MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  maxs1 Structured version   Visualization version   GIF version

Theorem maxs1 27811
Description: A surreal is less than or equal to the maximum of it and another. (Contributed by Scott Fenton, 14-Feb-2025.)
Assertion
Ref Expression
maxs1 (𝐴 No 𝐴 ≤s if(𝐴 ≤s 𝐵, 𝐵, 𝐴))

Proof of Theorem maxs1
StepHypRef Expression
1 slerflex 27809 . . 3 (𝐴 No 𝐴 ≤s 𝐴)
2 iffalse 4533 . . . 4 𝐴 ≤s 𝐵 → if(𝐴 ≤s 𝐵, 𝐵, 𝐴) = 𝐴)
32breq2d 5154 . . 3 𝐴 ≤s 𝐵 → (𝐴 ≤s if(𝐴 ≤s 𝐵, 𝐵, 𝐴) ↔ 𝐴 ≤s 𝐴))
41, 3syl5ibrcom 247 . 2 (𝐴 No → (¬ 𝐴 ≤s 𝐵𝐴 ≤s if(𝐴 ≤s 𝐵, 𝐵, 𝐴)))
5 id 22 . . 3 (𝐴 ≤s 𝐵𝐴 ≤s 𝐵)
6 iftrue 4530 . . 3 (𝐴 ≤s 𝐵 → if(𝐴 ≤s 𝐵, 𝐵, 𝐴) = 𝐵)
75, 6breqtrrd 5170 . 2 (𝐴 ≤s 𝐵𝐴 ≤s if(𝐴 ≤s 𝐵, 𝐵, 𝐴))
84, 7pm2.61d2 181 1 (𝐴 No 𝐴 ≤s if(𝐴 ≤s 𝐵, 𝐵, 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2107  ifcif 4524   class class class wbr 5142   No csur 27685   ≤s csle 27790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-ord 6386  df-on 6387  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-fv 6568  df-1o 8507  df-2o 8508  df-no 27688  df-slt 27689  df-sle 27791
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator