MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrmax1 Structured version   Visualization version   GIF version

Theorem xrmax1 13159
Description: An extended real is less than or equal to the maximum of it and another. (Contributed by NM, 7-Feb-2007.)
Assertion
Ref Expression
xrmax1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐴 ≤ if(𝐴𝐵, 𝐵, 𝐴))

Proof of Theorem xrmax1
StepHypRef Expression
1 xrleid 13135 . . . 4 (𝐴 ∈ ℝ*𝐴𝐴)
2 iffalse 4537 . . . . 5 𝐴𝐵 → if(𝐴𝐵, 𝐵, 𝐴) = 𝐴)
32breq2d 5160 . . . 4 𝐴𝐵 → (𝐴 ≤ if(𝐴𝐵, 𝐵, 𝐴) ↔ 𝐴𝐴))
41, 3syl5ibrcom 246 . . 3 (𝐴 ∈ ℝ* → (¬ 𝐴𝐵𝐴 ≤ if(𝐴𝐵, 𝐵, 𝐴)))
5 id 22 . . . 4 (𝐴𝐵𝐴𝐵)
6 iftrue 4534 . . . 4 (𝐴𝐵 → if(𝐴𝐵, 𝐵, 𝐴) = 𝐵)
75, 6breqtrrd 5176 . . 3 (𝐴𝐵𝐴 ≤ if(𝐴𝐵, 𝐵, 𝐴))
84, 7pm2.61d2 181 . 2 (𝐴 ∈ ℝ*𝐴 ≤ if(𝐴𝐵, 𝐵, 𝐴))
98adantr 480 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐴 ≤ if(𝐴𝐵, 𝐵, 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2105  ifcif 4528   class class class wbr 5148  *cxr 11252  cle 11254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7728  ax-cnex 11169  ax-resscn 11170  ax-pre-lttri 11187  ax-pre-lttrn 11188
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-er 8706  df-en 8943  df-dom 8944  df-sdom 8945  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259
This theorem is referenced by:  xrmaxlt  13165  xrmaxle  13167  max1  13169  limsupgre  15430  pnfnei  22945  ismbfd  25389  dvferm2lem  25739  mdegaddle  25828
  Copyright terms: Public domain W3C validator