MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hash1snb Structured version   Visualization version   GIF version

Theorem hash1snb 13768
Description: The size of a set is 1 if and only if it is a singleton (containing a set). (Contributed by Alexander van der Vekens, 7-Dec-2017.)
Assertion
Ref Expression
hash1snb (𝑉𝑊 → ((♯‘𝑉) = 1 ↔ ∃𝑎 𝑉 = {𝑎}))
Distinct variable group:   𝑉,𝑎
Allowed substitution hint:   𝑊(𝑎)

Proof of Theorem hash1snb
StepHypRef Expression
1 id 22 . . . . . . . . 9 ((♯‘𝑉) = 1 → (♯‘𝑉) = 1)
2 hash1 13753 . . . . . . . . 9 (♯‘1o) = 1
31, 2syl6eqr 2871 . . . . . . . 8 ((♯‘𝑉) = 1 → (♯‘𝑉) = (♯‘1o))
43adantl 482 . . . . . . 7 ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 1) → (♯‘𝑉) = (♯‘1o))
5 1onn 8254 . . . . . . . . 9 1o ∈ ω
6 nnfi 8699 . . . . . . . . 9 (1o ∈ ω → 1o ∈ Fin)
75, 6mp1i 13 . . . . . . . 8 ((♯‘𝑉) = 1 → 1o ∈ Fin)
8 hashen 13695 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 1o ∈ Fin) → ((♯‘𝑉) = (♯‘1o) ↔ 𝑉 ≈ 1o))
97, 8sylan2 592 . . . . . . 7 ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 1) → ((♯‘𝑉) = (♯‘1o) ↔ 𝑉 ≈ 1o))
104, 9mpbid 233 . . . . . 6 ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 1) → 𝑉 ≈ 1o)
11 en1 8564 . . . . . 6 (𝑉 ≈ 1o ↔ ∃𝑎 𝑉 = {𝑎})
1210, 11sylib 219 . . . . 5 ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 1) → ∃𝑎 𝑉 = {𝑎})
1312ex 413 . . . 4 (𝑉 ∈ Fin → ((♯‘𝑉) = 1 → ∃𝑎 𝑉 = {𝑎}))
1413a1d 25 . . 3 (𝑉 ∈ Fin → (𝑉𝑊 → ((♯‘𝑉) = 1 → ∃𝑎 𝑉 = {𝑎})))
15 hashinf 13683 . . . . 5 ((𝑉𝑊 ∧ ¬ 𝑉 ∈ Fin) → (♯‘𝑉) = +∞)
16 eqeq1 2822 . . . . . 6 ((♯‘𝑉) = +∞ → ((♯‘𝑉) = 1 ↔ +∞ = 1))
17 1re 10629 . . . . . . . 8 1 ∈ ℝ
18 renepnf 10677 . . . . . . . 8 (1 ∈ ℝ → 1 ≠ +∞)
19 df-ne 3014 . . . . . . . . 9 (1 ≠ +∞ ↔ ¬ 1 = +∞)
20 pm2.21 123 . . . . . . . . 9 (¬ 1 = +∞ → (1 = +∞ → ∃𝑎 𝑉 = {𝑎}))
2119, 20sylbi 218 . . . . . . . 8 (1 ≠ +∞ → (1 = +∞ → ∃𝑎 𝑉 = {𝑎}))
2217, 18, 21mp2b 10 . . . . . . 7 (1 = +∞ → ∃𝑎 𝑉 = {𝑎})
2322eqcoms 2826 . . . . . 6 (+∞ = 1 → ∃𝑎 𝑉 = {𝑎})
2416, 23syl6bi 254 . . . . 5 ((♯‘𝑉) = +∞ → ((♯‘𝑉) = 1 → ∃𝑎 𝑉 = {𝑎}))
2515, 24syl 17 . . . 4 ((𝑉𝑊 ∧ ¬ 𝑉 ∈ Fin) → ((♯‘𝑉) = 1 → ∃𝑎 𝑉 = {𝑎}))
2625expcom 414 . . 3 𝑉 ∈ Fin → (𝑉𝑊 → ((♯‘𝑉) = 1 → ∃𝑎 𝑉 = {𝑎})))
2714, 26pm2.61i 183 . 2 (𝑉𝑊 → ((♯‘𝑉) = 1 → ∃𝑎 𝑉 = {𝑎}))
28 fveq2 6663 . . . 4 (𝑉 = {𝑎} → (♯‘𝑉) = (♯‘{𝑎}))
29 hashsng 13718 . . . . 5 (𝑎 ∈ V → (♯‘{𝑎}) = 1)
3029elv 3497 . . . 4 (♯‘{𝑎}) = 1
3128, 30syl6eq 2869 . . 3 (𝑉 = {𝑎} → (♯‘𝑉) = 1)
3231exlimiv 1922 . 2 (∃𝑎 𝑉 = {𝑎} → (♯‘𝑉) = 1)
3327, 32impbid1 226 1 (𝑉𝑊 → ((♯‘𝑉) = 1 ↔ ∃𝑎 𝑉 = {𝑎}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1528  wex 1771  wcel 2105  wne 3013  Vcvv 3492  {csn 4557   class class class wbr 5057  cfv 6348  ωcom 7569  1oc1o 8084  cen 8494  Fincfn 8497  cr 10524  1c1 10526  +∞cpnf 10660  chash 13678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-dju 9318  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881  df-hash 13679
This theorem is referenced by:  hash1n0  13770  hashle2pr  13823  hashge2el2difr  13827  hash1to3  13837  cshwrepswhash1  16424  mat1scmat  21076  tgldim0eq  26216  lfuhgr1v0e  26963  usgr1v0e  27035  nbgr1vtx  27067  uvtx01vtx  27106  cplgr1vlem  27138  cplgr1v  27139  1loopgrvd2  27212  vdgn1frgrv2  28002  frgrwopreg1  28024  frgrwopreg2  28025  extdg1id  30952  c0snmgmhm  44113
  Copyright terms: Public domain W3C validator