Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigainb Structured version   Visualization version   GIF version

Theorem sigainb 31666
Description: Building a sigma-algebra from intersections with a given set. (Contributed by Thierry Arnoux, 26-Dec-2016.)
Assertion
Ref Expression
sigainb ((𝑆 ran sigAlgebra ∧ 𝐴𝑆) → (𝑆 ∩ 𝒫 𝐴) ∈ (sigAlgebra‘𝐴))

Proof of Theorem sigainb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 inex1g 5184 . . 3 (𝑆 ran sigAlgebra → (𝑆 ∩ 𝒫 𝐴) ∈ V)
21adantr 484 . 2 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆) → (𝑆 ∩ 𝒫 𝐴) ∈ V)
3 inss2 4118 . . 3 (𝑆 ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴
43a1i 11 . 2 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆) → (𝑆 ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴)
5 simpr 488 . . . 4 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆) → 𝐴𝑆)
6 pwidg 4507 . . . . 5 (𝐴𝑆𝐴 ∈ 𝒫 𝐴)
75, 6syl 17 . . . 4 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆) → 𝐴 ∈ 𝒫 𝐴)
85, 7elind 4082 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆) → 𝐴 ∈ (𝑆 ∩ 𝒫 𝐴))
9 simpll 767 . . . . . 6 (((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)) → 𝑆 ran sigAlgebra)
10 simplr 769 . . . . . 6 (((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)) → 𝐴𝑆)
11 inss1 4117 . . . . . . 7 (𝑆 ∩ 𝒫 𝐴) ⊆ 𝑆
12 simpr 488 . . . . . . 7 (((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)) → 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴))
1311, 12sseldi 3873 . . . . . 6 (((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)) → 𝑥𝑆)
14 difelsiga 31663 . . . . . 6 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝑥𝑆) → (𝐴𝑥) ∈ 𝑆)
159, 10, 13, 14syl3anc 1372 . . . . 5 (((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)) → (𝐴𝑥) ∈ 𝑆)
16 difss 4020 . . . . . . 7 (𝐴𝑥) ⊆ 𝐴
17 elpwg 4488 . . . . . . 7 ((𝐴𝑥) ∈ 𝑆 → ((𝐴𝑥) ∈ 𝒫 𝐴 ↔ (𝐴𝑥) ⊆ 𝐴))
1816, 17mpbiri 261 . . . . . 6 ((𝐴𝑥) ∈ 𝑆 → (𝐴𝑥) ∈ 𝒫 𝐴)
1915, 18syl 17 . . . . 5 (((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)) → (𝐴𝑥) ∈ 𝒫 𝐴)
2015, 19elind 4082 . . . 4 (((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)) → (𝐴𝑥) ∈ (𝑆 ∩ 𝒫 𝐴))
2120ralrimiva 3096 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆) → ∀𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)(𝐴𝑥) ∈ (𝑆 ∩ 𝒫 𝐴))
22 simplll 775 . . . . . . 7 ((((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)) ∧ 𝑥 ≼ ω) → 𝑆 ran sigAlgebra)
23 simplr 769 . . . . . . . 8 ((((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)) ∧ 𝑥 ≼ ω) → 𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴))
24 elpwi 4494 . . . . . . . . 9 (𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴) → 𝑥 ⊆ (𝑆 ∩ 𝒫 𝐴))
25 sstr 3883 . . . . . . . . . 10 ((𝑥 ⊆ (𝑆 ∩ 𝒫 𝐴) ∧ (𝑆 ∩ 𝒫 𝐴) ⊆ 𝑆) → 𝑥𝑆)
2611, 25mpan2 691 . . . . . . . . 9 (𝑥 ⊆ (𝑆 ∩ 𝒫 𝐴) → 𝑥𝑆)
2723, 24, 263syl 18 . . . . . . . 8 ((((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)) ∧ 𝑥 ≼ ω) → 𝑥𝑆)
28 elpwg 4488 . . . . . . . . 9 (𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴) → (𝑥 ∈ 𝒫 𝑆𝑥𝑆))
2928biimpar 481 . . . . . . . 8 ((𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴) ∧ 𝑥𝑆) → 𝑥 ∈ 𝒫 𝑆)
3023, 27, 29syl2anc 587 . . . . . . 7 ((((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)) ∧ 𝑥 ≼ ω) → 𝑥 ∈ 𝒫 𝑆)
31 simpr 488 . . . . . . 7 ((((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)) ∧ 𝑥 ≼ ω) → 𝑥 ≼ ω)
