Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indf1o Structured version   Visualization version   GIF version

Theorem indf1o 32794
Description: The bijection between a power set and the set of indicator functions. (Contributed by Thierry Arnoux, 14-Aug-2017.)
Assertion
Ref Expression
indf1o (𝑂𝑉 → (𝟭‘𝑂):𝒫 𝑂1-1-onto→({0, 1} ↑m 𝑂))

Proof of Theorem indf1o
Dummy variables 𝑥 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝑂𝑉𝑂𝑉)
2 0red 11184 . . 3 (𝑂𝑉 → 0 ∈ ℝ)
3 1red 11182 . . 3 (𝑂𝑉 → 1 ∈ ℝ)
4 0ne1 12264 . . . 4 0 ≠ 1
54a1i 11 . . 3 (𝑂𝑉 → 0 ≠ 1)
6 eqid 2730 . . 3 (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥𝑂 ↦ if(𝑥𝑎, 1, 0))) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥𝑂 ↦ if(𝑥𝑎, 1, 0)))
71, 2, 3, 5, 6pw2f1o 9051 . 2 (𝑂𝑉 → (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥𝑂 ↦ if(𝑥𝑎, 1, 0))):𝒫 𝑂1-1-onto→({0, 1} ↑m 𝑂))
8 indv 32782 . . 3 (𝑂𝑉 → (𝟭‘𝑂) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥𝑂 ↦ if(𝑥𝑎, 1, 0))))
98f1oeq1d 6798 . 2 (𝑂𝑉 → ((𝟭‘𝑂):𝒫 𝑂1-1-onto→({0, 1} ↑m 𝑂) ↔ (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥𝑂 ↦ if(𝑥𝑎, 1, 0))):𝒫 𝑂1-1-onto→({0, 1} ↑m 𝑂)))
107, 9mpbird 257 1 (𝑂𝑉 → (𝟭‘𝑂):𝒫 𝑂1-1-onto→({0, 1} ↑m 𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wne 2926  ifcif 4491  𝒫 cpw 4566  {cpr 4594  cmpt 5191  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  m cmap 8802  cr 11074  0cc0 11075  1c1 11076  𝟭cind 32780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-i2m1 11143  ax-1ne0 11144  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-ind 32781
This theorem is referenced by:  indf1ofs  32796  eulerpartgbij  34370
  Copyright terms: Public domain W3C validator