![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mins2 | Structured version Visualization version GIF version |
Description: The minimum of two surreals is less than or equal to the second. (Contributed by Scott Fenton, 14-Feb-2025.) |
Ref | Expression |
---|---|
mins2 | ⊢ (𝐵 ∈ No → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) ≤s 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slerflex 27263 | . . 3 ⊢ (𝐵 ∈ No → 𝐵 ≤s 𝐵) | |
2 | iffalse 4537 | . . . 4 ⊢ (¬ 𝐴 ≤s 𝐵 → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) = 𝐵) | |
3 | 2 | breq1d 5158 | . . 3 ⊢ (¬ 𝐴 ≤s 𝐵 → (if(𝐴 ≤s 𝐵, 𝐴, 𝐵) ≤s 𝐵 ↔ 𝐵 ≤s 𝐵)) |
4 | 1, 3 | syl5ibrcom 246 | . 2 ⊢ (𝐵 ∈ No → (¬ 𝐴 ≤s 𝐵 → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) ≤s 𝐵)) |
5 | iftrue 4534 | . . 3 ⊢ (𝐴 ≤s 𝐵 → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) = 𝐴) | |
6 | id 22 | . . 3 ⊢ (𝐴 ≤s 𝐵 → 𝐴 ≤s 𝐵) | |
7 | 5, 6 | eqbrtrd 5170 | . 2 ⊢ (𝐴 ≤s 𝐵 → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) ≤s 𝐵) |
8 | 4, 7 | pm2.61d2 181 | 1 ⊢ (𝐵 ∈ No → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) ≤s 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2106 ifcif 4528 class class class wbr 5148 No csur 27140 ≤s csle 27244 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-1o 8465 df-2o 8466 df-no 27143 df-slt 27144 df-sle 27245 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |