MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac12k Structured version   Visualization version   GIF version

Theorem dfac12k 10039
Description: Equivalence of dfac12 10041 and dfac12a 10040, without using Regularity. (Contributed by Mario Carneiro, 21-May-2015.)
Assertion
Ref Expression
dfac12k (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card ↔ ∀𝑦 ∈ On 𝒫 (ℵ‘𝑦) ∈ dom card)
Distinct variable group:   𝑥,𝑦

Proof of Theorem dfac12k
StepHypRef Expression
1 alephon 9960 . . . 4 (ℵ‘𝑦) ∈ On
2 pweq 4561 . . . . . 6 (𝑥 = (ℵ‘𝑦) → 𝒫 𝑥 = 𝒫 (ℵ‘𝑦))
32eleq1d 2816 . . . . 5 (𝑥 = (ℵ‘𝑦) → (𝒫 𝑥 ∈ dom card ↔ 𝒫 (ℵ‘𝑦) ∈ dom card))
43rspcv 3568 . . . 4 ((ℵ‘𝑦) ∈ On → (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card → 𝒫 (ℵ‘𝑦) ∈ dom card))
51, 4ax-mp 5 . . 3 (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card → 𝒫 (ℵ‘𝑦) ∈ dom card)
65ralrimivw 3128 . 2 (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card → ∀𝑦 ∈ On 𝒫 (ℵ‘𝑦) ∈ dom card)
7 omelon 9536 . . . . . . 7 ω ∈ On
8 cardon 9837 . . . . . . 7 (card‘𝑥) ∈ On
9 ontri1 6340 . . . . . . 7 ((ω ∈ On ∧ (card‘𝑥) ∈ On) → (ω ⊆ (card‘𝑥) ↔ ¬ (card‘𝑥) ∈ ω))
107, 8, 9mp2an 692 . . . . . 6 (ω ⊆ (card‘𝑥) ↔ ¬ (card‘𝑥) ∈ ω)
11 cardidm 9852 . . . . . . . 8 (card‘(card‘𝑥)) = (card‘𝑥)
12 cardalephex 9981 . . . . . . . 8 (ω ⊆ (card‘𝑥) → ((card‘(card‘𝑥)) = (card‘𝑥) ↔ ∃𝑦 ∈ On (card‘𝑥) = (ℵ‘𝑦)))
1311, 12mpbii 233 . . . . . . 7 (ω ⊆ (card‘𝑥) → ∃𝑦 ∈ On (card‘𝑥) = (ℵ‘𝑦))
14 r19.29 3095 . . . . . . . . 9 ((∀𝑦 ∈ On 𝒫 (ℵ‘𝑦) ∈ dom card ∧ ∃𝑦 ∈ On (card‘𝑥) = (ℵ‘𝑦)) → ∃𝑦 ∈ On (𝒫 (ℵ‘𝑦) ∈ dom card ∧ (card‘𝑥) = (ℵ‘𝑦)))
15 pweq 4561 . . . . . . . . . . . 12 ((card‘𝑥) = (ℵ‘𝑦) → 𝒫 (card‘𝑥) = 𝒫 (ℵ‘𝑦))
1615eleq1d 2816 . . . . . . . . . . 11 ((card‘𝑥) = (ℵ‘𝑦) → (𝒫 (card‘𝑥) ∈ dom card ↔ 𝒫 (ℵ‘𝑦) ∈ dom card))
1716biimparc 479 . . . . . . . . . 10 ((𝒫 (ℵ‘𝑦) ∈ dom card ∧ (card‘𝑥) = (ℵ‘𝑦)) → 𝒫 (card‘𝑥) ∈ dom card)
1817rexlimivw 3129 . . . . . . . . 9 (∃𝑦 ∈ On (𝒫 (ℵ‘𝑦) ∈ dom card ∧ (card‘𝑥) = (ℵ‘𝑦)) → 𝒫 (card‘𝑥) ∈ dom card)
1914, 18syl 17 . . . . . . . 8 ((∀𝑦 ∈ On 𝒫 (ℵ‘𝑦) ∈ dom card ∧ ∃𝑦 ∈ On (card‘𝑥) = (ℵ‘𝑦)) → 𝒫 (card‘𝑥) ∈ dom card)
2019ex 412 . . . . . . 7 (∀𝑦 ∈ On 𝒫 (ℵ‘𝑦) ∈ dom card → (∃𝑦 ∈ On (card‘𝑥) = (ℵ‘𝑦) → 𝒫 (card‘𝑥) ∈ dom card))
2113, 20syl5 34 . . . . . 6 (∀𝑦 ∈ On 𝒫 (ℵ‘𝑦) ∈ dom card → (ω ⊆ (card‘𝑥) → 𝒫 (card‘𝑥) ∈ dom card))
2210, 21biimtrrid 243 . . . . 5 (∀𝑦 ∈ On 𝒫 (ℵ‘𝑦) ∈ dom card → (¬ (card‘𝑥) ∈ ω → 𝒫 (card‘𝑥) ∈ dom card))
23 nnfi 9077 . . . . . . 7 ((card‘𝑥) ∈ ω → (card‘𝑥) ∈ Fin)
24 pwfi 9203 . . . . . . 7 ((card‘𝑥) ∈ Fin ↔ 𝒫 (card‘𝑥) ∈ Fin)
2523, 24sylib 218 . . . . . 6 ((card‘𝑥) ∈ ω → 𝒫 (card‘𝑥) ∈ Fin)
26 finnum 9841 . . . . . 6 (𝒫 (card‘𝑥) ∈ Fin → 𝒫 (card‘𝑥) ∈ dom card)
2725, 26syl 17 . . . . 5 ((card‘𝑥) ∈ ω → 𝒫 (card‘𝑥) ∈ dom card)
2822, 27pm2.61d2 181 . . . 4 (∀𝑦 ∈ On 𝒫 (ℵ‘𝑦) ∈ dom card → 𝒫 (card‘𝑥) ∈ dom card)
29 oncardid 9849 . . . . 5 (𝑥 ∈ On → (card‘𝑥) ≈ 𝑥)
30 pwen 9063 . . . . 5 ((card‘𝑥) ≈ 𝑥 → 𝒫 (card‘𝑥) ≈ 𝒫 𝑥)
31 ennum 9840 . . . . 5 (𝒫 (card‘𝑥) ≈ 𝒫 𝑥 → (𝒫 (card‘𝑥) ∈ dom card ↔ 𝒫 𝑥 ∈ dom card))
3229, 30, 313syl 18 . . . 4 (𝑥 ∈ On → (𝒫 (card‘𝑥) ∈ dom card ↔ 𝒫 𝑥 ∈ dom card))
3328, 32syl5ibcom 245 . . 3 (∀𝑦 ∈ On 𝒫 (ℵ‘𝑦) ∈ dom card → (𝑥 ∈ On → 𝒫 𝑥 ∈ dom card))
3433ralrimiv 3123 . 2 (∀𝑦 ∈ On 𝒫 (ℵ‘𝑦) ∈ dom card → ∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card)
356, 34impbii 209 1 (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card ↔ ∀𝑦 ∈ On 𝒫 (ℵ‘𝑦) ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  wss 3897  𝒫 cpw 4547   class class class wbr 5089  dom cdm 5614  Oncon0 6306  cfv 6481  ωcom 7796  cen 8866  Fincfn 8869  cardccrd 9828  cale 9829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-oi 9396  df-har 9443  df-card 9832  df-aleph 9833
This theorem is referenced by:  dfac12  10041
  Copyright terms: Public domain W3C validator