MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plusfval Structured version   Visualization version   GIF version

Theorem plusfval 18438
Description: The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
plusffval.1 𝐵 = (Base‘𝐺)
plusffval.2 + = (+g𝐺)
plusffval.3 = (+𝑓𝐺)
Assertion
Ref Expression
plusfval ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋 + 𝑌))

Proof of Theorem plusfval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 7358 . 2 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥 + 𝑦) = (𝑋 + 𝑌))
2 plusffval.1 . . 3 𝐵 = (Base‘𝐺)
3 plusffval.2 . . 3 + = (+g𝐺)
4 plusffval.3 . . 3 = (+𝑓𝐺)
52, 3, 4plusffval 18437 . 2 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦))
6 ovex 7382 . 2 (𝑋 + 𝑌) ∈ V
71, 5, 6ovmpoa 7502 1 ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋 + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1541  wcel 2106  cfv 6491  (class class class)co 7349  Basecbs 17017  +gcplusg 17067  +𝑓cplusf 18428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7662
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-id 5528  df-xp 5636  df-rel 5637  df-cnv 5638  df-co 5639  df-dm 5640  df-rn 5641  df-res 5642  df-ima 5643  df-iota 6443  df-fun 6493  df-fn 6494  df-f 6495  df-fv 6499  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7911  df-2nd 7912  df-plusf 18430
This theorem is referenced by:  mndpfo  18513  lmodfopne  20274  cnmpt1plusg  23351  cnmpt2plusg  23352  tmdcn2  23353  tsmsadd  23411  mhmhmeotmd  32242  plusfreseq  45748
  Copyright terms: Public domain W3C validator