Proof of Theorem sbgoldbaltlem1
Step | Hyp | Ref
| Expression |
1 | | prmnn 16307 |
. . . . . 6
⊢ (𝑄 ∈ ℙ → 𝑄 ∈
ℕ) |
2 | | nneoALTV 45012 |
. . . . . . 7
⊢ (𝑄 ∈ ℕ → (𝑄 ∈ Even ↔ ¬ 𝑄 ∈ Odd )) |
3 | 2 | bicomd 222 |
. . . . . 6
⊢ (𝑄 ∈ ℕ → (¬
𝑄 ∈ Odd ↔ 𝑄 ∈ Even )) |
4 | 1, 3 | syl 17 |
. . . . 5
⊢ (𝑄 ∈ ℙ → (¬
𝑄 ∈ Odd ↔ 𝑄 ∈ Even )) |
5 | | evenprm2 45054 |
. . . . 5
⊢ (𝑄 ∈ ℙ → (𝑄 ∈ Even ↔ 𝑄 = 2)) |
6 | 4, 5 | bitrd 278 |
. . . 4
⊢ (𝑄 ∈ ℙ → (¬
𝑄 ∈ Odd ↔ 𝑄 = 2)) |
7 | 6 | adantl 481 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (¬
𝑄 ∈ Odd ↔ 𝑄 = 2)) |
8 | | oveq2 7263 |
. . . . . . . . 9
⊢ (𝑄 = 2 → (𝑃 + 𝑄) = (𝑃 + 2)) |
9 | 8 | eqeq2d 2749 |
. . . . . . . 8
⊢ (𝑄 = 2 → (𝑁 = (𝑃 + 𝑄) ↔ 𝑁 = (𝑃 + 2))) |
10 | 9 | adantl 481 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝑄 = 2) → (𝑁 = (𝑃 + 𝑄) ↔ 𝑁 = (𝑃 + 2))) |
11 | 10 | 3anbi3d 1440 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑄 = 2) → ((𝑁 ∈ Even ∧ 4 < 𝑁 ∧ 𝑁 = (𝑃 + 𝑄)) ↔ (𝑁 ∈ Even ∧ 4 < 𝑁 ∧ 𝑁 = (𝑃 + 2)))) |
12 | | breq2 5074 |
. . . . . . . . . . . . 13
⊢ (𝑁 = (𝑃 + 2) → (4 < 𝑁 ↔ 4 < (𝑃 + 2))) |
13 | | eleq1 2826 |
. . . . . . . . . . . . 13
⊢ (𝑁 = (𝑃 + 2) → (𝑁 ∈ Even ↔ (𝑃 + 2) ∈ Even )) |
14 | 12, 13 | anbi12d 630 |
. . . . . . . . . . . 12
⊢ (𝑁 = (𝑃 + 2) → ((4 < 𝑁 ∧ 𝑁 ∈ Even ) ↔ (4 < (𝑃 + 2) ∧ (𝑃 + 2) ∈ Even ))) |
15 | | prmz 16308 |
. . . . . . . . . . . . . . . 16
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) |
16 | | 2evenALTV 45032 |
. . . . . . . . . . . . . . . 16
⊢ 2 ∈
Even |
17 | | evensumeven 45047 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃 ∈ ℤ ∧ 2 ∈
Even ) → (𝑃 ∈
Even ↔ (𝑃 + 2) ∈
Even )) |
18 | 15, 16, 17 | sylancl 585 |
. . . . . . . . . . . . . . 15
⊢ (𝑃 ∈ ℙ → (𝑃 ∈ Even ↔ (𝑃 + 2) ∈ Even
)) |
19 | | evenprm2 45054 |
. . . . . . . . . . . . . . . 16
⊢ (𝑃 ∈ ℙ → (𝑃 ∈ Even ↔ 𝑃 = 2)) |
20 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑃 = 2 → (𝑃 + 2) = (2 + 2)) |
21 | | 2p2e4 12038 |
. . . . . . . . . . . . . . . . . . 19
⊢ (2 + 2) =
4 |
22 | 20, 21 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑃 = 2 → (𝑃 + 2) = 4) |
23 | 22 | breq2d 5082 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑃 = 2 → (4 < (𝑃 + 2) ↔ 4 <
4)) |
24 | | 4re 11987 |
. . . . . . . . . . . . . . . . . . 19
⊢ 4 ∈
ℝ |
25 | 24 | ltnri 11014 |
. . . . . . . . . . . . . . . . . 18
⊢ ¬ 4
< 4 |
26 | 25 | pm2.21i 119 |
. . . . . . . . . . . . . . . . 17
⊢ (4 < 4
→ 𝑄 ∈ Odd
) |
27 | 23, 26 | syl6bi 252 |
. . . . . . . . . . . . . . . 16
⊢ (𝑃 = 2 → (4 < (𝑃 + 2) → 𝑄 ∈ Odd )) |
28 | 19, 27 | syl6bi 252 |
. . . . . . . . . . . . . . 15
⊢ (𝑃 ∈ ℙ → (𝑃 ∈ Even → (4 <
(𝑃 + 2) → 𝑄 ∈ Odd ))) |
29 | 18, 28 | sylbird 259 |
. . . . . . . . . . . . . 14
⊢ (𝑃 ∈ ℙ → ((𝑃 + 2) ∈ Even → (4 <
(𝑃 + 2) → 𝑄 ∈ Odd ))) |
30 | 29 | com13 88 |
. . . . . . . . . . . . 13
⊢ (4 <
(𝑃 + 2) → ((𝑃 + 2) ∈ Even → (𝑃 ∈ ℙ → 𝑄 ∈ Odd ))) |
31 | 30 | imp 406 |
. . . . . . . . . . . 12
⊢ ((4 <
(𝑃 + 2) ∧ (𝑃 + 2) ∈ Even ) →
(𝑃 ∈ ℙ →
𝑄 ∈ Odd
)) |
32 | 14, 31 | syl6bi 252 |
. . . . . . . . . . 11
⊢ (𝑁 = (𝑃 + 2) → ((4 < 𝑁 ∧ 𝑁 ∈ Even ) → (𝑃 ∈ ℙ → 𝑄 ∈ Odd ))) |
33 | 32 | expd 415 |
. . . . . . . . . 10
⊢ (𝑁 = (𝑃 + 2) → (4 < 𝑁 → (𝑁 ∈ Even → (𝑃 ∈ ℙ → 𝑄 ∈ Odd )))) |
34 | 33 | com13 88 |
. . . . . . . . 9
⊢ (𝑁 ∈ Even → (4 <
𝑁 → (𝑁 = (𝑃 + 2) → (𝑃 ∈ ℙ → 𝑄 ∈ Odd )))) |
35 | 34 | 3imp 1109 |
. . . . . . . 8
⊢ ((𝑁 ∈ Even ∧ 4 < 𝑁 ∧ 𝑁 = (𝑃 + 2)) → (𝑃 ∈ ℙ → 𝑄 ∈ Odd )) |
36 | 35 | com12 32 |
. . . . . . 7
⊢ (𝑃 ∈ ℙ → ((𝑁 ∈ Even ∧ 4 < 𝑁 ∧ 𝑁 = (𝑃 + 2)) → 𝑄 ∈ Odd )) |
37 | 36 | adantr 480 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑄 = 2) → ((𝑁 ∈ Even ∧ 4 < 𝑁 ∧ 𝑁 = (𝑃 + 2)) → 𝑄 ∈ Odd )) |
38 | 11, 37 | sylbid 239 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝑄 = 2) → ((𝑁 ∈ Even ∧ 4 < 𝑁 ∧ 𝑁 = (𝑃 + 𝑄)) → 𝑄 ∈ Odd )) |
39 | 38 | ex 412 |
. . . 4
⊢ (𝑃 ∈ ℙ → (𝑄 = 2 → ((𝑁 ∈ Even ∧ 4 < 𝑁 ∧ 𝑁 = (𝑃 + 𝑄)) → 𝑄 ∈ Odd ))) |
40 | 39 | adantr 480 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑄 = 2 → ((𝑁 ∈ Even ∧ 4 < 𝑁 ∧ 𝑁 = (𝑃 + 𝑄)) → 𝑄 ∈ Odd ))) |
41 | 7, 40 | sylbid 239 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (¬
𝑄 ∈ Odd → ((𝑁 ∈ Even ∧ 4 < 𝑁 ∧ 𝑁 = (𝑃 + 𝑄)) → 𝑄 ∈ Odd ))) |
42 | | ax-1 6 |
. 2
⊢ (𝑄 ∈ Odd → ((𝑁 ∈ Even ∧ 4 < 𝑁 ∧ 𝑁 = (𝑃 + 𝑄)) → 𝑄 ∈ Odd )) |
43 | 41, 42 | pm2.61d2 181 |
1
⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((𝑁 ∈ Even ∧ 4 < 𝑁 ∧ 𝑁 = (𝑃 + 𝑄)) → 𝑄 ∈ Odd )) |