Proof of Theorem dfac12k
Step | Hyp | Ref
| Expression |
1 | | alephon 9756 |
. . . 4
⊢
(ℵ‘𝑦)
∈ On |
2 | | pweq 4546 |
. . . . . 6
⊢ (𝑥 = (ℵ‘𝑦) → 𝒫 𝑥 = 𝒫
(ℵ‘𝑦)) |
3 | 2 | eleq1d 2823 |
. . . . 5
⊢ (𝑥 = (ℵ‘𝑦) → (𝒫 𝑥 ∈ dom card ↔
𝒫 (ℵ‘𝑦)
∈ dom card)) |
4 | 3 | rspcv 3547 |
. . . 4
⊢
((ℵ‘𝑦)
∈ On → (∀𝑥
∈ On 𝒫 𝑥
∈ dom card → 𝒫 (ℵ‘𝑦) ∈ dom card)) |
5 | 1, 4 | ax-mp 5 |
. . 3
⊢
(∀𝑥 ∈ On
𝒫 𝑥 ∈ dom card
→ 𝒫 (ℵ‘𝑦) ∈ dom card) |
6 | 5 | ralrimivw 3108 |
. 2
⊢
(∀𝑥 ∈ On
𝒫 𝑥 ∈ dom card
→ ∀𝑦 ∈ On
𝒫 (ℵ‘𝑦)
∈ dom card) |
7 | | omelon 9334 |
. . . . . . 7
⊢ ω
∈ On |
8 | | cardon 9633 |
. . . . . . 7
⊢
(card‘𝑥)
∈ On |
9 | | ontri1 6285 |
. . . . . . 7
⊢ ((ω
∈ On ∧ (card‘𝑥) ∈ On) → (ω ⊆
(card‘𝑥) ↔ ¬
(card‘𝑥) ∈
ω)) |
10 | 7, 8, 9 | mp2an 688 |
. . . . . 6
⊢ (ω
⊆ (card‘𝑥)
↔ ¬ (card‘𝑥)
∈ ω) |
11 | | cardidm 9648 |
. . . . . . . 8
⊢
(card‘(card‘𝑥)) = (card‘𝑥) |
12 | | cardalephex 9777 |
. . . . . . . 8
⊢ (ω
⊆ (card‘𝑥)
→ ((card‘(card‘𝑥)) = (card‘𝑥) ↔ ∃𝑦 ∈ On (card‘𝑥) = (ℵ‘𝑦))) |
13 | 11, 12 | mpbii 232 |
. . . . . . 7
⊢ (ω
⊆ (card‘𝑥)
→ ∃𝑦 ∈ On
(card‘𝑥) =
(ℵ‘𝑦)) |
14 | | r19.29 3183 |
. . . . . . . . 9
⊢
((∀𝑦 ∈
On 𝒫 (ℵ‘𝑦) ∈ dom card ∧ ∃𝑦 ∈ On (card‘𝑥) = (ℵ‘𝑦)) → ∃𝑦 ∈ On (𝒫
(ℵ‘𝑦) ∈
dom card ∧ (card‘𝑥) = (ℵ‘𝑦))) |
15 | | pweq 4546 |
. . . . . . . . . . . 12
⊢
((card‘𝑥) =
(ℵ‘𝑦) →
𝒫 (card‘𝑥) =
𝒫 (ℵ‘𝑦)) |
16 | 15 | eleq1d 2823 |
. . . . . . . . . . 11
⊢
((card‘𝑥) =
(ℵ‘𝑦) →
(𝒫 (card‘𝑥)
∈ dom card ↔ 𝒫 (ℵ‘𝑦) ∈ dom card)) |
17 | 16 | biimparc 479 |
. . . . . . . . . 10
⊢
((𝒫 (ℵ‘𝑦) ∈ dom card ∧ (card‘𝑥) = (ℵ‘𝑦)) → 𝒫
(card‘𝑥) ∈ dom
card) |
18 | 17 | rexlimivw 3210 |
. . . . . . . . 9
⊢
(∃𝑦 ∈ On
