MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  max1ALT Structured version   Visualization version   GIF version

Theorem max1ALT 13082
Description: A number is less than or equal to the maximum of it and another. This version of max1 13081 omits the 𝐵 ∈ ℝ antecedent. Although it doesn't exploit undefined behavior, it is still considered poor style, and the use of max1 13081 is preferred. (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by NM, 3-Apr-2005.)
Assertion
Ref Expression
max1ALT (𝐴 ∈ ℝ → 𝐴 ≤ if(𝐴𝐵, 𝐵, 𝐴))

Proof of Theorem max1ALT
StepHypRef Expression
1 leid 11206 . . 3 (𝐴 ∈ ℝ → 𝐴𝐴)
2 iffalse 4484 . . . 4 𝐴𝐵 → if(𝐴𝐵, 𝐵, 𝐴) = 𝐴)
32breq2d 5103 . . 3 𝐴𝐵 → (𝐴 ≤ if(𝐴𝐵, 𝐵, 𝐴) ↔ 𝐴𝐴))
41, 3syl5ibrcom 247 . 2 (𝐴 ∈ ℝ → (¬ 𝐴𝐵𝐴 ≤ if(𝐴𝐵, 𝐵, 𝐴)))
5 id 22 . . 3 (𝐴𝐵𝐴𝐵)
6 iftrue 4481 . . 3 (𝐴𝐵 → if(𝐴𝐵, 𝐵, 𝐴) = 𝐵)
75, 6breqtrrd 5119 . 2 (𝐴𝐵𝐴 ≤ if(𝐴𝐵, 𝐵, 𝐴))
84, 7pm2.61d2 181 1 (𝐴 ∈ ℝ → 𝐴 ≤ if(𝐴𝐵, 𝐵, 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2111  ifcif 4475   class class class wbr 5091  cr 11002  cle 11144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-resscn 11060  ax-pre-lttri 11077
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator