MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac12k Structured version   Visualization version   GIF version

Theorem dfac12k 10042
Description: Equivalence of dfac12 10044 and dfac12a 10043, without using Regularity. (Contributed by Mario Carneiro, 21-May-2015.)
Assertion
Ref Expression
dfac12k (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card ↔ ∀𝑦 ∈ On 𝒫 (ℵ‘𝑦) ∈ dom card)
Distinct variable group:   𝑥,𝑦

Proof of Theorem dfac12k
StepHypRef Expression
1 alephon 9963 . . . 4 (ℵ‘𝑦) ∈ On
2 pweq 4565 . . . . . 6 (𝑥 = (ℵ‘𝑦) → 𝒫 𝑥 = 𝒫 (ℵ‘𝑦))
32eleq1d 2813 . . . . 5 (𝑥 = (ℵ‘𝑦) → (𝒫 𝑥 ∈ dom card ↔ 𝒫 (ℵ‘𝑦) ∈ dom card))
43rspcv 3573 . . . 4 ((ℵ‘𝑦) ∈ On → (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card → 𝒫 (ℵ‘𝑦) ∈ dom card))
51, 4ax-mp 5 . . 3 (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card → 𝒫 (ℵ‘𝑦) ∈ dom card)
65ralrimivw 3125 . 2 (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card → ∀𝑦 ∈ On 𝒫 (ℵ‘𝑦) ∈ dom card)
7 omelon 9542 . . . . . . 7 ω ∈ On
8 cardon 9840 . . . . . . 7 (card‘𝑥) ∈ On
9 ontri1 6341 . . . . . . 7 ((ω ∈ On ∧ (card‘𝑥) ∈ On) → (ω ⊆ (card‘𝑥) ↔ ¬ (card‘𝑥) ∈ ω))
107, 8, 9mp2an 692 . . . . . 6 (ω ⊆ (card‘𝑥) ↔ ¬ (card‘𝑥) ∈ ω)
11 cardidm 9855 . . . . . . . 8 (card‘(card‘𝑥)) = (card‘𝑥)
12 cardalephex 9984 . . . . . . . 8 (ω ⊆ (card‘𝑥) → ((card‘(card‘𝑥)) = (card‘𝑥) ↔ ∃𝑦 ∈ On (card‘𝑥) = (ℵ‘𝑦)))
1311, 12mpbii 233 . . . . . . 7 (ω ⊆ (card‘𝑥) → ∃𝑦 ∈ On (card‘𝑥) = (ℵ‘𝑦))
14 r19.29 3092 . . . . . . . . 9 ((∀𝑦 ∈ On 𝒫 (ℵ‘𝑦) ∈ dom card ∧ ∃𝑦 ∈ On (card‘𝑥) = (ℵ‘𝑦)) → ∃𝑦 ∈ On (𝒫 (ℵ‘𝑦) ∈ dom card ∧ (card‘𝑥) = (ℵ‘𝑦)))
15 pweq 4565 . . . . . . . . . . . 12 ((card‘𝑥) = (ℵ‘𝑦) → 𝒫 (card‘𝑥) = 𝒫 (ℵ‘𝑦))
1615eleq1d 2813 . . . . . . . . . . 11 ((card‘𝑥) = (ℵ‘𝑦) → (𝒫 (card‘𝑥) ∈ dom card ↔ 𝒫 (ℵ‘𝑦) ∈ dom card))
1716biimparc 479 . . . . . . . . . 10 ((𝒫 (ℵ‘𝑦) ∈ dom card ∧ (card‘𝑥) = (ℵ‘𝑦)) → 𝒫 (card‘𝑥) ∈ dom card)
1817rexlimivw 3126 . . . . . . . . 9 (∃𝑦 ∈ On (𝒫 (ℵ‘𝑦) ∈ dom card ∧ (card‘𝑥) = (ℵ‘𝑦)) → 𝒫 (card‘𝑥) ∈ dom card)
1914, 18syl 17 . . . . . . . 8 ((∀𝑦 ∈ On 𝒫 (ℵ‘𝑦) ∈ dom card ∧ ∃𝑦 ∈ On (card‘𝑥) = (ℵ‘𝑦)) → 𝒫 (card‘𝑥) ∈ dom card)
2019ex 412 . . . . . . 7 (∀𝑦 ∈ On 𝒫 (ℵ‘𝑦) ∈ dom card → (∃𝑦 ∈ On (card‘𝑥) = (ℵ‘𝑦) → 𝒫 (card‘𝑥) ∈ dom card))
2113, 20syl5 34 . . . . . 6 (∀𝑦 ∈ On 𝒫 (ℵ‘𝑦) ∈ dom card → (ω ⊆ (card‘𝑥) → 𝒫 (card‘𝑥) ∈ dom card))
2210, 21biimtrrid 243 . . . . 5 (∀𝑦 ∈ On 𝒫 (ℵ‘𝑦) ∈ dom card → (¬ (card‘𝑥) ∈ ω → 𝒫 (card‘𝑥) ∈ dom card))
23 nnfi 9081 . . . . . . 7 ((card‘𝑥) ∈ ω → (card‘𝑥) ∈ Fin)
24 pwfi 9208 . . . . . . 7 ((card‘𝑥) ∈ Fin ↔ 𝒫 (card‘𝑥) ∈ Fin)
2523, 24sylib 218 . . . . . 6 ((card‘𝑥) ∈ ω → 𝒫 (card‘𝑥) ∈ Fin)
26 finnum 9844 . . . . . 6 (𝒫 (card‘𝑥) ∈ Fin → 𝒫 (card‘𝑥) ∈ dom card)
2725, 26syl 17 . . . . 5 ((card‘𝑥) ∈ ω → 𝒫 (card‘𝑥) ∈ dom card)
2822, 27pm2.61d2 181 . . . 4 (∀𝑦 ∈ On 𝒫 (ℵ‘𝑦) ∈ dom card → 𝒫 (card‘𝑥) ∈ dom card)
29 oncardid 9852 . . . . 5 (𝑥 ∈ On → (card‘𝑥) ≈ 𝑥)
30 pwen 9067 . . . . 5 ((card‘𝑥) ≈ 𝑥 → 𝒫 (card‘𝑥) ≈ 𝒫 𝑥)
31 ennum 9843 . . . . 5 (𝒫 (card‘𝑥) ≈ 𝒫 𝑥 → (𝒫 (card‘𝑥) ∈ dom card ↔ 𝒫 𝑥 ∈ dom card))
3229, 30, 313syl 18 . . . 4 (𝑥 ∈ On → (𝒫 (card‘𝑥) ∈ dom card ↔ 𝒫 𝑥 ∈ dom card))
3328, 32syl5ibcom 245 . . 3 (∀𝑦 ∈ On 𝒫 (ℵ‘𝑦) ∈ dom card → (𝑥 ∈ On → 𝒫 𝑥 ∈ dom card))
3433ralrimiv 3120 . 2 (∀𝑦 ∈ On 𝒫 (ℵ‘𝑦) ∈ dom card → ∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card)
356, 34impbii 209 1 (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card ↔ ∀𝑦 ∈ On 𝒫 (ℵ‘𝑦) ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3903  𝒫 cpw 4551   class class class wbr 5092  dom cdm 5619  Oncon0 6307  cfv 6482  ωcom 7799  cen 8869  Fincfn 8872  cardccrd 9831  cale 9832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-oi 9402  df-har 9449  df-card 9835  df-aleph 9836
This theorem is referenced by:  dfac12  10044
  Copyright terms: Public domain W3C validator