| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > indf1o | Structured version Visualization version GIF version | ||
| Description: The bijection between a power set and the set of indicator functions. (Contributed by Thierry Arnoux, 14-Aug-2017.) |
| Ref | Expression |
|---|---|
| indf1o | ⊢ (𝑂 ∈ 𝑉 → (𝟭‘𝑂):𝒫 𝑂–1-1-onto→({0, 1} ↑m 𝑂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ (𝑂 ∈ 𝑉 → 𝑂 ∈ 𝑉) | |
| 2 | 0red 11153 | . . 3 ⊢ (𝑂 ∈ 𝑉 → 0 ∈ ℝ) | |
| 3 | 1red 11151 | . . 3 ⊢ (𝑂 ∈ 𝑉 → 1 ∈ ℝ) | |
| 4 | 0ne1 12233 | . . . 4 ⊢ 0 ≠ 1 | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝑂 ∈ 𝑉 → 0 ≠ 1) |
| 6 | eqid 2729 | . . 3 ⊢ (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0))) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0))) | |
| 7 | 1, 2, 3, 5, 6 | pw2f1o 9023 | . 2 ⊢ (𝑂 ∈ 𝑉 → (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0))):𝒫 𝑂–1-1-onto→({0, 1} ↑m 𝑂)) |
| 8 | indv 32748 | . . 3 ⊢ (𝑂 ∈ 𝑉 → (𝟭‘𝑂) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0)))) | |
| 9 | 8 | f1oeq1d 6777 | . 2 ⊢ (𝑂 ∈ 𝑉 → ((𝟭‘𝑂):𝒫 𝑂–1-1-onto→({0, 1} ↑m 𝑂) ↔ (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0))):𝒫 𝑂–1-1-onto→({0, 1} ↑m 𝑂))) |
| 10 | 7, 9 | mpbird 257 | 1 ⊢ (𝑂 ∈ 𝑉 → (𝟭‘𝑂):𝒫 𝑂–1-1-onto→({0, 1} ↑m 𝑂)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2925 ifcif 4484 𝒫 cpw 4559 {cpr 4587 ↦ cmpt 5183 –1-1-onto→wf1o 6498 ‘cfv 6499 (class class class)co 7369 ↑m cmap 8776 ℝcr 11043 0cc0 11044 1c1 11045 𝟭cind 32746 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-i2m1 11112 ax-1ne0 11113 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-map 8778 df-ind 32747 |
| This theorem is referenced by: indf1ofs 32762 eulerpartgbij 34336 |
| Copyright terms: Public domain | W3C validator |