Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indf1o Structured version   Visualization version   GIF version

Theorem indf1o 32874
Description: The bijection between a power set and the set of indicator functions. (Contributed by Thierry Arnoux, 14-Aug-2017.)
Assertion
Ref Expression
indf1o (𝑂𝑉 → (𝟭‘𝑂):𝒫 𝑂1-1-onto→({0, 1} ↑m 𝑂))

Proof of Theorem indf1o
Dummy variables 𝑥 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝑂𝑉𝑂𝑉)
2 0red 11126 . . 3 (𝑂𝑉 → 0 ∈ ℝ)
3 1red 11124 . . 3 (𝑂𝑉 → 1 ∈ ℝ)
4 0ne1 12207 . . . 4 0 ≠ 1
54a1i 11 . . 3 (𝑂𝑉 → 0 ≠ 1)
6 eqid 2733 . . 3 (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥𝑂 ↦ if(𝑥𝑎, 1, 0))) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥𝑂 ↦ if(𝑥𝑎, 1, 0)))
71, 2, 3, 5, 6pw2f1o 9006 . 2 (𝑂𝑉 → (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥𝑂 ↦ if(𝑥𝑎, 1, 0))):𝒫 𝑂1-1-onto→({0, 1} ↑m 𝑂))
8 indv 32859 . . 3 (𝑂𝑉 → (𝟭‘𝑂) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥𝑂 ↦ if(𝑥𝑎, 1, 0))))
98f1oeq1d 6766 . 2 (𝑂𝑉 → ((𝟭‘𝑂):𝒫 𝑂1-1-onto→({0, 1} ↑m 𝑂) ↔ (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥𝑂 ↦ if(𝑥𝑎, 1, 0))):𝒫 𝑂1-1-onto→({0, 1} ↑m 𝑂)))
107, 9mpbird 257 1 (𝑂𝑉 → (𝟭‘𝑂):𝒫 𝑂1-1-onto→({0, 1} ↑m 𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  wne 2929  ifcif 4476  𝒫 cpw 4551  {cpr 4579  cmpt 5176  1-1-ontowf1o 6488  cfv 6489  (class class class)co 7355  m cmap 8759  cr 11016  0cc0 11017  1c1 11018  𝟭cind 32857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-i2m1 11085  ax-1ne0 11086  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-map 8761  df-ind 32858
This theorem is referenced by:  indf1ofs  32876  esplyfval0  33650  esplylem  33652  esplympl  33653  esplymhp  33654  esplyfv1  33655  esplyfv  33656  esplyfval3  33658  vieta  33664  eulerpartgbij  34457
  Copyright terms: Public domain W3C validator