Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > plusfval | Structured version Visualization version GIF version |
Description: The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
plusffval.1 | ⊢ 𝐵 = (Base‘𝐺) |
plusffval.2 | ⊢ + = (+g‘𝐺) |
plusffval.3 | ⊢ ⨣ = (+𝑓‘𝐺) |
Ref | Expression |
---|---|
plusfval | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ⨣ 𝑌) = (𝑋 + 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq12 7358 | . 2 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥 + 𝑦) = (𝑋 + 𝑌)) | |
2 | plusffval.1 | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | plusffval.2 | . . 3 ⊢ + = (+g‘𝐺) | |
4 | plusffval.3 | . . 3 ⊢ ⨣ = (+𝑓‘𝐺) | |
5 | 2, 3, 4 | plusffval 18437 | . 2 ⊢ ⨣ = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦)) |
6 | ovex 7382 | . 2 ⊢ (𝑋 + 𝑌) ∈ V | |
7 | 1, 5, 6 | ovmpoa 7502 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ⨣ 𝑌) = (𝑋 + 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ‘cfv 6491 (class class class)co 7349 Basecbs 17017 +gcplusg 17067 +𝑓cplusf 18428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7662 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-op 4591 df-uni 4864 df-iun 4954 df-br 5104 df-opab 5166 df-mpt 5187 df-id 5528 df-xp 5636 df-rel 5637 df-cnv 5638 df-co 5639 df-dm 5640 df-rn 5641 df-res 5642 df-ima 5643 df-iota 6443 df-fun 6493 df-fn 6494 df-f 6495 df-fv 6499 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7911 df-2nd 7912 df-plusf 18430 |
This theorem is referenced by: mndpfo 18513 lmodfopne 20274 cnmpt1plusg 23351 cnmpt2plusg 23352 tmdcn2 23353 tsmsadd 23411 mhmhmeotmd 32242 plusfreseq 45748 |
Copyright terms: Public domain | W3C validator |