| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > connsub | Structured version Visualization version GIF version | ||
| Description: Two equivalent ways of saying that a subspace topology is connected. (Contributed by Jeff Hankins, 9-Jul-2009.) (Proof shortened by Mario Carneiro, 10-Mar-2015.) |
| Ref | Expression |
|---|---|
| connsub | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) → ((𝐽 ↾t 𝑆) ∈ Conn ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (((𝑥 ∩ 𝑆) ≠ ∅ ∧ (𝑦 ∩ 𝑆) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ 𝑆)) → ¬ 𝑆 ⊆ (𝑥 ∪ 𝑦)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | connsuba 23307 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) → ((𝐽 ↾t 𝑆) ∈ Conn ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (((𝑥 ∩ 𝑆) ≠ ∅ ∧ (𝑦 ∩ 𝑆) ≠ ∅ ∧ ((𝑥 ∩ 𝑦) ∩ 𝑆) = ∅) → ((𝑥 ∪ 𝑦) ∩ 𝑆) ≠ 𝑆))) | |
| 2 | inss1 4200 | . . . . . . 7 ⊢ (𝑥 ∩ 𝑦) ⊆ 𝑥 | |
| 3 | toponss 22814 | . . . . . . . 8 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ∈ 𝐽) → 𝑥 ⊆ 𝑋) | |
| 4 | 3 | ad2ant2r 747 | . . . . . . 7 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) → 𝑥 ⊆ 𝑋) |
| 5 | 2, 4 | sstrid 3958 | . . . . . 6 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) → (𝑥 ∩ 𝑦) ⊆ 𝑋) |
| 6 | reldisj 4416 | . . . . . 6 ⊢ ((𝑥 ∩ 𝑦) ⊆ 𝑋 → (((𝑥 ∩ 𝑦) ∩ 𝑆) = ∅ ↔ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ 𝑆))) | |
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) → (((𝑥 ∩ 𝑦) ∩ 𝑆) = ∅ ↔ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ 𝑆))) |
| 8 | 7 | 3anbi3d 1444 | . . . 4 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) → (((𝑥 ∩ 𝑆) ≠ ∅ ∧ (𝑦 ∩ 𝑆) ≠ ∅ ∧ ((𝑥 ∩ 𝑦) ∩ 𝑆) = ∅) ↔ ((𝑥 ∩ 𝑆) ≠ ∅ ∧ (𝑦 ∩ 𝑆) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ 𝑆)))) |
| 9 | sseqin2 4186 | . . . . . . 7 ⊢ (𝑆 ⊆ (𝑥 ∪ 𝑦) ↔ ((𝑥 ∪ 𝑦) ∩ 𝑆) = 𝑆) | |
| 10 | 9 | a1i 11 | . . . . . 6 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) → (𝑆 ⊆ (𝑥 ∪ 𝑦) ↔ ((𝑥 ∪ 𝑦) ∩ 𝑆) = 𝑆)) |
| 11 | 10 | bicomd 223 | . . . . 5 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) → (((𝑥 ∪ 𝑦) ∩ 𝑆) = 𝑆 ↔ 𝑆 ⊆ (𝑥 ∪ 𝑦))) |
| 12 | 11 | necon3abid 2961 | . . . 4 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) → (((𝑥 ∪ 𝑦) ∩ 𝑆) ≠ 𝑆 ↔ ¬ 𝑆 ⊆ (𝑥 ∪ 𝑦))) |
| 13 | 8, 12 | imbi12d 344 | . . 3 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) → ((((𝑥 ∩ 𝑆) ≠ ∅ ∧ (𝑦 ∩ 𝑆) ≠ ∅ ∧ ((𝑥 ∩ 𝑦) ∩ 𝑆) = ∅) → ((𝑥 ∪ 𝑦) ∩ 𝑆) ≠ 𝑆) ↔ (((𝑥 ∩ 𝑆) ≠ ∅ ∧ (𝑦 ∩ 𝑆) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ 𝑆)) → ¬ 𝑆 ⊆ (𝑥 ∪ 𝑦)))) |
| 14 | 13 | 2ralbidva 3199 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (((𝑥 ∩ 𝑆) ≠ ∅ ∧ (𝑦 ∩ 𝑆) ≠ ∅ ∧ ((𝑥 ∩ 𝑦) ∩ 𝑆) = ∅) → ((𝑥 ∪ 𝑦) ∩ 𝑆) ≠ 𝑆) ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (((𝑥 ∩ 𝑆) ≠ ∅ ∧ (𝑦 ∩ 𝑆) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ 𝑆)) → ¬ 𝑆 ⊆ (𝑥 ∪ 𝑦)))) |
| 15 | 1, 14 | bitrd 279 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) → ((𝐽 ↾t 𝑆) ∈ Conn ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (((𝑥 ∩ 𝑆) ≠ ∅ ∧ (𝑦 ∩ 𝑆) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ 𝑆)) → ¬ 𝑆 ⊆ (𝑥 ∪ 𝑦)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∖ cdif 3911 ∪ cun 3912 ∩ cin 3913 ⊆ wss 3914 ∅c0 4296 ‘cfv 6511 (class class class)co 7387 ↾t crest 17383 TopOnctopon 22797 Conncconn 23298 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-en 8919 df-fin 8922 df-fi 9362 df-rest 17385 df-topgen 17406 df-top 22781 df-topon 22798 df-bases 22833 df-cld 22906 df-conn 23299 |
| This theorem is referenced by: iunconn 23315 clsconn 23317 reconn 24717 iunconnlem2 44924 |
| Copyright terms: Public domain | W3C validator |