![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mins2 | Structured version Visualization version GIF version |
Description: The minimum of two surreals is less than or equal to the second. (Contributed by Scott Fenton, 14-Feb-2025.) |
Ref | Expression |
---|---|
mins2 | ⊢ (𝐵 ∈ No → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) ≤s 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slerflex 27826 | . . 3 ⊢ (𝐵 ∈ No → 𝐵 ≤s 𝐵) | |
2 | iffalse 4557 | . . . 4 ⊢ (¬ 𝐴 ≤s 𝐵 → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) = 𝐵) | |
3 | 2 | breq1d 5176 | . . 3 ⊢ (¬ 𝐴 ≤s 𝐵 → (if(𝐴 ≤s 𝐵, 𝐴, 𝐵) ≤s 𝐵 ↔ 𝐵 ≤s 𝐵)) |
4 | 1, 3 | syl5ibrcom 247 | . 2 ⊢ (𝐵 ∈ No → (¬ 𝐴 ≤s 𝐵 → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) ≤s 𝐵)) |
5 | iftrue 4554 | . . 3 ⊢ (𝐴 ≤s 𝐵 → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) = 𝐴) | |
6 | id 22 | . . 3 ⊢ (𝐴 ≤s 𝐵 → 𝐴 ≤s 𝐵) | |
7 | 5, 6 | eqbrtrd 5188 | . 2 ⊢ (𝐴 ≤s 𝐵 → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) ≤s 𝐵) |
8 | 4, 7 | pm2.61d2 181 | 1 ⊢ (𝐵 ∈ No → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) ≤s 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 ifcif 4548 class class class wbr 5166 No csur 27702 ≤s csle 27807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-1o 8522 df-2o 8523 df-no 27705 df-slt 27706 df-sle 27808 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |