![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > indf1o | Structured version Visualization version GIF version |
Description: The bijection between a power set and the set of indicator functions. (Contributed by Thierry Arnoux, 14-Aug-2017.) |
Ref | Expression |
---|---|
indf1o | ⊢ (𝑂 ∈ 𝑉 → (𝟭‘𝑂):𝒫 𝑂–1-1-onto→({0, 1} ↑m 𝑂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (𝑂 ∈ 𝑉 → 𝑂 ∈ 𝑉) | |
2 | 0red 11223 | . . 3 ⊢ (𝑂 ∈ 𝑉 → 0 ∈ ℝ) | |
3 | 1red 11221 | . . 3 ⊢ (𝑂 ∈ 𝑉 → 1 ∈ ℝ) | |
4 | 0ne1 12289 | . . . 4 ⊢ 0 ≠ 1 | |
5 | 4 | a1i 11 | . . 3 ⊢ (𝑂 ∈ 𝑉 → 0 ≠ 1) |
6 | eqid 2730 | . . 3 ⊢ (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0))) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0))) | |
7 | 1, 2, 3, 5, 6 | pw2f1o 9081 | . 2 ⊢ (𝑂 ∈ 𝑉 → (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0))):𝒫 𝑂–1-1-onto→({0, 1} ↑m 𝑂)) |
8 | indv 33306 | . . 3 ⊢ (𝑂 ∈ 𝑉 → (𝟭‘𝑂) = (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0)))) | |
9 | 8 | f1oeq1d 6829 | . 2 ⊢ (𝑂 ∈ 𝑉 → ((𝟭‘𝑂):𝒫 𝑂–1-1-onto→({0, 1} ↑m 𝑂) ↔ (𝑎 ∈ 𝒫 𝑂 ↦ (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝑎, 1, 0))):𝒫 𝑂–1-1-onto→({0, 1} ↑m 𝑂))) |
10 | 7, 9 | mpbird 256 | 1 ⊢ (𝑂 ∈ 𝑉 → (𝟭‘𝑂):𝒫 𝑂–1-1-onto→({0, 1} ↑m 𝑂)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2104 ≠ wne 2938 ifcif 4529 𝒫 cpw 4603 {cpr 4631 ↦ cmpt 5232 –1-1-onto→wf1o 6543 ‘cfv 6544 (class class class)co 7413 ↑m cmap 8824 ℝcr 11113 0cc0 11114 1c1 11115 𝟭cind 33304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-i2m1 11182 ax-1ne0 11183 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7416 df-oprab 7417 df-mpo 7418 df-map 8826 df-ind 33305 |
This theorem is referenced by: indf1ofs 33320 eulerpartgbij 33667 |
Copyright terms: Public domain | W3C validator |