MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  connsub Structured version   Visualization version   GIF version

Theorem connsub 22480
Description: Two equivalent ways of saying that a subspace topology is connected. (Contributed by Jeff Hankins, 9-Jul-2009.) (Proof shortened by Mario Carneiro, 10-Mar-2015.)
Assertion
Ref Expression
connsub ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → ((𝐽t 𝑆) ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥𝑆) ≠ ∅ ∧ (𝑦𝑆) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋𝑆)) → ¬ 𝑆 ⊆ (𝑥𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦

Proof of Theorem connsub
StepHypRef Expression
1 connsuba 22479 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → ((𝐽t 𝑆) ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥𝑆) ≠ ∅ ∧ (𝑦𝑆) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝑆) = ∅) → ((𝑥𝑦) ∩ 𝑆) ≠ 𝑆)))
2 inss1 4159 . . . . . . 7 (𝑥𝑦) ⊆ 𝑥
3 toponss 21984 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥𝐽) → 𝑥𝑋)
43ad2ant2r 743 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ (𝑥𝐽𝑦𝐽)) → 𝑥𝑋)
52, 4sstrid 3928 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ (𝑥𝐽𝑦𝐽)) → (𝑥𝑦) ⊆ 𝑋)
6 reldisj 4382 . . . . . 6 ((𝑥𝑦) ⊆ 𝑋 → (((𝑥𝑦) ∩ 𝑆) = ∅ ↔ (𝑥𝑦) ⊆ (𝑋𝑆)))
75, 6syl 17 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ (𝑥𝐽𝑦𝐽)) → (((𝑥𝑦) ∩ 𝑆) = ∅ ↔ (𝑥𝑦) ⊆ (𝑋𝑆)))
873anbi3d 1440 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ (𝑥𝐽𝑦𝐽)) → (((𝑥𝑆) ≠ ∅ ∧ (𝑦𝑆) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝑆) = ∅) ↔ ((𝑥𝑆) ≠ ∅ ∧ (𝑦𝑆) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋𝑆))))
9 sseqin2 4146 . . . . . . 7 (𝑆 ⊆ (𝑥𝑦) ↔ ((𝑥𝑦) ∩ 𝑆) = 𝑆)
109a1i 11 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ (𝑥𝐽𝑦𝐽)) → (𝑆 ⊆ (𝑥𝑦) ↔ ((𝑥𝑦) ∩ 𝑆) = 𝑆))
1110bicomd 222 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ (𝑥𝐽𝑦𝐽)) → (((𝑥𝑦) ∩ 𝑆) = 𝑆𝑆 ⊆ (𝑥𝑦)))
1211necon3abid 2979 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ (𝑥𝐽𝑦𝐽)) → (((𝑥𝑦) ∩ 𝑆) ≠ 𝑆 ↔ ¬ 𝑆 ⊆ (𝑥𝑦)))
138, 12imbi12d 344 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ (𝑥𝐽𝑦𝐽)) → ((((𝑥𝑆) ≠ ∅ ∧ (𝑦𝑆) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝑆) = ∅) → ((𝑥𝑦) ∩ 𝑆) ≠ 𝑆) ↔ (((𝑥𝑆) ≠ ∅ ∧ (𝑦𝑆) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋𝑆)) → ¬ 𝑆 ⊆ (𝑥𝑦))))
14132ralbidva 3121 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → (∀𝑥𝐽𝑦𝐽 (((𝑥𝑆) ≠ ∅ ∧ (𝑦𝑆) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝑆) = ∅) → ((𝑥𝑦) ∩ 𝑆) ≠ 𝑆) ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥𝑆) ≠ ∅ ∧ (𝑦𝑆) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋𝑆)) → ¬ 𝑆 ⊆ (𝑥𝑦))))
151, 14bitrd 278 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → ((𝐽t 𝑆) ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥𝑆) ≠ ∅ ∧ (𝑦𝑆) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋𝑆)) → ¬ 𝑆 ⊆ (𝑥𝑦))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  cdif 3880  cun 3881  cin 3882  wss 3883  c0 4253  cfv 6418  (class class class)co 7255  t crest 17048  TopOnctopon 21967  Conncconn 22470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-en 8692  df-fin 8695  df-fi 9100  df-rest 17050  df-topgen 17071  df-top 21951  df-topon 21968  df-bases 22004  df-cld 22078  df-conn 22471
This theorem is referenced by:  iunconn  22487  clsconn  22489  reconn  23897  iunconnlem2  42444
  Copyright terms: Public domain W3C validator