MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  connsub Structured version   Visualization version   GIF version

Theorem connsub 22023
Description: Two equivalent ways of saying that a subspace topology is connected. (Contributed by Jeff Hankins, 9-Jul-2009.) (Proof shortened by Mario Carneiro, 10-Mar-2015.)
Assertion
Ref Expression
connsub ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → ((𝐽t 𝑆) ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥𝑆) ≠ ∅ ∧ (𝑦𝑆) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋𝑆)) → ¬ 𝑆 ⊆ (𝑥𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦

Proof of Theorem connsub
StepHypRef Expression
1 connsuba 22022 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → ((𝐽t 𝑆) ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥𝑆) ≠ ∅ ∧ (𝑦𝑆) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝑆) = ∅) → ((𝑥𝑦) ∩ 𝑆) ≠ 𝑆)))
2 inss1 4204 . . . . . . 7 (𝑥𝑦) ⊆ 𝑥
3 toponss 21529 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥𝐽) → 𝑥𝑋)
43ad2ant2r 745 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ (𝑥𝐽𝑦𝐽)) → 𝑥𝑋)
52, 4sstrid 3977 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ (𝑥𝐽𝑦𝐽)) → (𝑥𝑦) ⊆ 𝑋)
6 reldisj 4401 . . . . . 6 ((𝑥𝑦) ⊆ 𝑋 → (((𝑥𝑦) ∩ 𝑆) = ∅ ↔ (𝑥𝑦) ⊆ (𝑋𝑆)))
75, 6syl 17 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ (𝑥𝐽𝑦𝐽)) → (((𝑥𝑦) ∩ 𝑆) = ∅ ↔ (𝑥𝑦) ⊆ (𝑋𝑆)))
873anbi3d 1438 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ (𝑥𝐽𝑦𝐽)) → (((𝑥𝑆) ≠ ∅ ∧ (𝑦𝑆) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝑆) = ∅) ↔ ((𝑥𝑆) ≠ ∅ ∧ (𝑦𝑆) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋𝑆))))
9 sseqin2 4191 . . . . . . 7 (𝑆 ⊆ (𝑥𝑦) ↔ ((𝑥𝑦) ∩ 𝑆) = 𝑆)
109a1i 11 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ (𝑥𝐽𝑦𝐽)) → (𝑆 ⊆ (𝑥𝑦) ↔ ((𝑥𝑦) ∩ 𝑆) = 𝑆))
1110bicomd 225 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ (𝑥𝐽𝑦𝐽)) → (((𝑥𝑦) ∩ 𝑆) = 𝑆𝑆 ⊆ (𝑥𝑦)))
1211necon3abid 3052 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ (𝑥𝐽𝑦𝐽)) → (((𝑥𝑦) ∩ 𝑆) ≠ 𝑆 ↔ ¬ 𝑆 ⊆ (𝑥𝑦)))
138, 12imbi12d 347 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ (𝑥𝐽𝑦𝐽)) → ((((𝑥𝑆) ≠ ∅ ∧ (𝑦𝑆) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝑆) = ∅) → ((𝑥𝑦) ∩ 𝑆) ≠ 𝑆) ↔ (((𝑥𝑆) ≠ ∅ ∧ (𝑦𝑆) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋𝑆)) → ¬ 𝑆 ⊆ (𝑥𝑦))))
14132ralbidva 3198 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → (∀𝑥𝐽𝑦𝐽 (((𝑥𝑆) ≠ ∅ ∧ (𝑦𝑆) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝑆) = ∅) → ((𝑥𝑦) ∩ 𝑆) ≠ 𝑆) ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥𝑆) ≠ ∅ ∧ (𝑦𝑆) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋𝑆)) → ¬ 𝑆 ⊆ (𝑥𝑦))))
151, 14bitrd 281 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → ((𝐽t 𝑆) ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥𝑆) ≠ ∅ ∧ (𝑦𝑆) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋𝑆)) → ¬ 𝑆 ⊆ (𝑥𝑦))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138  cdif 3932  cun 3933  cin 3934  wss 3935  c0 4290  cfv 6349  (class class class)co 7150  t crest 16688  TopOnctopon 21512  Conncconn 22013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-oadd 8100  df-er 8283  df-en 8504  df-fin 8507  df-fi 8869  df-rest 16690  df-topgen 16711  df-top 21496  df-topon 21513  df-bases 21548  df-cld 21621  df-conn 22014
This theorem is referenced by:  iunconn  22030  clsconn  22032  reconn  23430  iunconnlem2  41262
  Copyright terms: Public domain W3C validator