![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pwfin0 | Structured version Visualization version GIF version |
Description: A finite set always belongs to a power class. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
pwfin0 | ⊢ (𝒫 𝐴 ∩ Fin) ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0pwfi 45012 | . 2 ⊢ ∅ ∈ (𝒫 𝐴 ∩ Fin) | |
2 | ne0i 4348 | . 2 ⊢ (∅ ∈ (𝒫 𝐴 ∩ Fin) → (𝒫 𝐴 ∩ Fin) ≠ ∅) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝒫 𝐴 ∩ Fin) ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 ≠ wne 2939 ∩ cin 3963 ∅c0 4340 𝒫 cpw 4606 Fincfn 8990 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pr 5439 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-sb 2064 df-mo 2539 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3435 df-v 3481 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-br 5150 df-opab 5212 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-ord 6392 df-on 6393 df-lim 6394 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-om 7892 df-en 8991 df-fin 8994 |
This theorem is referenced by: sge0z 46342 |
Copyright terms: Public domain | W3C validator |