MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hash1snb Structured version   Visualization version   GIF version

Theorem hash1snb 13776
Description: The size of a set is 1 if and only if it is a singleton (containing a set). (Contributed by Alexander van der Vekens, 7-Dec-2017.)
Assertion
Ref Expression
hash1snb (𝑉𝑊 → ((♯‘𝑉) = 1 ↔ ∃𝑎 𝑉 = {𝑎}))
Distinct variable group:   𝑉,𝑎
Allowed substitution hint:   𝑊(𝑎)

Proof of Theorem hash1snb
StepHypRef Expression
1 id 22 . . . . . . . . 9 ((♯‘𝑉) = 1 → (♯‘𝑉) = 1)
2 hash1 13761 . . . . . . . . 9 (♯‘1o) = 1
31, 2eqtr4di 2851 . . . . . . . 8 ((♯‘𝑉) = 1 → (♯‘𝑉) = (♯‘1o))
43adantl 485 . . . . . . 7 ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 1) → (♯‘𝑉) = (♯‘1o))
5 1onn 8248 . . . . . . . . 9 1o ∈ ω
6 nnfi 8696 . . . . . . . . 9 (1o ∈ ω → 1o ∈ Fin)
75, 6mp1i 13 . . . . . . . 8 ((♯‘𝑉) = 1 → 1o ∈ Fin)
8 hashen 13703 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 1o ∈ Fin) → ((♯‘𝑉) = (♯‘1o) ↔ 𝑉 ≈ 1o))
97, 8sylan2 595 . . . . . . 7 ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 1) → ((♯‘𝑉) = (♯‘1o) ↔ 𝑉 ≈ 1o))
104, 9mpbid 235 . . . . . 6 ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 1) → 𝑉 ≈ 1o)
11 en1 8559 . . . . . 6 (𝑉 ≈ 1o ↔ ∃𝑎 𝑉 = {𝑎})
1210, 11sylib 221 . . . . 5 ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 1) → ∃𝑎 𝑉 = {𝑎})
1312ex 416 . . . 4 (𝑉 ∈ Fin → ((♯‘𝑉) = 1 → ∃𝑎 𝑉 = {𝑎}))
1413a1d 25 . . 3 (𝑉 ∈ Fin → (𝑉𝑊 → ((♯‘𝑉) = 1 → ∃𝑎 𝑉 = {𝑎})))
15 hashinf 13691 . . . . 5 ((𝑉𝑊 ∧ ¬ 𝑉 ∈ Fin) → (♯‘𝑉) = +∞)
16 eqeq1 2802 . . . . . 6 ((♯‘𝑉) = +∞ → ((♯‘𝑉) = 1 ↔ +∞ = 1))
17 1re 10630 . . . . . . . 8 1 ∈ ℝ
18 renepnf 10678 . . . . . . . 8 (1 ∈ ℝ → 1 ≠ +∞)
19 df-ne 2988 . . . . . . . . 9 (1 ≠ +∞ ↔ ¬ 1 = +∞)
20 pm2.21 123 . . . . . . . . 9 (¬ 1 = +∞ → (1 = +∞ → ∃𝑎 𝑉 = {𝑎}))
2119, 20sylbi 220 . . . . . . . 8 (1 ≠ +∞ → (1 = +∞ → ∃𝑎 𝑉 = {𝑎}))
2217, 18, 21mp2b 10 . . . . . . 7 (1 = +∞ → ∃𝑎 𝑉 = {𝑎})
2322eqcoms 2806 . . . . . 6 (+∞ = 1 → ∃𝑎 𝑉 = {𝑎})
2416, 23syl6bi 256 . . . . 5 ((♯‘𝑉) = +∞ → ((♯‘𝑉) = 1 → ∃𝑎 𝑉 = {𝑎}))
2515, 24syl 17 . . . 4 ((𝑉𝑊 ∧ ¬ 𝑉 ∈ Fin) → ((♯‘𝑉) = 1 → ∃𝑎 𝑉 = {𝑎}))
2625expcom 417 . . 3 𝑉 ∈ Fin → (𝑉𝑊 → ((♯‘𝑉) = 1 → ∃𝑎 𝑉 = {𝑎})))
2714, 26pm2.61i 185 . 2 (𝑉𝑊 → ((♯‘𝑉) = 1 → ∃𝑎 𝑉 = {𝑎}))
28 fveq2 6645 . . . 4 (𝑉 = {𝑎} → (♯‘𝑉) = (♯‘{𝑎}))
29 hashsng 13726 . . . . 5 (𝑎 ∈ V → (♯‘{𝑎}) = 1)
3029elv 3446 . . . 4 (♯‘{𝑎}) = 1
3128, 30eqtrdi 2849 . . 3 (𝑉 = {𝑎} → (♯‘𝑉) = 1)
3231exlimiv 1931 . 2 (∃𝑎 𝑉 = {𝑎} → (♯‘𝑉) = 1)
3327, 32impbid1 228 1 (𝑉𝑊 → ((♯‘𝑉) = 1 ↔ ∃𝑎 𝑉 = {𝑎}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2111  wne 2987  Vcvv 3441  {csn 4525   class class class wbr 5030  cfv 6324  ωcom 7560  1oc1o 8078  cen 8489  Fincfn 8492  cr 10525  1c1 10527  +∞cpnf 10661  chash 13686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-hash 13687
This theorem is referenced by:  hash1n0  13778  hashle2pr  13831  hashge2el2difr  13835  hash1to3  13845  cshwrepswhash1  16428  symgvalstruct  18517  mat1scmat  21144  tgldim0eq  26297  lfuhgr1v0e  27044  usgr1v0e  27116  nbgr1vtx  27148  uvtx01vtx  27187  cplgr1vlem  27219  cplgr1v  27220  1loopgrvd2  27293  vdgn1frgrv2  28081  frgrwopreg1  28103  frgrwopreg2  28104  extdg1id  31141  c0snmgmhm  44538
  Copyright terms: Public domain W3C validator