MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac12k Structured version   Visualization version   GIF version

Theorem dfac12k 9834
Description: Equivalence of dfac12 9836 and dfac12a 9835, without using Regularity. (Contributed by Mario Carneiro, 21-May-2015.)
Assertion
Ref Expression
dfac12k (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card ↔ ∀𝑦 ∈ On 𝒫 (ℵ‘𝑦) ∈ dom card)
Distinct variable group:   𝑥,𝑦

Proof of Theorem dfac12k
StepHypRef Expression
1 alephon 9756 . . . 4 (ℵ‘𝑦) ∈ On
2 pweq 4546 . . . . . 6 (𝑥 = (ℵ‘𝑦) → 𝒫 𝑥 = 𝒫 (ℵ‘𝑦))
32eleq1d 2823 . . . . 5 (𝑥 = (ℵ‘𝑦) → (𝒫 𝑥 ∈ dom card ↔ 𝒫 (ℵ‘𝑦) ∈ dom card))
43rspcv 3547 . . . 4 ((ℵ‘𝑦) ∈ On → (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card → 𝒫 (ℵ‘𝑦) ∈ dom card))
51, 4ax-mp 5 . . 3 (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card → 𝒫 (ℵ‘𝑦) ∈ dom card)
65ralrimivw 3108 . 2 (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card → ∀𝑦 ∈ On 𝒫 (ℵ‘𝑦) ∈ dom card)
7 omelon 9334 . . . . . . 7 ω ∈ On
8 cardon 9633 . . . . . . 7 (card‘𝑥) ∈ On
9 ontri1 6285 . . . . . . 7 ((ω ∈ On ∧ (card‘𝑥) ∈ On) → (ω ⊆ (card‘𝑥) ↔ ¬ (card‘𝑥) ∈ ω))
107, 8, 9mp2an 688 . . . . . 6 (ω ⊆ (card‘𝑥) ↔ ¬ (card‘𝑥) ∈ ω)
11 cardidm 9648 . . . . . . . 8 (card‘(card‘𝑥)) = (card‘𝑥)
12 cardalephex 9777 . . . . . . . 8 (ω ⊆ (card‘𝑥) → ((card‘(card‘𝑥)) = (card‘𝑥) ↔ ∃𝑦 ∈ On (card‘𝑥) = (ℵ‘𝑦)))
1311, 12mpbii 232 . . . . . . 7 (ω ⊆ (card‘𝑥) → ∃𝑦 ∈ On (card‘𝑥) = (ℵ‘𝑦))
14 r19.29 3183 . . . . . . . . 9 ((∀𝑦 ∈ On 𝒫 (ℵ‘𝑦) ∈ dom card ∧ ∃𝑦 ∈ On (card‘𝑥) = (ℵ‘𝑦)) → ∃𝑦 ∈ On (𝒫 (ℵ‘𝑦) ∈ dom card ∧ (card‘𝑥) = (ℵ‘𝑦)))
15 pweq 4546 . . . . . . . . . . . 12 ((card‘𝑥) = (ℵ‘𝑦) → 𝒫 (card‘𝑥) = 𝒫 (ℵ‘𝑦))
1615eleq1d 2823 . . . . . . . . . . 11 ((card‘𝑥) = (ℵ‘𝑦) → (𝒫 (card‘𝑥) ∈ dom card ↔ 𝒫 (ℵ‘𝑦) ∈ dom card))
1716biimparc 479 . . . . . . . . . 10 ((𝒫 (ℵ‘𝑦) ∈ dom card ∧ (card‘𝑥) = (ℵ‘𝑦)) → 𝒫 (card‘𝑥) ∈ dom card)
1817rexlimivw 3210 . . . . . . . . 9 (∃𝑦 ∈ On (𝒫 (ℵ‘𝑦) ∈ dom card ∧ (card‘𝑥) = (ℵ‘𝑦)) → 𝒫 (card‘𝑥) ∈ dom card)
1914, 18syl 17 . . . . . . . 8 ((∀𝑦 ∈ On 𝒫 (ℵ‘𝑦) ∈ dom card ∧ ∃𝑦 ∈ On (card‘𝑥) = (ℵ‘𝑦)) → 𝒫 (card‘𝑥) ∈ dom card)
2019ex 412 . . . . . . 7 (∀𝑦 ∈ On 𝒫 (ℵ‘𝑦) ∈ dom card → (∃𝑦 ∈ On (card‘𝑥) = (ℵ‘𝑦) → 𝒫 (card‘𝑥) ∈ dom card))
2113, 20syl5 34 . . . . . 6 (∀𝑦 ∈ On 𝒫 (ℵ‘𝑦) ∈ dom card → (ω ⊆ (card‘𝑥) → 𝒫 (card‘𝑥) ∈ dom card))
2210, 21syl5bir 242 . . . . 5 (∀𝑦 ∈ On 𝒫 (ℵ‘𝑦) ∈ dom card → (¬ (card‘𝑥) ∈ ω → 𝒫 (card‘𝑥) ∈ dom card))
23 nnfi 8912 . . . . . . 7 ((card‘𝑥) ∈ ω → (card‘𝑥) ∈ Fin)
24 pwfi 8923 . . . . . . 7 ((card‘𝑥) ∈ Fin ↔ 𝒫 (card‘𝑥) ∈ Fin)
2523, 24sylib 217 . . . . . 6 ((card‘𝑥) ∈ ω → 𝒫 (card‘𝑥) ∈ Fin)
26 finnum 9637 . . . . . 6 (𝒫 (card‘𝑥) ∈ Fin → 𝒫 (card‘𝑥) ∈ dom card)
2725, 26syl 17 . . . . 5 ((card‘𝑥) ∈ ω → 𝒫 (card‘𝑥) ∈ dom card)
2822, 27pm2.61d2 181 . . . 4 (∀𝑦 ∈ On 𝒫 (ℵ‘𝑦) ∈ dom card → 𝒫 (card‘𝑥) ∈ dom card)
29 oncardid 9645 . . . . 5 (𝑥 ∈ On → (card‘𝑥) ≈ 𝑥)
30 pwen 8886 . . . . 5 ((card‘𝑥) ≈ 𝑥 → 𝒫 (card‘𝑥) ≈ 𝒫 𝑥)
31 ennum 9636 . . . . 5 (𝒫 (card‘𝑥) ≈ 𝒫 𝑥 → (𝒫 (card‘𝑥) ∈ dom card ↔ 𝒫 𝑥 ∈ dom card))
3229, 30, 313syl 18 . . . 4 (𝑥 ∈ On → (𝒫 (card‘𝑥) ∈ dom card ↔ 𝒫 𝑥 ∈ dom card))
3328, 32syl5ibcom 244 . . 3 (∀𝑦 ∈ On 𝒫 (ℵ‘𝑦) ∈ dom card → (𝑥 ∈ On → 𝒫 𝑥 ∈ dom card))
3433ralrimiv 3106 . 2 (∀𝑦 ∈ On 𝒫 (ℵ‘𝑦) ∈ dom card → ∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card)
356, 34impbii 208 1 (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card ↔ ∀𝑦 ∈ On 𝒫 (ℵ‘𝑦) ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  wss 3883  𝒫 cpw 4530   class class class wbr 5070  dom cdm 5580  Oncon0 6251  cfv 6418  ωcom 7687  cen 8688  Fincfn 8691  cardccrd 9624  cale 9625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-oi 9199  df-har 9246  df-card 9628  df-aleph 9629
This theorem is referenced by:  dfac12  9836
  Copyright terms: Public domain W3C validator