MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrmin2 Structured version   Visualization version   GIF version

Theorem xrmin2 13079
Description: The minimum of two extended reals is less than or equal to one of them. (Contributed by NM, 7-Feb-2007.)
Assertion
Ref Expression
xrmin2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → if(𝐴𝐵, 𝐴, 𝐵) ≤ 𝐵)

Proof of Theorem xrmin2
StepHypRef Expression
1 xrleid 13052 . . . 4 (𝐵 ∈ ℝ*𝐵𝐵)
2 iffalse 4483 . . . . 5 𝐴𝐵 → if(𝐴𝐵, 𝐴, 𝐵) = 𝐵)
32breq1d 5103 . . . 4 𝐴𝐵 → (if(𝐴𝐵, 𝐴, 𝐵) ≤ 𝐵𝐵𝐵))
41, 3syl5ibrcom 247 . . 3 (𝐵 ∈ ℝ* → (¬ 𝐴𝐵 → if(𝐴𝐵, 𝐴, 𝐵) ≤ 𝐵))
5 iftrue 4480 . . . 4 (𝐴𝐵 → if(𝐴𝐵, 𝐴, 𝐵) = 𝐴)
6 id 22 . . . 4 (𝐴𝐵𝐴𝐵)
75, 6eqbrtrd 5115 . . 3 (𝐴𝐵 → if(𝐴𝐵, 𝐴, 𝐵) ≤ 𝐵)
84, 7pm2.61d2 181 . 2 (𝐵 ∈ ℝ* → if(𝐴𝐵, 𝐴, 𝐵) ≤ 𝐵)
98adantl 481 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → if(𝐴𝐵, 𝐴, 𝐵) ≤ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2113  ifcif 4474   class class class wbr 5093  *cxr 11152  cle 11154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-pre-lttri 11087  ax-pre-lttrn 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159
This theorem is referenced by:  xrltmin  13083  xrlemin  13085  min2  13091  mnfnei  23137  stdbdxmet  24431  stdbdmet  24432  stdbdmopn  24434  tgioo  24712  metnrmlem1  24776  ismbfd  25568  dvferm1lem  25916  lhop1  25947  stoweid  46185
  Copyright terms: Public domain W3C validator