| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > indf1o | Structured version Visualization version GIF version | ||
| Description: The bijection between a power set and the set of indicator functions. (Contributed by Thierry Arnoux, 14-Aug-2017.) |
| Ref | Expression |
|---|---|
| indf1o | ⊢ (𝑂 ∈ 𝑉 → (𝟭‘𝑂):𝒫 𝑂–1-1-onto→({0, 1} ↑m 𝑂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ (𝑂 ∈ 𝑉 → 𝑂 ∈ 𝑉) | |
| 2 | 0red 11184 | . . 3 ⊢ (𝑂 ∈ 𝑉 → 0 ∈ ℝ) | |
| 3 | 1red 11182 | . . 3 ⊢ (𝑂 ∈ 𝑉 → 1 ∈ ℝ) | |
| 4 | 0ne1 12264 | . . . 4 ⊢ 0 ≠ 1 | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝑂 ∈ 𝑉 → 0 ≠ 1) |
| 6 | eqid 2730 | . . 3 ⊢ (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0))) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0))) | |
| 7 | 1, 2, 3, 5, 6 | pw2f1o 9051 | . 2 ⊢ (𝑂 ∈ 𝑉 → (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0))):𝒫 𝑂–1-1-onto→({0, 1} ↑m 𝑂)) |
| 8 | indv 32782 | . . 3 ⊢ (𝑂 ∈ 𝑉 → (𝟭‘𝑂) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0)))) | |
| 9 | 8 | f1oeq1d 6798 | . 2 ⊢ (𝑂 ∈ 𝑉 → ((𝟭‘𝑂):𝒫 𝑂–1-1-onto→({0, 1} ↑m 𝑂) ↔ (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0))):𝒫 𝑂–1-1-onto→({0, 1} ↑m 𝑂))) |
| 10 | 7, 9 | mpbird 257 | 1 ⊢ (𝑂 ∈ 𝑉 → (𝟭‘𝑂):𝒫 𝑂–1-1-onto→({0, 1} ↑m 𝑂)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2926 ifcif 4491 𝒫 cpw 4566 {cpr 4594 ↦ cmpt 5191 –1-1-onto→wf1o 6513 ‘cfv 6514 (class class class)co 7390 ↑m cmap 8802 ℝcr 11074 0cc0 11075 1c1 11076 𝟭cind 32780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-i2m1 11143 ax-1ne0 11144 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-map 8804 df-ind 32781 |
| This theorem is referenced by: indf1ofs 32796 eulerpartgbij 34370 |
| Copyright terms: Public domain | W3C validator |