Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pwfin0 | Structured version Visualization version GIF version |
Description: A finite set always belongs to a power class. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
pwfin0 | ⊢ (𝒫 𝐴 ∩ Fin) ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0pwfi 42916 | . 2 ⊢ ∅ ∈ (𝒫 𝐴 ∩ Fin) | |
2 | ne0i 4280 | . 2 ⊢ (∅ ∈ (𝒫 𝐴 ∩ Fin) → (𝒫 𝐴 ∩ Fin) ≠ ∅) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝒫 𝐴 ∩ Fin) ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 ≠ wne 2940 ∩ cin 3896 ∅c0 4268 𝒫 cpw 4546 Fincfn 8796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pr 5369 ax-un 7642 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-om 7773 df-en 8797 df-fin 8800 |
This theorem is referenced by: sge0z 44239 |
Copyright terms: Public domain | W3C validator |