Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > connsub | Structured version Visualization version GIF version |
Description: Two equivalent ways of saying that a subspace topology is connected. (Contributed by Jeff Hankins, 9-Jul-2009.) (Proof shortened by Mario Carneiro, 10-Mar-2015.) |
Ref | Expression |
---|---|
connsub | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) → ((𝐽 ↾t 𝑆) ∈ Conn ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (((𝑥 ∩ 𝑆) ≠ ∅ ∧ (𝑦 ∩ 𝑆) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ 𝑆)) → ¬ 𝑆 ⊆ (𝑥 ∪ 𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | connsuba 22571 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) → ((𝐽 ↾t 𝑆) ∈ Conn ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (((𝑥 ∩ 𝑆) ≠ ∅ ∧ (𝑦 ∩ 𝑆) ≠ ∅ ∧ ((𝑥 ∩ 𝑦) ∩ 𝑆) = ∅) → ((𝑥 ∪ 𝑦) ∩ 𝑆) ≠ 𝑆))) | |
2 | inss1 4162 | . . . . . . 7 ⊢ (𝑥 ∩ 𝑦) ⊆ 𝑥 | |
3 | toponss 22076 | . . . . . . . 8 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ∈ 𝐽) → 𝑥 ⊆ 𝑋) | |
4 | 3 | ad2ant2r 744 | . . . . . . 7 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) → 𝑥 ⊆ 𝑋) |
5 | 2, 4 | sstrid 3932 | . . . . . 6 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) → (𝑥 ∩ 𝑦) ⊆ 𝑋) |
6 | reldisj 4385 | . . . . . 6 ⊢ ((𝑥 ∩ 𝑦) ⊆ 𝑋 → (((𝑥 ∩ 𝑦) ∩ 𝑆) = ∅ ↔ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ 𝑆))) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) → (((𝑥 ∩ 𝑦) ∩ 𝑆) = ∅ ↔ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ 𝑆))) |
8 | 7 | 3anbi3d 1441 | . . . 4 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) → (((𝑥 ∩ 𝑆) ≠ ∅ ∧ (𝑦 ∩ 𝑆) ≠ ∅ ∧ ((𝑥 ∩ 𝑦) ∩ 𝑆) = ∅) ↔ ((𝑥 ∩ 𝑆) ≠ ∅ ∧ (𝑦 ∩ 𝑆) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ 𝑆)))) |
9 | sseqin2 4149 | . . . . . . 7 ⊢ (𝑆 ⊆ (𝑥 ∪ 𝑦) ↔ ((𝑥 ∪ 𝑦) ∩ 𝑆) = 𝑆) | |
10 | 9 | a1i 11 | . . . . . 6 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) → (𝑆 ⊆ (𝑥 ∪ 𝑦) ↔ ((𝑥 ∪ 𝑦) ∩ 𝑆) = 𝑆)) |
11 | 10 | bicomd 222 | . . . . 5 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) → (((𝑥 ∪ 𝑦) ∩ 𝑆) = 𝑆 ↔ 𝑆 ⊆ (𝑥 ∪ 𝑦))) |
12 | 11 | necon3abid 2980 | . . . 4 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) → (((𝑥 ∪ 𝑦) ∩ 𝑆) ≠ 𝑆 ↔ ¬ 𝑆 ⊆ (𝑥 ∪ 𝑦))) |
13 | 8, 12 | imbi12d 345 | . . 3 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) → ((((𝑥 ∩ 𝑆) ≠ ∅ ∧ (𝑦 ∩ 𝑆) ≠ ∅ ∧ ((𝑥 ∩ 𝑦) ∩ 𝑆) = ∅) → ((𝑥 ∪ 𝑦) ∩ 𝑆) ≠ 𝑆) ↔ (((𝑥 ∩ 𝑆) ≠ ∅ ∧ (𝑦 ∩ 𝑆) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ 𝑆)) → ¬ 𝑆 ⊆ (𝑥 ∪ 𝑦)))) |
14 | 13 | 2ralbidva 3128 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (((𝑥 ∩ 𝑆) ≠ ∅ ∧ (𝑦 ∩ 𝑆) ≠ ∅ ∧ ((𝑥 ∩ 𝑦) ∩ 𝑆) = ∅) → ((𝑥 ∪ 𝑦) ∩ 𝑆) ≠ 𝑆) ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (((𝑥 ∩ 𝑆) ≠ ∅ ∧ (𝑦 ∩ 𝑆) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ 𝑆)) → ¬ 𝑆 ⊆ (𝑥 ∪ 𝑦)))) |
15 | 1, 14 | bitrd 278 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) → ((𝐽 ↾t 𝑆) ∈ Conn ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (((𝑥 ∩ 𝑆) ≠ ∅ ∧ (𝑦 ∩ 𝑆) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ 𝑆)) → ¬ 𝑆 ⊆ (𝑥 ∪ 𝑦)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 ∖ cdif 3884 ∪ cun 3885 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 ‘cfv 6433 (class class class)co 7275 ↾t crest 17131 TopOnctopon 22059 Conncconn 22562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-en 8734 df-fin 8737 df-fi 9170 df-rest 17133 df-topgen 17154 df-top 22043 df-topon 22060 df-bases 22096 df-cld 22170 df-conn 22563 |
This theorem is referenced by: iunconn 22579 clsconn 22581 reconn 23991 iunconnlem2 42555 |
Copyright terms: Public domain | W3C validator |