Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwfin0 Structured version   Visualization version   GIF version

Theorem pwfin0 44698
Description: A finite set always belongs to a power class. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
pwfin0 (𝒫 𝐴 ∩ Fin) ≠ ∅

Proof of Theorem pwfin0
StepHypRef Expression
1 0pwfi 44695 . 2 ∅ ∈ (𝒫 𝐴 ∩ Fin)
2 ne0i 4335 . 2 (∅ ∈ (𝒫 𝐴 ∩ Fin) → (𝒫 𝐴 ∩ Fin) ≠ ∅)
31, 2ax-mp 5 1 (𝒫 𝐴 ∩ Fin) ≠ ∅
Colors of variables: wff setvar class
Syntax hints:  wcel 2099  wne 2930  cin 3946  c0 4323  𝒫 cpw 4598  Fincfn 8964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-12 2167  ax-ext 2697  ax-sep 5295  ax-nul 5302  ax-pr 5424
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-mo 2529  df-clab 2704  df-cleq 2718  df-clel 2803  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3421  df-v 3465  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4324  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4907  df-br 5145  df-opab 5207  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-ord 6369  df-on 6370  df-lim 6371  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-om 7867  df-en 8965  df-fin 8968
This theorem is referenced by:  sge0z  46030
  Copyright terms: Public domain W3C validator