32 sigaclcu 31647 . . . . . . 7 ((𝑆 ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑆𝑥 ≼ ω) → 𝑥𝑆)
3322, 30, 31, 32syl3anc 1372 . . . . . 6 ((((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)) ∧ 𝑥 ≼ ω) → 𝑥𝑆)
34 sstr 3883 . . . . . . . . 9 ((𝑥 ⊆ (𝑆 ∩ 𝒫 𝐴) ∧ (𝑆 ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴) → 𝑥 ⊆ 𝒫 𝐴)
353, 34mpan2 691 . . . . . . . 8 (𝑥 ⊆ (𝑆 ∩ 𝒫 𝐴) → 𝑥 ⊆ 𝒫 𝐴)
3623, 24, 353syl 18 . . . . . . 7 ((((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)) ∧ 𝑥 ≼ ω) → 𝑥 ⊆ 𝒫 𝐴)
37 sspwuni 4982 . . . . . . . 8 (𝑥 ⊆ 𝒫 𝐴 𝑥𝐴)
38 vuniex 7477 . . . . . . . . 9 𝑥 ∈ V
3938elpw 4489 . . . . . . . 8 ( 𝑥 ∈ 𝒫 𝐴 𝑥𝐴)
4037, 39bitr4i 281 . . . . . . 7 (𝑥 ⊆ 𝒫 𝐴 𝑥 ∈ 𝒫 𝐴)
4136, 40sylib 221 . . . . . 6 ((((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)) ∧ 𝑥 ≼ ω) → 𝑥 ∈ 𝒫 𝐴)
4233, 41elind 4082 . . . . 5 ((((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)) ∧ 𝑥 ≼ ω) → 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴))
4342ex 416 . . . 4 (((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)) → (𝑥 ≼ ω → 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)))
4443ralrimiva 3096 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆) → ∀𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)(𝑥 ≼ ω → 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)))
458, 21, 443jca 1129 . 2 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆) → (𝐴 ∈ (𝑆 ∩ 𝒫 𝐴) ∧ ∀𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)(𝐴𝑥) ∈ (𝑆 ∩ 𝒫 𝐴) ∧ ∀𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)(𝑥 ≼ ω → 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴))))
46 issiga 31642 . . 3 ((𝑆 ∩ 𝒫 𝐴) ∈ V → ((𝑆 ∩ 𝒫 𝐴) ∈ (sigAlgebra‘𝐴) ↔ ((𝑆 ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴 ∧ (𝐴 ∈ (𝑆 ∩ 𝒫 𝐴) ∧ ∀𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)(𝐴𝑥) ∈ (𝑆 ∩ 𝒫 𝐴) ∧ ∀𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)(𝑥 ≼ ω → 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴))))))
4746biimpar 481 . 2 (((𝑆 ∩ 𝒫 𝐴) ∈ V ∧ ((𝑆 ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴 ∧ (𝐴 ∈ (𝑆 ∩ 𝒫 𝐴) ∧ ∀𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)(𝐴𝑥) ∈ (𝑆 ∩ 𝒫 𝐴) ∧ ∀𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)(𝑥 ≼ ω → 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴))))) → (𝑆 ∩ 𝒫 𝐴) ∈ (sigAlgebra‘𝐴))
482, 4, 45, 47syl12anc 836 1 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆) → (𝑆 ∩ 𝒫 𝐴) ∈ (sigAlgebra‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088  wcel 2113  wral 3053  Vcvv 3397  cdif 3838  cin 3840  wss 3841  𝒫 cpw 4485   cuni 4793   class class class wbr 5027  ran crn 5520  cfv 6333  ωcom 7593  cdom 8546  sigAlgebracsiga 31638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-inf2 9170  ax-ac2 9956
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-int 4834  df-iun 4880  df-iin 4881  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-isom 6342  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-1st 7707  df-2nd 7708  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-1o 8124  df-2o 8125  df-er 8313  df-map 8432  df-en 8549  df-dom 8550  df-sdom 8551  df-fin 8552  df-oi 9040  df-dju 9396  df-card 9434  df-acn 9437  df-ac 9609  df-siga 31639
This theorem is referenced by:  measinb2  31753
  Copyright terms: Public domain W3C validator