| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > plusfval | Structured version Visualization version GIF version | ||
| Description: The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| plusffval.1 | ⊢ 𝐵 = (Base‘𝐺) |
| plusffval.2 | ⊢ + = (+g‘𝐺) |
| plusffval.3 | ⊢ ⨣ = (+𝑓‘𝐺) |
| Ref | Expression |
|---|---|
| plusfval | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ⨣ 𝑌) = (𝑋 + 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq12 7355 | . 2 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥 + 𝑦) = (𝑋 + 𝑌)) | |
| 2 | plusffval.1 | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | plusffval.2 | . . 3 ⊢ + = (+g‘𝐺) | |
| 4 | plusffval.3 | . . 3 ⊢ ⨣ = (+𝑓‘𝐺) | |
| 5 | 2, 3, 4 | plusffval 18551 | . 2 ⊢ ⨣ = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 + 𝑦)) |
| 6 | ovex 7379 | . 2 ⊢ (𝑋 + 𝑌) ∈ V | |
| 7 | 1, 5, 6 | ovmpoa 7501 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ⨣ 𝑌) = (𝑋 + 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 +gcplusg 17158 +𝑓cplusf 18542 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-plusf 18544 |
| This theorem is referenced by: mndpfo 18662 lmodfopne 20831 cnmpt1plusg 24000 cnmpt2plusg 24001 tmdcn2 24002 tsmsadd 24060 mhmhmeotmd 33935 plusfreseq 48194 |
| Copyright terms: Public domain | W3C validator |