MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  connsub Structured version   Visualization version   GIF version

Theorem connsub 23364
Description: Two equivalent ways of saying that a subspace topology is connected. (Contributed by Jeff Hankins, 9-Jul-2009.) (Proof shortened by Mario Carneiro, 10-Mar-2015.)
Assertion
Ref Expression
connsub ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → ((𝐽t 𝑆) ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥𝑆) ≠ ∅ ∧ (𝑦𝑆) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋𝑆)) → ¬ 𝑆 ⊆ (𝑥𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦

Proof of Theorem connsub
StepHypRef Expression
1 connsuba 23363 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → ((𝐽t 𝑆) ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥𝑆) ≠ ∅ ∧ (𝑦𝑆) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝑆) = ∅) → ((𝑥𝑦) ∩ 𝑆) ≠ 𝑆)))
2 inss1 4217 . . . . . . 7 (𝑥𝑦) ⊆ 𝑥
3 toponss 22870 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥𝐽) → 𝑥𝑋)
43ad2ant2r 747 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ (𝑥𝐽𝑦𝐽)) → 𝑥𝑋)
52, 4sstrid 3975 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ (𝑥𝐽𝑦𝐽)) → (𝑥𝑦) ⊆ 𝑋)
6 reldisj 4433 . . . . . 6 ((𝑥𝑦) ⊆ 𝑋 → (((𝑥𝑦) ∩ 𝑆) = ∅ ↔ (𝑥𝑦) ⊆ (𝑋𝑆)))
75, 6syl 17 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ (𝑥𝐽𝑦𝐽)) → (((𝑥𝑦) ∩ 𝑆) = ∅ ↔ (𝑥𝑦) ⊆ (𝑋𝑆)))
873anbi3d 1444 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ (𝑥𝐽𝑦𝐽)) → (((𝑥𝑆) ≠ ∅ ∧ (𝑦𝑆) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝑆) = ∅) ↔ ((𝑥𝑆) ≠ ∅ ∧ (𝑦𝑆) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋𝑆))))
9 sseqin2 4203 . . . . . . 7 (𝑆 ⊆ (𝑥𝑦) ↔ ((𝑥𝑦) ∩ 𝑆) = 𝑆)
109a1i 11 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ (𝑥𝐽𝑦𝐽)) → (𝑆 ⊆ (𝑥𝑦) ↔ ((𝑥𝑦) ∩ 𝑆) = 𝑆))
1110bicomd 223 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ (𝑥𝐽𝑦𝐽)) → (((𝑥𝑦) ∩ 𝑆) = 𝑆𝑆 ⊆ (𝑥𝑦)))
1211necon3abid 2969 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ (𝑥𝐽𝑦𝐽)) → (((𝑥𝑦) ∩ 𝑆) ≠ 𝑆 ↔ ¬ 𝑆 ⊆ (𝑥𝑦)))
138, 12imbi12d 344 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ (𝑥𝐽𝑦𝐽)) → ((((𝑥𝑆) ≠ ∅ ∧ (𝑦𝑆) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝑆) = ∅) → ((𝑥𝑦) ∩ 𝑆) ≠ 𝑆) ↔ (((𝑥𝑆) ≠ ∅ ∧ (𝑦𝑆) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋𝑆)) → ¬ 𝑆 ⊆ (𝑥𝑦))))
14132ralbidva 3207 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → (∀𝑥𝐽𝑦𝐽 (((𝑥𝑆) ≠ ∅ ∧ (𝑦𝑆) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝑆) = ∅) → ((𝑥𝑦) ∩ 𝑆) ≠ 𝑆) ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥𝑆) ≠ ∅ ∧ (𝑦𝑆) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋𝑆)) → ¬ 𝑆 ⊆ (𝑥𝑦))))
151, 14bitrd 279 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → ((𝐽t 𝑆) ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥𝑆) ≠ ∅ ∧ (𝑦𝑆) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋𝑆)) → ¬ 𝑆 ⊆ (𝑥𝑦))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  cdif 3928  cun 3929  cin 3930  wss 3931  c0 4313  cfv 6536  (class class class)co 7410  t crest 17439  TopOnctopon 22853  Conncconn 23354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-en 8965  df-fin 8968  df-fi 9428  df-rest 17441  df-topgen 17462  df-top 22837  df-topon 22854  df-bases 22889  df-cld 22962  df-conn 23355
This theorem is referenced by:  iunconn  23371  clsconn  23373  reconn  24773  iunconnlem2  44934
  Copyright terms: Public domain W3C validator