MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hash1snb Structured version   Visualization version   GIF version

Theorem hash1snb 14381
Description: The size of a set is 1 if and only if it is a singleton (containing a set). (Contributed by Alexander van der Vekens, 7-Dec-2017.)
Assertion
Ref Expression
hash1snb (𝑉𝑊 → ((♯‘𝑉) = 1 ↔ ∃𝑎 𝑉 = {𝑎}))
Distinct variable group:   𝑉,𝑎
Allowed substitution hint:   𝑊(𝑎)

Proof of Theorem hash1snb
StepHypRef Expression
1 id 22 . . . . . . . . 9 ((♯‘𝑉) = 1 → (♯‘𝑉) = 1)
2 hash1 14366 . . . . . . . . 9 (♯‘1o) = 1
31, 2eqtr4di 2790 . . . . . . . 8 ((♯‘𝑉) = 1 → (♯‘𝑉) = (♯‘1o))
43adantl 482 . . . . . . 7 ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 1) → (♯‘𝑉) = (♯‘1o))
5 1onn 8641 . . . . . . . . 9 1o ∈ ω
6 nnfi 9169 . . . . . . . . 9 (1o ∈ ω → 1o ∈ Fin)
75, 6mp1i 13 . . . . . . . 8 ((♯‘𝑉) = 1 → 1o ∈ Fin)
8 hashen 14309 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 1o ∈ Fin) → ((♯‘𝑉) = (♯‘1o) ↔ 𝑉 ≈ 1o))
97, 8sylan2 593 . . . . . . 7 ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 1) → ((♯‘𝑉) = (♯‘1o) ↔ 𝑉 ≈ 1o))
104, 9mpbid 231 . . . . . 6 ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 1) → 𝑉 ≈ 1o)
11 en1 9023 . . . . . 6 (𝑉 ≈ 1o ↔ ∃𝑎 𝑉 = {𝑎})
1210, 11sylib 217 . . . . 5 ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 1) → ∃𝑎 𝑉 = {𝑎})
1312ex 413 . . . 4 (𝑉 ∈ Fin → ((♯‘𝑉) = 1 → ∃𝑎 𝑉 = {𝑎}))
1413a1d 25 . . 3 (𝑉 ∈ Fin → (𝑉𝑊 → ((♯‘𝑉) = 1 → ∃𝑎 𝑉 = {𝑎})))
15 hashinf 14297 . . . . 5 ((𝑉𝑊 ∧ ¬ 𝑉 ∈ Fin) → (♯‘𝑉) = +∞)
16 eqeq1 2736 . . . . . 6 ((♯‘𝑉) = +∞ → ((♯‘𝑉) = 1 ↔ +∞ = 1))
17 1re 11216 . . . . . . . 8 1 ∈ ℝ
18 renepnf 11264 . . . . . . . 8 (1 ∈ ℝ → 1 ≠ +∞)
19 df-ne 2941 . . . . . . . . 9 (1 ≠ +∞ ↔ ¬ 1 = +∞)
20 pm2.21 123 . . . . . . . . 9 (¬ 1 = +∞ → (1 = +∞ → ∃𝑎 𝑉 = {𝑎}))
2119, 20sylbi 216 . . . . . . . 8 (1 ≠ +∞ → (1 = +∞ → ∃𝑎 𝑉 = {𝑎}))
2217, 18, 21mp2b 10 . . . . . . 7 (1 = +∞ → ∃𝑎 𝑉 = {𝑎})
2322eqcoms 2740 . . . . . 6 (+∞ = 1 → ∃𝑎 𝑉 = {𝑎})
2416, 23syl6bi 252 . . . . 5 ((♯‘𝑉) = +∞ → ((♯‘𝑉) = 1 → ∃𝑎 𝑉 = {𝑎}))
2515, 24syl 17 . . . 4 ((𝑉𝑊 ∧ ¬ 𝑉 ∈ Fin) → ((♯‘𝑉) = 1 → ∃𝑎 𝑉 = {𝑎}))
2625expcom 414 . . 3 𝑉 ∈ Fin → (𝑉𝑊 → ((♯‘𝑉) = 1 → ∃𝑎 𝑉 = {𝑎})))
2714, 26pm2.61i 182 . 2 (𝑉𝑊 → ((♯‘𝑉) = 1 → ∃𝑎 𝑉 = {𝑎}))
28 fveq2 6891 . . . 4 (𝑉 = {𝑎} → (♯‘𝑉) = (♯‘{𝑎}))
29 hashsng 14331 . . . . 5 (𝑎 ∈ V → (♯‘{𝑎}) = 1)
3029elv 3480 . . . 4 (♯‘{𝑎}) = 1
3128, 30eqtrdi 2788 . . 3 (𝑉 = {𝑎} → (♯‘𝑉) = 1)
3231exlimiv 1933 . 2 (∃𝑎 𝑉 = {𝑎} → (♯‘𝑉) = 1)
3327, 32impbid1 224 1 (𝑉𝑊 → ((♯‘𝑉) = 1 ↔ ∃𝑎 𝑉 = {𝑎}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  wne 2940  Vcvv 3474  {csn 4628   class class class wbr 5148  cfv 6543  ωcom 7857  1oc1o 8461  cen 8938  Fincfn 8941  cr 11111  1c1 11113  +∞cpnf 11247  chash 14292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-oadd 8472  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-dju 9898  df-card 9936  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-nn 12215  df-n0 12475  df-z 12561  df-uz 12825  df-fz 13487  df-hash 14293
This theorem is referenced by:  hash1n0  14383  hashle2pr  14440  hashge2el2difr  14444  hash1to3  14454  cshwrepswhash1  17038  symgvalstruct  19266  symgvalstructOLD  19267  mat1scmat  22048  tgldim0eq  27792  lfuhgr1v0e  28549  usgr1v0e  28621  nbgr1vtx  28653  uvtx01vtx  28692  cplgr1vlem  28724  cplgr1v  28725  1loopgrvd2  28798  vdgn1frgrv2  29587  frgrwopreg1  29609  frgrwopreg2  29610  extdg1id  32801  c0snmgmhm  46792
  Copyright terms: Public domain W3C validator