MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  connsub Structured version   Visualization version   GIF version

Theorem connsub 21717
Description: Two equivalent ways of saying that a subspace topology is connected. (Contributed by Jeff Hankins, 9-Jul-2009.) (Proof shortened by Mario Carneiro, 10-Mar-2015.)
Assertion
Ref Expression
connsub ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → ((𝐽t 𝑆) ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥𝑆) ≠ ∅ ∧ (𝑦𝑆) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋𝑆)) → ¬ 𝑆 ⊆ (𝑥𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦

Proof of Theorem connsub
StepHypRef Expression
1 connsuba 21716 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → ((𝐽t 𝑆) ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥𝑆) ≠ ∅ ∧ (𝑦𝑆) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝑆) = ∅) → ((𝑥𝑦) ∩ 𝑆) ≠ 𝑆)))
2 inss1 4131 . . . . . . 7 (𝑥𝑦) ⊆ 𝑥
3 toponss 21223 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥𝐽) → 𝑥𝑋)
43ad2ant2r 743 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ (𝑥𝐽𝑦𝐽)) → 𝑥𝑋)
52, 4sstrid 3906 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ (𝑥𝐽𝑦𝐽)) → (𝑥𝑦) ⊆ 𝑋)
6 reldisj 4322 . . . . . 6 ((𝑥𝑦) ⊆ 𝑋 → (((𝑥𝑦) ∩ 𝑆) = ∅ ↔ (𝑥𝑦) ⊆ (𝑋𝑆)))
75, 6syl 17 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ (𝑥𝐽𝑦𝐽)) → (((𝑥𝑦) ∩ 𝑆) = ∅ ↔ (𝑥𝑦) ⊆ (𝑋𝑆)))
873anbi3d 1434 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ (𝑥𝐽𝑦𝐽)) → (((𝑥𝑆) ≠ ∅ ∧ (𝑦𝑆) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝑆) = ∅) ↔ ((𝑥𝑆) ≠ ∅ ∧ (𝑦𝑆) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋𝑆))))
9 sseqin2 4118 . . . . . . 7 (𝑆 ⊆ (𝑥𝑦) ↔ ((𝑥𝑦) ∩ 𝑆) = 𝑆)
109a1i 11 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ (𝑥𝐽𝑦𝐽)) → (𝑆 ⊆ (𝑥𝑦) ↔ ((𝑥𝑦) ∩ 𝑆) = 𝑆))
1110bicomd 224 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ (𝑥𝐽𝑦𝐽)) → (((𝑥𝑦) ∩ 𝑆) = 𝑆𝑆 ⊆ (𝑥𝑦)))
1211necon3abid 3022 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ (𝑥𝐽𝑦𝐽)) → (((𝑥𝑦) ∩ 𝑆) ≠ 𝑆 ↔ ¬ 𝑆 ⊆ (𝑥𝑦)))
138, 12imbi12d 346 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) ∧ (𝑥𝐽𝑦𝐽)) → ((((𝑥𝑆) ≠ ∅ ∧ (𝑦𝑆) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝑆) = ∅) → ((𝑥𝑦) ∩ 𝑆) ≠ 𝑆) ↔ (((𝑥𝑆) ≠ ∅ ∧ (𝑦𝑆) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋𝑆)) → ¬ 𝑆 ⊆ (𝑥𝑦))))
14132ralbidva 3167 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → (∀𝑥𝐽𝑦𝐽 (((𝑥𝑆) ≠ ∅ ∧ (𝑦𝑆) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝑆) = ∅) → ((𝑥𝑦) ∩ 𝑆) ≠ 𝑆) ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥𝑆) ≠ ∅ ∧ (𝑦𝑆) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋𝑆)) → ¬ 𝑆 ⊆ (𝑥𝑦))))
151, 14bitrd 280 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → ((𝐽t 𝑆) ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥𝑆) ≠ ∅ ∧ (𝑦𝑆) ≠ ∅ ∧ (𝑥𝑦) ⊆ (𝑋𝑆)) → ¬ 𝑆 ⊆ (𝑥𝑦))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1080   = wceq 1525  wcel 2083  wne 2986  wral 3107  cdif 3862  cun 3863  cin 3864  wss 3865  c0 4217  cfv 6232  (class class class)co 7023  t crest 16527  TopOnctopon 21206  Conncconn 21707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-1st 7552  df-2nd 7553  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-oadd 7964  df-er 8146  df-en 8365  df-fin 8368  df-fi 8728  df-rest 16529  df-topgen 16550  df-top 21190  df-topon 21207  df-bases 21242  df-cld 21315  df-conn 21708
This theorem is referenced by:  iunconn  21724  clsconn  21726  reconn  23123  iunconnlem2  40829
  Copyright terms: Public domain W3C validator