| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hash1snb | Structured version Visualization version GIF version | ||
| Description: The size of a set is 1 if and only if it is a singleton (containing a set). (Contributed by Alexander van der Vekens, 7-Dec-2017.) |
| Ref | Expression |
|---|---|
| hash1snb | ⊢ (𝑉 ∈ 𝑊 → ((♯‘𝑉) = 1 ↔ ∃𝑎 𝑉 = {𝑎})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . . . . . . 9 ⊢ ((♯‘𝑉) = 1 → (♯‘𝑉) = 1) | |
| 2 | hash1 14311 | . . . . . . . . 9 ⊢ (♯‘1o) = 1 | |
| 3 | 1, 2 | eqtr4di 2782 | . . . . . . . 8 ⊢ ((♯‘𝑉) = 1 → (♯‘𝑉) = (♯‘1o)) |
| 4 | 3 | adantl 481 | . . . . . . 7 ⊢ ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 1) → (♯‘𝑉) = (♯‘1o)) |
| 5 | 1onn 8558 | . . . . . . . . 9 ⊢ 1o ∈ ω | |
| 6 | nnfi 9081 | . . . . . . . . 9 ⊢ (1o ∈ ω → 1o ∈ Fin) | |
| 7 | 5, 6 | mp1i 13 | . . . . . . . 8 ⊢ ((♯‘𝑉) = 1 → 1o ∈ Fin) |
| 8 | hashen 14254 | . . . . . . . 8 ⊢ ((𝑉 ∈ Fin ∧ 1o ∈ Fin) → ((♯‘𝑉) = (♯‘1o) ↔ 𝑉 ≈ 1o)) | |
| 9 | 7, 8 | sylan2 593 | . . . . . . 7 ⊢ ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 1) → ((♯‘𝑉) = (♯‘1o) ↔ 𝑉 ≈ 1o)) |
| 10 | 4, 9 | mpbid 232 | . . . . . 6 ⊢ ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 1) → 𝑉 ≈ 1o) |
| 11 | en1 8949 | . . . . . 6 ⊢ (𝑉 ≈ 1o ↔ ∃𝑎 𝑉 = {𝑎}) | |
| 12 | 10, 11 | sylib 218 | . . . . 5 ⊢ ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 1) → ∃𝑎 𝑉 = {𝑎}) |
| 13 | 12 | ex 412 | . . . 4 ⊢ (𝑉 ∈ Fin → ((♯‘𝑉) = 1 → ∃𝑎 𝑉 = {𝑎})) |
| 14 | 13 | a1d 25 | . . 3 ⊢ (𝑉 ∈ Fin → (𝑉 ∈ 𝑊 → ((♯‘𝑉) = 1 → ∃𝑎 𝑉 = {𝑎}))) |
| 15 | hashinf 14242 | . . . . 5 ⊢ ((𝑉 ∈ 𝑊 ∧ ¬ 𝑉 ∈ Fin) → (♯‘𝑉) = +∞) | |
| 16 | eqeq1 2733 | . . . . . 6 ⊢ ((♯‘𝑉) = +∞ → ((♯‘𝑉) = 1 ↔ +∞ = 1)) | |
| 17 | 1re 11115 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
| 18 | renepnf 11163 | . . . . . . . 8 ⊢ (1 ∈ ℝ → 1 ≠ +∞) | |
| 19 | df-ne 2926 | . . . . . . . . 9 ⊢ (1 ≠ +∞ ↔ ¬ 1 = +∞) | |
| 20 | pm2.21 123 | . . . . . . . . 9 ⊢ (¬ 1 = +∞ → (1 = +∞ → ∃𝑎 𝑉 = {𝑎})) | |
| 21 | 19, 20 | sylbi 217 | . . . . . . . 8 ⊢ (1 ≠ +∞ → (1 = +∞ → ∃𝑎 𝑉 = {𝑎})) |
| 22 | 17, 18, 21 | mp2b 10 | . . . . . . 7 ⊢ (1 = +∞ → ∃𝑎 𝑉 = {𝑎}) |
| 23 | 22 | eqcoms 2737 | . . . . . 6 ⊢ (+∞ = 1 → ∃𝑎 𝑉 = {𝑎}) |
| 24 | 16, 23 | biimtrdi 253 | . . . . 5 ⊢ ((♯‘𝑉) = +∞ → ((♯‘𝑉) = 1 → ∃𝑎 𝑉 = {𝑎})) |
| 25 | 15, 24 | syl 17 | . . . 4 ⊢ ((𝑉 ∈ 𝑊 ∧ ¬ 𝑉 ∈ Fin) → ((♯‘𝑉) = 1 → ∃𝑎 𝑉 = {𝑎})) |
| 26 | 25 | expcom 413 | . . 3 ⊢ (¬ 𝑉 ∈ Fin → (𝑉 ∈ 𝑊 → ((♯‘𝑉) = 1 → ∃𝑎 𝑉 = {𝑎}))) |
| 27 | 14, 26 | pm2.61i 182 | . 2 ⊢ (𝑉 ∈ 𝑊 → ((♯‘𝑉) = 1 → ∃𝑎 𝑉 = {𝑎})) |
| 28 | fveq2 6822 | . . . 4 ⊢ (𝑉 = {𝑎} → (♯‘𝑉) = (♯‘{𝑎})) | |
| 29 | hashsng 14276 | . . . . 5 ⊢ (𝑎 ∈ V → (♯‘{𝑎}) = 1) | |
| 30 | 29 | elv 3441 | . . . 4 ⊢ (♯‘{𝑎}) = 1 |
| 31 | 28, 30 | eqtrdi 2780 | . . 3 ⊢ (𝑉 = {𝑎} → (♯‘𝑉) = 1) |
| 32 | 31 | exlimiv 1930 | . 2 ⊢ (∃𝑎 𝑉 = {𝑎} → (♯‘𝑉) = 1) |
| 33 | 27, 32 | impbid1 225 | 1 ⊢ (𝑉 ∈ 𝑊 → ((♯‘𝑉) = 1 ↔ ∃𝑎 𝑉 = {𝑎})) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 Vcvv 3436 {csn 4577 class class class wbr 5092 ‘cfv 6482 ωcom 7799 1oc1o 8381 ≈ cen 8869 Fincfn 8872 ℝcr 11008 1c1 11010 +∞cpnf 11146 ♯chash 14237 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-oadd 8392 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-dju 9797 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-n0 12385 df-z 12472 df-uz 12736 df-fz 13411 df-hash 14238 |
| This theorem is referenced by: hash1n0 14328 hashle2pr 14384 hashge2el2difr 14388 hash1to3 14399 cshwrepswhash1 17014 symgvalstruct 19276 c0snmgmhm 20347 mat1scmat 22424 tgldim0eq 28448 lfuhgr1v0e 29199 usgr1v0e 29271 nbgr1vtx 29303 uvtx01vtx 29342 cplgr1vlem 29374 cplgr1v 29375 1loopgrvd2 29449 vdgn1frgrv2 30240 frgrwopreg1 30262 frgrwopreg2 30263 extdg1id 33633 |
| Copyright terms: Public domain | W3C validator |