MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plusfval Structured version   Visualization version   GIF version

Theorem plusfval 18539
Description: The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
plusffval.1 𝐵 = (Base‘𝐺)
plusffval.2 + = (+g𝐺)
plusffval.3 = (+𝑓𝐺)
Assertion
Ref Expression
plusfval ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋 + 𝑌))

Proof of Theorem plusfval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 7362 . 2 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥 + 𝑦) = (𝑋 + 𝑌))
2 plusffval.1 . . 3 𝐵 = (Base‘𝐺)
3 plusffval.2 . . 3 + = (+g𝐺)
4 plusffval.3 . . 3 = (+𝑓𝐺)
52, 3, 4plusffval 18538 . 2 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦))
6 ovex 7386 . 2 (𝑋 + 𝑌) ∈ V
71, 5, 6ovmpoa 7508 1 ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋 + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6486  (class class class)co 7353  Basecbs 17138  +gcplusg 17179  +𝑓cplusf 18529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-plusf 18531
This theorem is referenced by:  mndpfo  18649  lmodfopne  20821  cnmpt1plusg  23990  cnmpt2plusg  23991  tmdcn2  23992  tsmsadd  24050  mhmhmeotmd  33893  plusfreseq  48149
  Copyright terms: Public domain W3C validator