![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrmax1 | Structured version Visualization version GIF version |
Description: An extended real is less than or equal to the maximum of it and another. (Contributed by NM, 7-Feb-2007.) |
Ref | Expression |
---|---|
xrmax1 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrleid 13135 | . . . 4 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ 𝐴) | |
2 | iffalse 4537 | . . . . 5 ⊢ (¬ 𝐴 ≤ 𝐵 → if(𝐴 ≤ 𝐵, 𝐵, 𝐴) = 𝐴) | |
3 | 2 | breq2d 5160 | . . . 4 ⊢ (¬ 𝐴 ≤ 𝐵 → (𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴) ↔ 𝐴 ≤ 𝐴)) |
4 | 1, 3 | syl5ibrcom 246 | . . 3 ⊢ (𝐴 ∈ ℝ* → (¬ 𝐴 ≤ 𝐵 → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴))) |
5 | id 22 | . . . 4 ⊢ (𝐴 ≤ 𝐵 → 𝐴 ≤ 𝐵) | |
6 | iftrue 4534 | . . . 4 ⊢ (𝐴 ≤ 𝐵 → if(𝐴 ≤ 𝐵, 𝐵, 𝐴) = 𝐵) | |
7 | 5, 6 | breqtrrd 5176 | . . 3 ⊢ (𝐴 ≤ 𝐵 → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
8 | 4, 7 | pm2.61d2 181 | . 2 ⊢ (𝐴 ∈ ℝ* → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
9 | 8 | adantr 480 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐴 ≤ if(𝐴 ≤ 𝐵, 𝐵, 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2105 ifcif 4528 class class class wbr 5148 ℝ*cxr 11252 ≤ cle 11254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-pre-lttri 11187 ax-pre-lttrn 11188 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 |
This theorem is referenced by: xrmaxlt 13165 xrmaxle 13167 max1 13169 limsupgre 15430 pnfnei 22945 ismbfd 25389 dvferm2lem 25739 mdegaddle 25828 |
Copyright terms: Public domain | W3C validator |