![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pwfin0 | Structured version Visualization version GIF version |
Description: A finite set always belongs to a power class. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
pwfin0 | ⊢ (𝒫 𝐴 ∩ Fin) ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0pwfi 44963 | . 2 ⊢ ∅ ∈ (𝒫 𝐴 ∩ Fin) | |
2 | ne0i 4364 | . 2 ⊢ (∅ ∈ (𝒫 𝐴 ∩ Fin) → (𝒫 𝐴 ∩ Fin) ≠ ∅) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝒫 𝐴 ∩ Fin) ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ≠ wne 2946 ∩ cin 3975 ∅c0 4352 𝒫 cpw 4622 Fincfn 9005 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-ord 6400 df-on 6401 df-lim 6402 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-om 7906 df-en 9006 df-fin 9009 |
This theorem is referenced by: sge0z 46298 |
Copyright terms: Public domain | W3C validator |