MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mins2 Structured version   Visualization version   GIF version

Theorem mins2 27697
Description: The minimum of two surreals is less than or equal to the second. (Contributed by Scott Fenton, 14-Feb-2025.)
Assertion
Ref Expression
mins2 (𝐵 No → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) ≤s 𝐵)

Proof of Theorem mins2
StepHypRef Expression
1 slerflex 27692 . . 3 (𝐵 No 𝐵 ≤s 𝐵)
2 iffalse 4487 . . . 4 𝐴 ≤s 𝐵 → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) = 𝐵)
32breq1d 5105 . . 3 𝐴 ≤s 𝐵 → (if(𝐴 ≤s 𝐵, 𝐴, 𝐵) ≤s 𝐵𝐵 ≤s 𝐵))
41, 3syl5ibrcom 247 . 2 (𝐵 No → (¬ 𝐴 ≤s 𝐵 → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) ≤s 𝐵))
5 iftrue 4484 . . 3 (𝐴 ≤s 𝐵 → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) = 𝐴)
6 id 22 . . 3 (𝐴 ≤s 𝐵𝐴 ≤s 𝐵)
75, 6eqbrtrd 5117 . 2 (𝐴 ≤s 𝐵 → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) ≤s 𝐵)
84, 7pm2.61d2 181 1 (𝐵 No → if(𝐴 ≤s 𝐵, 𝐴, 𝐵) ≤s 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2109  ifcif 4478   class class class wbr 5095   No csur 27568   ≤s csle 27673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-1o 8395  df-2o 8396  df-no 27571  df-slt 27572  df-sle 27674
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator