|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > hash1snb | Structured version Visualization version GIF version | ||
| Description: The size of a set is 1 if and only if it is a singleton (containing a set). (Contributed by Alexander van der Vekens, 7-Dec-2017.) | 
| Ref | Expression | 
|---|---|
| hash1snb | ⊢ (𝑉 ∈ 𝑊 → ((♯‘𝑉) = 1 ↔ ∃𝑎 𝑉 = {𝑎})) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | id 22 | . . . . . . . . 9 ⊢ ((♯‘𝑉) = 1 → (♯‘𝑉) = 1) | |
| 2 | hash1 14444 | . . . . . . . . 9 ⊢ (♯‘1o) = 1 | |
| 3 | 1, 2 | eqtr4di 2794 | . . . . . . . 8 ⊢ ((♯‘𝑉) = 1 → (♯‘𝑉) = (♯‘1o)) | 
| 4 | 3 | adantl 481 | . . . . . . 7 ⊢ ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 1) → (♯‘𝑉) = (♯‘1o)) | 
| 5 | 1onn 8679 | . . . . . . . . 9 ⊢ 1o ∈ ω | |
| 6 | nnfi 9208 | . . . . . . . . 9 ⊢ (1o ∈ ω → 1o ∈ Fin) | |
| 7 | 5, 6 | mp1i 13 | . . . . . . . 8 ⊢ ((♯‘𝑉) = 1 → 1o ∈ Fin) | 
| 8 | hashen 14387 | . . . . . . . 8 ⊢ ((𝑉 ∈ Fin ∧ 1o ∈ Fin) → ((♯‘𝑉) = (♯‘1o) ↔ 𝑉 ≈ 1o)) | |
| 9 | 7, 8 | sylan2 593 | . . . . . . 7 ⊢ ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 1) → ((♯‘𝑉) = (♯‘1o) ↔ 𝑉 ≈ 1o)) | 
| 10 | 4, 9 | mpbid 232 | . . . . . 6 ⊢ ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 1) → 𝑉 ≈ 1o) | 
| 11 | en1 9065 | . . . . . 6 ⊢ (𝑉 ≈ 1o ↔ ∃𝑎 𝑉 = {𝑎}) | |
| 12 | 10, 11 | sylib 218 | . . . . 5 ⊢ ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 1) → ∃𝑎 𝑉 = {𝑎}) | 
| 13 | 12 | ex 412 | . . . 4 ⊢ (𝑉 ∈ Fin → ((♯‘𝑉) = 1 → ∃𝑎 𝑉 = {𝑎})) | 
| 14 | 13 | a1d 25 | . . 3 ⊢ (𝑉 ∈ Fin → (𝑉 ∈ 𝑊 → ((♯‘𝑉) = 1 → ∃𝑎 𝑉 = {𝑎}))) | 
| 15 | hashinf 14375 | . . . . 5 ⊢ ((𝑉 ∈ 𝑊 ∧ ¬ 𝑉 ∈ Fin) → (♯‘𝑉) = +∞) | |
| 16 | eqeq1 2740 | . . . . . 6 ⊢ ((♯‘𝑉) = +∞ → ((♯‘𝑉) = 1 ↔ +∞ = 1)) | |
| 17 | 1re 11262 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
| 18 | renepnf 11310 | . . . . . . . 8 ⊢ (1 ∈ ℝ → 1 ≠ +∞) | |
| 19 | df-ne 2940 | . . . . . . . . 9 ⊢ (1 ≠ +∞ ↔ ¬ 1 = +∞) | |
| 20 | pm2.21 123 | . . . . . . . . 9 ⊢ (¬ 1 = +∞ → (1 = +∞ → ∃𝑎 𝑉 = {𝑎})) | |
| 21 | 19, 20 | sylbi 217 | . . . . . . . 8 ⊢ (1 ≠ +∞ → (1 = +∞ → ∃𝑎 𝑉 = {𝑎})) | 
| 22 | 17, 18, 21 | mp2b 10 | . . . . . . 7 ⊢ (1 = +∞ → ∃𝑎 𝑉 = {𝑎}) | 
| 23 | 22 | eqcoms 2744 | . . . . . 6 ⊢ (+∞ = 1 → ∃𝑎 𝑉 = {𝑎}) | 
| 24 | 16, 23 | biimtrdi 253 | . . . . 5 ⊢ ((♯‘𝑉) = +∞ → ((♯‘𝑉) = 1 → ∃𝑎 𝑉 = {𝑎})) | 
| 25 | 15, 24 | syl 17 | . . . 4 ⊢ ((𝑉 ∈ 𝑊 ∧ ¬ 𝑉 ∈ Fin) → ((♯‘𝑉) = 1 → ∃𝑎 𝑉 = {𝑎})) | 
| 26 | 25 | expcom 413 | . . 3 ⊢ (¬ 𝑉 ∈ Fin → (𝑉 ∈ 𝑊 → ((♯‘𝑉) = 1 → ∃𝑎 𝑉 = {𝑎}))) | 
| 27 | 14, 26 | pm2.61i 182 | . 2 ⊢ (𝑉 ∈ 𝑊 → ((♯‘𝑉) = 1 → ∃𝑎 𝑉 = {𝑎})) | 
| 28 | fveq2 6905 | . . . 4 ⊢ (𝑉 = {𝑎} → (♯‘𝑉) = (♯‘{𝑎})) | |
| 29 | hashsng 14409 | . . . . 5 ⊢ (𝑎 ∈ V → (♯‘{𝑎}) = 1) | |
| 30 | 29 | elv 3484 | . . . 4 ⊢ (♯‘{𝑎}) = 1 | 
| 31 | 28, 30 | eqtrdi 2792 | . . 3 ⊢ (𝑉 = {𝑎} → (♯‘𝑉) = 1) | 
| 32 | 31 | exlimiv 1929 | . 2 ⊢ (∃𝑎 𝑉 = {𝑎} → (♯‘𝑉) = 1) | 
| 33 | 27, 32 | impbid1 225 | 1 ⊢ (𝑉 ∈ 𝑊 → ((♯‘𝑉) = 1 ↔ ∃𝑎 𝑉 = {𝑎})) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 ≠ wne 2939 Vcvv 3479 {csn 4625 class class class wbr 5142 ‘cfv 6560 ωcom 7888 1oc1o 8500 ≈ cen 8983 Fincfn 8986 ℝcr 11155 1c1 11157 +∞cpnf 11293 ♯chash 14370 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-oadd 8511 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-dju 9942 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-n0 12529 df-z 12616 df-uz 12880 df-fz 13549 df-hash 14371 | 
| This theorem is referenced by: hash1n0 14461 hashle2pr 14517 hashge2el2difr 14521 hash1to3 14532 cshwrepswhash1 17141 symgvalstruct 19415 symgvalstructOLD 19416 c0snmgmhm 20463 mat1scmat 22546 tgldim0eq 28512 lfuhgr1v0e 29272 usgr1v0e 29344 nbgr1vtx 29376 uvtx01vtx 29415 cplgr1vlem 29447 cplgr1v 29448 1loopgrvd2 29522 vdgn1frgrv2 30316 frgrwopreg1 30338 frgrwopreg2 30339 extdg1id 33717 | 
| Copyright terms: Public domain | W3C validator |