Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indf1o Structured version   Visualization version   GIF version

Theorem indf1o 32787
Description: The bijection between a power set and the set of indicator functions. (Contributed by Thierry Arnoux, 14-Aug-2017.)
Assertion
Ref Expression
indf1o (𝑂𝑉 → (𝟭‘𝑂):𝒫 𝑂1-1-onto→({0, 1} ↑m 𝑂))

Proof of Theorem indf1o
Dummy variables 𝑥 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝑂𝑉𝑂𝑉)
2 0red 11177 . . 3 (𝑂𝑉 → 0 ∈ ℝ)
3 1red 11175 . . 3 (𝑂𝑉 → 1 ∈ ℝ)
4 0ne1 12257 . . . 4 0 ≠ 1
54a1i 11 . . 3 (𝑂𝑉 → 0 ≠ 1)
6 eqid 2729 . . 3 (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥𝑂 ↦ if(𝑥𝑎, 1, 0))) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥𝑂 ↦ if(𝑥𝑎, 1, 0)))
71, 2, 3, 5, 6pw2f1o 9046 . 2 (𝑂𝑉 → (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥𝑂 ↦ if(𝑥𝑎, 1, 0))):𝒫 𝑂1-1-onto→({0, 1} ↑m 𝑂))
8 indv 32775 . . 3 (𝑂𝑉 → (𝟭‘𝑂) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥𝑂 ↦ if(𝑥𝑎, 1, 0))))
98f1oeq1d 6795 . 2 (𝑂𝑉 → ((𝟭‘𝑂):𝒫 𝑂1-1-onto→({0, 1} ↑m 𝑂) ↔ (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥𝑂 ↦ if(𝑥𝑎, 1, 0))):𝒫 𝑂1-1-onto→({0, 1} ↑m 𝑂)))
107, 9mpbird 257 1 (𝑂𝑉 → (𝟭‘𝑂):𝒫 𝑂1-1-onto→({0, 1} ↑m 𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wne 2925  ifcif 4488  𝒫 cpw 4563  {cpr 4591  cmpt 5188  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  m cmap 8799  cr 11067  0cc0 11068  1c1 11069  𝟭cind 32773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-i2m1 11136  ax-1ne0 11137  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-ind 32774
This theorem is referenced by:  indf1ofs  32789  eulerpartgbij  34363
  Copyright terms: Public domain W3C validator