Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbgoldbaltlem1 Structured version   Visualization version   GIF version

Theorem sbgoldbaltlem1 47784
Description: Lemma 1 for sbgoldbalt 47786: If an even number greater than 4 is the sum of two primes, one of the prime summands must be odd, i.e. not 2. (Contributed by AV, 22-Jul-2020.)
Assertion
Ref Expression
sbgoldbaltlem1 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((𝑁 ∈ Even ∧ 4 < 𝑁𝑁 = (𝑃 + 𝑄)) → 𝑄 ∈ Odd ))

Proof of Theorem sbgoldbaltlem1
StepHypRef Expression
1 prmnn 16651 . . . . . 6 (𝑄 ∈ ℙ → 𝑄 ∈ ℕ)
2 nneoALTV 47677 . . . . . . 7 (𝑄 ∈ ℕ → (𝑄 ∈ Even ↔ ¬ 𝑄 ∈ Odd ))
32bicomd 223 . . . . . 6 (𝑄 ∈ ℕ → (¬ 𝑄 ∈ Odd ↔ 𝑄 ∈ Even ))
41, 3syl 17 . . . . 5 (𝑄 ∈ ℙ → (¬ 𝑄 ∈ Odd ↔ 𝑄 ∈ Even ))
5 evenprm2 47719 . . . . 5 (𝑄 ∈ ℙ → (𝑄 ∈ Even ↔ 𝑄 = 2))
64, 5bitrd 279 . . . 4 (𝑄 ∈ ℙ → (¬ 𝑄 ∈ Odd ↔ 𝑄 = 2))
76adantl 481 . . 3 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (¬ 𝑄 ∈ Odd ↔ 𝑄 = 2))
8 oveq2 7398 . . . . . . . . 9 (𝑄 = 2 → (𝑃 + 𝑄) = (𝑃 + 2))
98eqeq2d 2741 . . . . . . . 8 (𝑄 = 2 → (𝑁 = (𝑃 + 𝑄) ↔ 𝑁 = (𝑃 + 2)))
109adantl 481 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑄 = 2) → (𝑁 = (𝑃 + 𝑄) ↔ 𝑁 = (𝑃 + 2)))
11103anbi3d 1444 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑄 = 2) → ((𝑁 ∈ Even ∧ 4 < 𝑁𝑁 = (𝑃 + 𝑄)) ↔ (𝑁 ∈ Even ∧ 4 < 𝑁𝑁 = (𝑃 + 2))))
12 breq2 5114 . . . . . . . . . . . . 13 (𝑁 = (𝑃 + 2) → (4 < 𝑁 ↔ 4 < (𝑃 + 2)))
13 eleq1 2817 . . . . . . . . . . . . 13 (𝑁 = (𝑃 + 2) → (𝑁 ∈ Even ↔ (𝑃 + 2) ∈ Even ))
1412, 13anbi12d 632 . . . . . . . . . . . 12 (𝑁 = (𝑃 + 2) → ((4 < 𝑁𝑁 ∈ Even ) ↔ (4 < (𝑃 + 2) ∧ (𝑃 + 2) ∈ Even )))
15 prmz 16652 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
16 2evenALTV 47697 . . . . . . . . . . . . . . . 16 2 ∈ Even
17 evensumeven 47712 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℤ ∧ 2 ∈ Even ) → (𝑃 ∈ Even ↔ (𝑃 + 2) ∈ Even ))
1815, 16, 17sylancl 586 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → (𝑃 ∈ Even ↔ (𝑃 + 2) ∈ Even ))
19 evenprm2 47719 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℙ → (𝑃 ∈ Even ↔ 𝑃 = 2))
20 oveq1 7397 . . . . . . . . . . . . . . . . . . 19 (𝑃 = 2 → (𝑃 + 2) = (2 + 2))
21 2p2e4 12323 . . . . . . . . . . . . . . . . . . 19 (2 + 2) = 4
2220, 21eqtrdi 2781 . . . . . . . . . . . . . . . . . 18 (𝑃 = 2 → (𝑃 + 2) = 4)
2322breq2d 5122 . . . . . . . . . . . . . . . . 17 (𝑃 = 2 → (4 < (𝑃 + 2) ↔ 4 < 4))
24 4re 12277 . . . . . . . . . . . . . . . . . . 19 4 ∈ ℝ
2524ltnri 11290 . . . . . . . . . . . . . . . . . 18 ¬ 4 < 4
2625pm2.21i 119 . . . . . . . . . . . . . . . . 17 (4 < 4 → 𝑄 ∈ Odd )
2723, 26biimtrdi 253 . . . . . . . . . . . . . . . 16 (𝑃 = 2 → (4 < (𝑃 + 2) → 𝑄 ∈ Odd ))
2819, 27biimtrdi 253 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → (𝑃 ∈ Even → (4 < (𝑃 + 2) → 𝑄 ∈ Odd )))
2918, 28sylbird 260 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → ((𝑃 + 2) ∈ Even → (4 < (𝑃 + 2) → 𝑄 ∈ Odd )))
3029com13 88 . . . . . . . . . . . . 13 (4 < (𝑃 + 2) → ((𝑃 + 2) ∈ Even → (𝑃 ∈ ℙ → 𝑄 ∈ Odd )))
3130imp 406 . . . . . . . . . . . 12 ((4 < (𝑃 + 2) ∧ (𝑃 + 2) ∈ Even ) → (𝑃 ∈ ℙ → 𝑄 ∈ Odd ))
3214, 31biimtrdi 253 . . . . . . . . . . 11 (𝑁 = (𝑃 + 2) → ((4 < 𝑁𝑁 ∈ Even ) → (𝑃 ∈ ℙ → 𝑄 ∈ Odd )))
3332expd 415 . . . . . . . . . 10 (𝑁 = (𝑃 + 2) → (4 < 𝑁 → (𝑁 ∈ Even → (𝑃 ∈ ℙ → 𝑄 ∈ Odd ))))
3433com13 88 . . . . . . . . 9 (𝑁 ∈ Even → (4 < 𝑁 → (𝑁 = (𝑃 + 2) → (𝑃 ∈ ℙ → 𝑄 ∈ Odd ))))
35343imp 1110 . . . . . . . 8 ((𝑁 ∈ Even ∧ 4 < 𝑁𝑁 = (𝑃 + 2)) → (𝑃 ∈ ℙ → 𝑄 ∈ Odd ))
3635com12 32 . . . . . . 7 (𝑃 ∈ ℙ → ((𝑁 ∈ Even ∧ 4 < 𝑁𝑁 = (𝑃 + 2)) → 𝑄 ∈ Odd ))
3736adantr 480 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑄 = 2) → ((𝑁 ∈ Even ∧ 4 < 𝑁𝑁 = (𝑃 + 2)) → 𝑄 ∈ Odd ))
3811, 37sylbid 240 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑄 = 2) → ((𝑁 ∈ Even ∧ 4 < 𝑁𝑁 = (𝑃 + 𝑄)) → 𝑄 ∈ Odd ))
3938ex 412 . . . 4 (𝑃 ∈ ℙ → (𝑄 = 2 → ((𝑁 ∈ Even ∧ 4 < 𝑁𝑁 = (𝑃 + 𝑄)) → 𝑄 ∈ Odd )))
4039adantr 480 . . 3 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑄 = 2 → ((𝑁 ∈ Even ∧ 4 < 𝑁𝑁 = (𝑃 + 𝑄)) → 𝑄 ∈ Odd )))
417, 40sylbid 240 . 2 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (¬ 𝑄 ∈ Odd → ((𝑁 ∈ Even ∧ 4 < 𝑁𝑁 = (𝑃 + 𝑄)) → 𝑄 ∈ Odd )))
42 ax-1 6 . 2 (𝑄 ∈ Odd → ((𝑁 ∈ Even ∧ 4 < 𝑁𝑁 = (𝑃 + 𝑄)) → 𝑄 ∈ Odd ))
4341, 42pm2.61d2 181 1 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((𝑁 ∈ Even ∧ 4 < 𝑁𝑁 = (𝑃 + 𝑄)) → 𝑄 ∈ Odd ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5110  (class class class)co 7390   + caddc 11078   < clt 11215  cn 12193  2c2 12248  4c4 12250  cz 12536  cprime 16648   Even ceven 47629   Odd codd 47630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-prm 16649  df-even 47631  df-odd 47632
This theorem is referenced by:  sbgoldbaltlem2  47785
  Copyright terms: Public domain W3C validator