| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mins2 | Structured version Visualization version GIF version | ||
| Description: The minimum of two surreals is less than or equal to the second. (Contributed by Scott Fenton, 14-Feb-2025.) |
| Ref | Expression |
|---|---|
| mins2 | ⊢ (𝐵 ∈ No → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) ≤s 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | slerflex 27722 | . . 3 ⊢ (𝐵 ∈ No → 𝐵 ≤s 𝐵) | |
| 2 | iffalse 4485 | . . . 4 ⊢ (¬ 𝐴 ≤s 𝐵 → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) = 𝐵) | |
| 3 | 2 | breq1d 5105 | . . 3 ⊢ (¬ 𝐴 ≤s 𝐵 → (if(𝐴 ≤s 𝐵, 𝐴, 𝐵) ≤s 𝐵 ↔ 𝐵 ≤s 𝐵)) |
| 4 | 1, 3 | syl5ibrcom 247 | . 2 ⊢ (𝐵 ∈ No → (¬ 𝐴 ≤s 𝐵 → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) ≤s 𝐵)) |
| 5 | iftrue 4482 | . . 3 ⊢ (𝐴 ≤s 𝐵 → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) = 𝐴) | |
| 6 | id 22 | . . 3 ⊢ (𝐴 ≤s 𝐵 → 𝐴 ≤s 𝐵) | |
| 7 | 5, 6 | eqbrtrd 5117 | . 2 ⊢ (𝐴 ≤s 𝐵 → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) ≤s 𝐵) |
| 8 | 4, 7 | pm2.61d2 181 | 1 ⊢ (𝐵 ∈ No → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) ≤s 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2113 ifcif 4476 class class class wbr 5095 No csur 27598 ≤s csle 27703 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ord 6317 df-on 6318 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-fv 6497 df-1o 8394 df-2o 8395 df-no 27601 df-slt 27602 df-sle 27704 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |