MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  connsub Structured version   Visualization version   GIF version

Theorem connsub 23445
Description: Two equivalent ways of saying that a subspace topology is connected. (Contributed by Jeff Hankins, 9-Jul-2009.) (Proof shortened by Mario Carneiro, 10-Mar-2015.)
Assertion
Ref Expression
connsub ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → ((𝐽t 𝑆) ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥𝑆) ≠ ∅ ∧ (𝑦𝑆) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋𝑆)) → ¬ 𝑆 ⊆ (𝑥𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦

Proof of Theorem connsub
StepHypRef Expression
1 connsuba 23444 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → ((𝐽t 𝑆) ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥𝑆) ≠ ∅ ∧ (𝑦𝑆) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝑆) = ∅) → ((𝑥𝑦) ∩ 𝑆) ≠ 𝑆)))
2 inss1 4245 . . . . . . 7 (𝑥𝑦) ⊆ 𝑥
3 toponss 22949 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥𝐽) → 𝑥𝑋)
43ad2ant2r 747 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ (𝑥𝐽𝑦𝐽)) → 𝑥𝑋)
52, 4sstrid 4007 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ (𝑥𝐽𝑦𝐽)) → (𝑥𝑦) ⊆ 𝑋)
6 reldisj 4459 . . . . . 6 ((𝑥𝑦) ⊆ 𝑋 → (((𝑥𝑦) ∩ 𝑆) = ∅ ↔ (𝑥𝑦) ⊆ (𝑋𝑆)))
75, 6syl 17 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ (𝑥𝐽𝑦𝐽)) → (((𝑥𝑦) ∩ 𝑆) = ∅ ↔ (𝑥𝑦) ⊆ (𝑋𝑆)))
873anbi3d 1441 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ (𝑥𝐽𝑦𝐽)) → (((𝑥𝑆) ≠ ∅ ∧ (𝑦𝑆) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝑆) = ∅) ↔ ((𝑥𝑆) ≠ ∅ ∧ (𝑦𝑆) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋𝑆))))
9 sseqin2 4231 . . . . . . 7 (𝑆 ⊆ (𝑥𝑦) ↔ ((𝑥𝑦) ∩ 𝑆) = 𝑆)
109a1i 11 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ (𝑥𝐽𝑦𝐽)) → (𝑆 ⊆ (𝑥𝑦) ↔ ((𝑥𝑦) ∩ 𝑆) = 𝑆))
1110bicomd 223 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ (𝑥𝐽𝑦𝐽)) → (((𝑥𝑦) ∩ 𝑆) = 𝑆𝑆 ⊆ (𝑥𝑦)))
1211necon3abid 2975 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ (𝑥𝐽𝑦𝐽)) → (((𝑥𝑦) ∩ 𝑆) ≠ 𝑆 ↔ ¬ 𝑆 ⊆ (𝑥𝑦)))
138, 12imbi12d 344 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ (𝑥𝐽𝑦𝐽)) → ((((𝑥𝑆) ≠ ∅ ∧ (𝑦𝑆) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝑆) = ∅) → ((𝑥𝑦) ∩ 𝑆) ≠ 𝑆) ↔ (((𝑥𝑆) ≠ ∅ ∧ (𝑦𝑆) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋𝑆)) → ¬ 𝑆 ⊆ (𝑥𝑦))))
14132ralbidva 3217 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → (∀𝑥𝐽𝑦𝐽 (((𝑥𝑆) ≠ ∅ ∧ (𝑦𝑆) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝑆) = ∅) → ((𝑥𝑦) ∩ 𝑆) ≠ 𝑆) ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥𝑆) ≠ ∅ ∧ (𝑦𝑆) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋𝑆)) → ¬ 𝑆 ⊆ (𝑥𝑦))))
151, 14bitrd 279 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → ((𝐽t 𝑆) ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥𝑆) ≠ ∅ ∧ (𝑦𝑆) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋𝑆)) → ¬ 𝑆 ⊆ (𝑥𝑦))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  cdif 3960  cun 3961  cin 3962  wss 3963  c0 4339  cfv 6563  (class class class)co 7431  t crest 17467  TopOnctopon 22932  Conncconn 23435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-en 8985  df-fin 8988  df-fi 9449  df-rest 17469  df-topgen 17490  df-top 22916  df-topon 22933  df-bases 22969  df-cld 23043  df-conn 23436
This theorem is referenced by:  iunconn  23452  clsconn  23454  reconn  24864  iunconnlem2  44933
  Copyright terms: Public domain W3C validator