(𝒫 (ℵ‘𝑦) ∈ dom card ∧ (card‘𝑥) = (ℵ‘𝑦)) → 𝒫
(card‘𝑥) ∈ dom
card) |
19 | 14, 18 | syl 17 |
. . . . . . . 8
⊢
((∀𝑦 ∈
On 𝒫 (ℵ‘𝑦) ∈ dom card ∧ ∃𝑦 ∈ On (card‘𝑥) = (ℵ‘𝑦)) → 𝒫
(card‘𝑥) ∈ dom
card) |
20 | 19 | ex 412 |
. . . . . . 7
⊢
(∀𝑦 ∈ On
𝒫 (ℵ‘𝑦)
∈ dom card → (∃𝑦 ∈ On (card‘𝑥) = (ℵ‘𝑦) → 𝒫 (card‘𝑥) ∈ dom
card)) |
21 | 13, 20 | syl5 34 |
. . . . . 6
⊢
(∀𝑦 ∈ On
𝒫 (ℵ‘𝑦)
∈ dom card → (ω ⊆ (card‘𝑥) → 𝒫 (card‘𝑥) ∈ dom
card)) |
22 | 10, 21 | syl5bir 242 |
. . . . 5
⊢
(∀𝑦 ∈ On
𝒫 (ℵ‘𝑦)
∈ dom card → (¬ (card‘𝑥) ∈ ω → 𝒫
(card‘𝑥) ∈ dom
card)) |
23 | | nnfi 8912 |
. . . . . . 7
⊢
((card‘𝑥)
∈ ω → (card‘𝑥) ∈ Fin) |
24 | | pwfi 8923 |
. . . . . . 7
⊢
((card‘𝑥)
∈ Fin ↔ 𝒫 (card‘𝑥) ∈ Fin) |
25 | 23, 24 | sylib 217 |
. . . . . 6
⊢
((card‘𝑥)
∈ ω → 𝒫 (card‘𝑥) ∈ Fin) |
26 | | finnum 9637 |
. . . . . 6
⊢
(𝒫 (card‘𝑥) ∈ Fin → 𝒫
(card‘𝑥) ∈ dom
card) |
27 | 25, 26 | syl 17 |
. . . . 5
⊢
((card‘𝑥)
∈ ω → 𝒫 (card‘𝑥) ∈ dom card) |
28 | 22, 27 | pm2.61d2 181 |
. . . 4
⊢
(∀𝑦 ∈ On
𝒫 (ℵ‘𝑦)
∈ dom card → 𝒫 (card‘𝑥) ∈ dom card) |
29 | | oncardid 9645 |
. . . . 5
⊢ (𝑥 ∈ On →
(card‘𝑥) ≈
𝑥) |
30 | | pwen 8886 |
. . . . 5
⊢
((card‘𝑥)
≈ 𝑥 → 𝒫
(card‘𝑥) ≈
𝒫 𝑥) |
31 | | ennum 9636 |
. . . . 5
⊢
(𝒫 (card‘𝑥) ≈ 𝒫 𝑥 → (𝒫 (card‘𝑥) ∈ dom card ↔
𝒫 𝑥 ∈ dom
card)) |
32 | 29, 30, 31 | 3syl 18 |
. . . 4
⊢ (𝑥 ∈ On → (𝒫
(card‘𝑥) ∈ dom
card ↔ 𝒫 𝑥
∈ dom card)) |
33 | 28, 32 | syl5ibcom 244 |
. . 3
⊢
(∀𝑦 ∈ On
𝒫 (ℵ‘𝑦)
∈ dom card → (𝑥
∈ On → 𝒫 𝑥 ∈ dom card)) |
34 | 33 | ralrimiv 3106 |
. 2
⊢
(∀𝑦 ∈ On
𝒫 (ℵ‘𝑦)
∈ dom card → ∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card) |
35 | 6, 34 | impbii 208 |
1
⊢
(∀𝑥 ∈ On
𝒫 𝑥 ∈ dom card
↔ ∀𝑦 ∈ On
𝒫 (ℵ‘𝑦)
∈ dom card) |