| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > paddval0 | Structured version Visualization version GIF version | ||
| Description: Projective subspace sum with at least one empty set. (Contributed by NM, 11-Jan-2012.) |
| Ref | Expression |
|---|---|
| padd0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| padd0.p | ⊢ + = (+𝑃‘𝐾) |
| Ref | Expression |
|---|---|
| paddval0 | ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ ¬ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑋 + 𝑌) = (𝑋 ∪ 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | padd0.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 2 | padd0.p | . . . 4 ⊢ + = (+𝑃‘𝐾) | |
| 3 | 1, 2 | elpadd0 39786 | . . 3 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ ¬ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑞 ∈ (𝑋 + 𝑌) ↔ (𝑞 ∈ 𝑋 ∨ 𝑞 ∈ 𝑌))) |
| 4 | elun 4133 | . . 3 ⊢ (𝑞 ∈ (𝑋 ∪ 𝑌) ↔ (𝑞 ∈ 𝑋 ∨ 𝑞 ∈ 𝑌)) | |
| 5 | 3, 4 | bitr4di 289 | . 2 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ ¬ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑞 ∈ (𝑋 + 𝑌) ↔ 𝑞 ∈ (𝑋 ∪ 𝑌))) |
| 6 | 5 | eqrdv 2732 | 1 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ ¬ (𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅)) → (𝑋 + 𝑌) = (𝑋 ∪ 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∪ cun 3929 ⊆ wss 3931 ∅c0 4313 ‘cfv 6541 (class class class)co 7413 Atomscatm 39239 +𝑃cpadd 39772 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 df-padd 39773 |
| This theorem is referenced by: padd01 39788 padd02 39789 |
| Copyright terms: Public domain | W3C validator |