Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > connsub | Structured version Visualization version GIF version |
Description: Two equivalent ways of saying that a subspace topology is connected. (Contributed by Jeff Hankins, 9-Jul-2009.) (Proof shortened by Mario Carneiro, 10-Mar-2015.) |
Ref | Expression |
---|---|
connsub | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) → ((𝐽 ↾t 𝑆) ∈ Conn ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (((𝑥 ∩ 𝑆) ≠ ∅ ∧ (𝑦 ∩ 𝑆) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ 𝑆)) → ¬ 𝑆 ⊆ (𝑥 ∪ 𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | connsuba 22317 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) → ((𝐽 ↾t 𝑆) ∈ Conn ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (((𝑥 ∩ 𝑆) ≠ ∅ ∧ (𝑦 ∩ 𝑆) ≠ ∅ ∧ ((𝑥 ∩ 𝑦) ∩ 𝑆) = ∅) → ((𝑥 ∪ 𝑦) ∩ 𝑆) ≠ 𝑆))) | |
2 | inss1 4143 | . . . . . . 7 ⊢ (𝑥 ∩ 𝑦) ⊆ 𝑥 | |
3 | toponss 21824 | . . . . . . . 8 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ∈ 𝐽) → 𝑥 ⊆ 𝑋) | |
4 | 3 | ad2ant2r 747 | . . . . . . 7 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) → 𝑥 ⊆ 𝑋) |
5 | 2, 4 | sstrid 3912 | . . . . . 6 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) → (𝑥 ∩ 𝑦) ⊆ 𝑋) |
6 | reldisj 4366 | . . . . . 6 ⊢ ((𝑥 ∩ 𝑦) ⊆ 𝑋 → (((𝑥 ∩ 𝑦) ∩ 𝑆) = ∅ ↔ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ 𝑆))) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) → (((𝑥 ∩ 𝑦) ∩ 𝑆) = ∅ ↔ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ 𝑆))) |
8 | 7 | 3anbi3d 1444 | . . . 4 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) → (((𝑥 ∩ 𝑆) ≠ ∅ ∧ (𝑦 ∩ 𝑆) ≠ ∅ ∧ ((𝑥 ∩ 𝑦) ∩ 𝑆) = ∅) ↔ ((𝑥 ∩ 𝑆) ≠ ∅ ∧ (𝑦 ∩ 𝑆) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ 𝑆)))) |
9 | sseqin2 4130 | . . . . . . 7 ⊢ (𝑆 ⊆ (𝑥 ∪ 𝑦) ↔ ((𝑥 ∪ 𝑦) ∩ 𝑆) = 𝑆) | |
10 | 9 | a1i 11 | . . . . . 6 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) → (𝑆 ⊆ (𝑥 ∪ 𝑦) ↔ ((𝑥 ∪ 𝑦) ∩ 𝑆) = 𝑆)) |
11 | 10 | bicomd 226 | . . . . 5 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) → (((𝑥 ∪ 𝑦) ∩ 𝑆) = 𝑆 ↔ 𝑆 ⊆ (𝑥 ∪ 𝑦))) |
12 | 11 | necon3abid 2977 | . . . 4 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) → (((𝑥 ∪ 𝑦) ∩ 𝑆) ≠ 𝑆 ↔ ¬ 𝑆 ⊆ (𝑥 ∪ 𝑦))) |
13 | 8, 12 | imbi12d 348 | . . 3 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) → ((((𝑥 ∩ 𝑆) ≠ ∅ ∧ (𝑦 ∩ 𝑆) ≠ ∅ ∧ ((𝑥 ∩ 𝑦) ∩ 𝑆) = ∅) → ((𝑥 ∪ 𝑦) ∩ 𝑆) ≠ 𝑆) ↔ (((𝑥 ∩ 𝑆) ≠ ∅ ∧ (𝑦 ∩ 𝑆) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ 𝑆)) → ¬ 𝑆 ⊆ (𝑥 ∪ 𝑦)))) |
14 | 13 | 2ralbidva 3119 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (((𝑥 ∩ 𝑆) ≠ ∅ ∧ (𝑦 ∩ 𝑆) ≠ ∅ ∧ ((𝑥 ∩ 𝑦) ∩ 𝑆) = ∅) → ((𝑥 ∪ 𝑦) ∩ 𝑆) ≠ 𝑆) ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (((𝑥 ∩ 𝑆) ≠ ∅ ∧ (𝑦 ∩ 𝑆) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ 𝑆)) → ¬ 𝑆 ⊆ (𝑥 ∪ 𝑦)))) |
15 | 1, 14 | bitrd 282 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆 ⊆ 𝑋) → ((𝐽 ↾t 𝑆) ∈ Conn ↔ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (((𝑥 ∩ 𝑆) ≠ ∅ ∧ (𝑦 ∩ 𝑆) ≠ ∅ ∧ (𝑥 ∩ 𝑦) ⊆ (𝑋 ∖ 𝑆)) → ¬ 𝑆 ⊆ (𝑥 ∪ 𝑦)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 ∀wral 3061 ∖ cdif 3863 ∪ cun 3864 ∩ cin 3865 ⊆ wss 3866 ∅c0 4237 ‘cfv 6380 (class class class)co 7213 ↾t crest 16925 TopOnctopon 21807 Conncconn 22308 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-en 8627 df-fin 8630 df-fi 9027 df-rest 16927 df-topgen 16948 df-top 21791 df-topon 21808 df-bases 21843 df-cld 21916 df-conn 22309 |
This theorem is referenced by: iunconn 22325 clsconn 22327 reconn 23725 iunconnlem2 42228 |
Copyright terms: Public domain | W3C validator |