MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  max1ALT Structured version   Visualization version   GIF version

Theorem max1ALT 13207
Description: A number is less than or equal to the maximum of it and another. This version of max1 13206 omits the 𝐵 ∈ ℝ antecedent. Although it doesn't exploit undefined behavior, it is still considered poor style, and the use of max1 13206 is preferred. (Proof modification is discouraged.) (New usage is discouraged.) (Contributed by NM, 3-Apr-2005.)
Assertion
Ref Expression
max1ALT (𝐴 ∈ ℝ → 𝐴 ≤ if(𝐴𝐵, 𝐵, 𝐴))

Proof of Theorem max1ALT
StepHypRef Expression
1 leid 11336 . . 3 (𝐴 ∈ ℝ → 𝐴𝐴)
2 iffalse 4514 . . . 4 𝐴𝐵 → if(𝐴𝐵, 𝐵, 𝐴) = 𝐴)
32breq2d 5136 . . 3 𝐴𝐵 → (𝐴 ≤ if(𝐴𝐵, 𝐵, 𝐴) ↔ 𝐴𝐴))
41, 3syl5ibrcom 247 . 2 (𝐴 ∈ ℝ → (¬ 𝐴𝐵𝐴 ≤ if(𝐴𝐵, 𝐵, 𝐴)))
5 id 22 . . 3 (𝐴𝐵𝐴𝐵)
6 iftrue 4511 . . 3 (𝐴𝐵 → if(𝐴𝐵, 𝐵, 𝐴) = 𝐵)
75, 6breqtrrd 5152 . 2 (𝐴𝐵𝐴 ≤ if(𝐴𝐵, 𝐵, 𝐴))
84, 7pm2.61d2 181 1 (𝐴 ∈ ℝ → 𝐴 ≤ if(𝐴𝐵, 𝐵, 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2109  ifcif 4505   class class class wbr 5124  cr 11133  cle 11275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-resscn 11191  ax-pre-lttri 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator