺ π) β (π β π β¨ π β π)) | |
5 | 3, 4 | bitr4di 289 | . 2 β’ (((πΎ β π΅ β§ π β π΄ β§ π β π΄) β§ Β¬ (π β β β§ π β β )) β (π β (π + π) β π β (π βͺ π))) |
6 | 5 | eqrdv 2722 | 1 β’ (((πΎ β π΅ β§ π β π΄ β§ π β π΄) β§ Β¬ (π β β β§ π β β )) β (π + π) = (π βͺ π)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 395 β¨ wo 844 β§ w3a 1084 = wceq 1533 β wcel 2098 β wne 2932 βͺ cun 3938 β wss 3940 β c0 4314 βcfv 6533 (class class class)co 7401 Atomscatm 38589 +πcpadd 39122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-1st 7968 df-2nd 7969 df-padd 39123 |
This theorem is referenced by: padd01 39138 padd02 39139 |
Copyright terms: Public domain | W3C validator |