MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  maxs1 Structured version   Visualization version   GIF version

Theorem maxs1 27684
Description: A surreal is less than or equal to the maximum of it and another. (Contributed by Scott Fenton, 14-Feb-2025.)
Assertion
Ref Expression
maxs1 (𝐴 No 𝐴 ≤s if(𝐴 ≤s 𝐵, 𝐵, 𝐴))

Proof of Theorem maxs1
StepHypRef Expression
1 slerflex 27682 . . 3 (𝐴 No 𝐴 ≤s 𝐴)
2 iffalse 4500 . . . 4 𝐴 ≤s 𝐵 → if(𝐴 ≤s 𝐵, 𝐵, 𝐴) = 𝐴)
32breq2d 5122 . . 3 𝐴 ≤s 𝐵 → (𝐴 ≤s if(𝐴 ≤s 𝐵, 𝐵, 𝐴) ↔ 𝐴 ≤s 𝐴))
41, 3syl5ibrcom 247 . 2 (𝐴 No → (¬ 𝐴 ≤s 𝐵𝐴 ≤s if(𝐴 ≤s 𝐵, 𝐵, 𝐴)))
5 id 22 . . 3 (𝐴 ≤s 𝐵𝐴 ≤s 𝐵)
6 iftrue 4497 . . 3 (𝐴 ≤s 𝐵 → if(𝐴 ≤s 𝐵, 𝐵, 𝐴) = 𝐵)
75, 6breqtrrd 5138 . 2 (𝐴 ≤s 𝐵𝐴 ≤s if(𝐴 ≤s 𝐵, 𝐵, 𝐴))
84, 7pm2.61d2 181 1 (𝐴 No 𝐴 ≤s if(𝐴 ≤s 𝐵, 𝐵, 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2109  ifcif 4491   class class class wbr 5110   No csur 27558   ≤s csle 27663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-1o 8437  df-2o 8438  df-no 27561  df-slt 27562  df-sle 27664
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator