MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrmin2 Structured version   Visualization version   GIF version

Theorem xrmin2 12559
Description: The minimum of two extended reals is less than or equal to one of them. (Contributed by NM, 7-Feb-2007.)
Assertion
Ref Expression
xrmin2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → if(𝐴𝐵, 𝐴, 𝐵) ≤ 𝐵)

Proof of Theorem xrmin2
StepHypRef Expression
1 xrleid 12532 . . . 4 (𝐵 ∈ ℝ*𝐵𝐵)
2 iffalse 4448 . . . . 5 𝐴𝐵 → if(𝐴𝐵, 𝐴, 𝐵) = 𝐵)
32breq1d 5052 . . . 4 𝐴𝐵 → (if(𝐴𝐵, 𝐴, 𝐵) ≤ 𝐵𝐵𝐵))
41, 3syl5ibrcom 250 . . 3 (𝐵 ∈ ℝ* → (¬ 𝐴𝐵 → if(𝐴𝐵, 𝐴, 𝐵) ≤ 𝐵))
5 iftrue 4445 . . . 4 (𝐴𝐵 → if(𝐴𝐵, 𝐴, 𝐵) = 𝐴)
6 id 22 . . . 4 (𝐴𝐵𝐴𝐵)
75, 6eqbrtrd 5064 . . 3 (𝐴𝐵 → if(𝐴𝐵, 𝐴, 𝐵) ≤ 𝐵)
84, 7pm2.61d2 184 . 2 (𝐵 ∈ ℝ* → if(𝐴𝐵, 𝐴, 𝐵) ≤ 𝐵)
98adantl 485 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → if(𝐴𝐵, 𝐴, 𝐵) ≤ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wcel 2114  ifcif 4439   class class class wbr 5042  *cxr 10663  cle 10665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-pre-lttri 10600  ax-pre-lttrn 10601
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-po 5451  df-so 5452  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670
This theorem is referenced by:  xrltmin  12563  xrlemin  12565  min2  12571  mnfnei  21824  stdbdxmet  23120  stdbdmet  23121  stdbdmopn  23123  tgioo  23399  metnrmlem1  23462  ismbfd  24241  dvferm1lem  24585  lhop1  24615  stoweid  42645
  Copyright terms: Public domain W3C validator