MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hash1snb Structured version   Visualization version   GIF version

Theorem hash1snb 14238
Description: The size of a set is 1 if and only if it is a singleton (containing a set). (Contributed by Alexander van der Vekens, 7-Dec-2017.)
Assertion
Ref Expression
hash1snb (𝑉𝑊 → ((♯‘𝑉) = 1 ↔ ∃𝑎 𝑉 = {𝑎}))
Distinct variable group:   𝑉,𝑎
Allowed substitution hint:   𝑊(𝑎)

Proof of Theorem hash1snb
StepHypRef Expression
1 id 22 . . . . . . . . 9 ((♯‘𝑉) = 1 → (♯‘𝑉) = 1)
2 hash1 14223 . . . . . . . . 9 (♯‘1o) = 1
31, 2eqtr4di 2795 . . . . . . . 8 ((♯‘𝑉) = 1 → (♯‘𝑉) = (♯‘1o))
43adantl 483 . . . . . . 7 ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 1) → (♯‘𝑉) = (♯‘1o))
5 1onn 8545 . . . . . . . . 9 1o ∈ ω
6 nnfi 9036 . . . . . . . . 9 (1o ∈ ω → 1o ∈ Fin)
75, 6mp1i 13 . . . . . . . 8 ((♯‘𝑉) = 1 → 1o ∈ Fin)
8 hashen 14166 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 1o ∈ Fin) → ((♯‘𝑉) = (♯‘1o) ↔ 𝑉 ≈ 1o))
97, 8sylan2 594 . . . . . . 7 ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 1) → ((♯‘𝑉) = (♯‘1o) ↔ 𝑉 ≈ 1o))
104, 9mpbid 231 . . . . . 6 ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 1) → 𝑉 ≈ 1o)
11 en1 8890 . . . . . 6 (𝑉 ≈ 1o ↔ ∃𝑎 𝑉 = {𝑎})
1210, 11sylib 217 . . . . 5 ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 1) → ∃𝑎 𝑉 = {𝑎})
1312ex 414 . . . 4 (𝑉 ∈ Fin → ((♯‘𝑉) = 1 → ∃𝑎 𝑉 = {𝑎}))
1413a1d 25 . . 3 (𝑉 ∈ Fin → (𝑉𝑊 → ((♯‘𝑉) = 1 → ∃𝑎 𝑉 = {𝑎})))
15 hashinf 14154 . . . . 5 ((𝑉𝑊 ∧ ¬ 𝑉 ∈ Fin) → (♯‘𝑉) = +∞)
16 eqeq1 2741 . . . . . 6 ((♯‘𝑉) = +∞ → ((♯‘𝑉) = 1 ↔ +∞ = 1))
17 1re 11080 . . . . . . . 8 1 ∈ ℝ
18 renepnf 11128 . . . . . . . 8 (1 ∈ ℝ → 1 ≠ +∞)
19 df-ne 2942 . . . . . . . . 9 (1 ≠ +∞ ↔ ¬ 1 = +∞)
20 pm2.21 123 . . . . . . . . 9 (¬ 1 = +∞ → (1 = +∞ → ∃𝑎 𝑉 = {𝑎}))
2119, 20sylbi 216 . . . . . . . 8 (1 ≠ +∞ → (1 = +∞ → ∃𝑎 𝑉 = {𝑎}))
2217, 18, 21mp2b 10 . . . . . . 7 (1 = +∞ → ∃𝑎 𝑉 = {𝑎})
2322eqcoms 2745 . . . . . 6 (+∞ = 1 → ∃𝑎 𝑉 = {𝑎})
2416, 23syl6bi 253 . . . . 5 ((♯‘𝑉) = +∞ → ((♯‘𝑉) = 1 → ∃𝑎 𝑉 = {𝑎}))
2515, 24syl 17 . . . 4 ((𝑉𝑊 ∧ ¬ 𝑉 ∈ Fin) → ((♯‘𝑉) = 1 → ∃𝑎 𝑉 = {𝑎}))
2625expcom 415 . . 3 𝑉 ∈ Fin → (𝑉𝑊 → ((♯‘𝑉) = 1 → ∃𝑎 𝑉 = {𝑎})))
2714, 26pm2.61i 182 . 2 (𝑉𝑊 → ((♯‘𝑉) = 1 → ∃𝑎 𝑉 = {𝑎}))
28 fveq2 6829 . . . 4 (𝑉 = {𝑎} → (♯‘𝑉) = (♯‘{𝑎}))
29 hashsng 14188 . . . . 5 (𝑎 ∈ V → (♯‘{𝑎}) = 1)
3029elv 3448 . . . 4 (♯‘{𝑎}) = 1
3128, 30eqtrdi 2793 . . 3 (𝑉 = {𝑎} → (♯‘𝑉) = 1)
3231exlimiv 1933 . 2 (∃𝑎 𝑉 = {𝑎} → (♯‘𝑉) = 1)
3327, 32impbid1 224 1 (𝑉𝑊 → ((♯‘𝑉) = 1 ↔ ∃𝑎 𝑉 = {𝑎}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397   = wceq 1541  wex 1781  wcel 2106  wne 2941  Vcvv 3442  {csn 4577   class class class wbr 5096  cfv 6483  ωcom 7784  1oc1o 8364  cen 8805  Fincfn 8808  cr 10975  1c1 10977  +∞cpnf 11111  chash 14149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376  ax-un 7654  ax-cnex 11032  ax-resscn 11033  ax-1cn 11034  ax-icn 11035  ax-addcl 11036  ax-addrcl 11037  ax-mulcl 11038  ax-mulrcl 11039  ax-mulcom 11040  ax-addass 11041  ax-mulass 11042  ax-distr 11043  ax-i2m1 11044  ax-1ne0 11045  ax-1rid 11046  ax-rnegex 11047  ax-rrecex 11048  ax-cnre 11049  ax-pre-lttri 11050  ax-pre-lttrn 11051  ax-pre-ltadd 11052  ax-pre-mulgt0 11053
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3731  df-csb 3847  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-pss 3920  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-int 4899  df-iun 4947  df-br 5097  df-opab 5159  df-mpt 5180  df-tr 5214  df-id 5522  df-eprel 5528  df-po 5536  df-so 5537  df-fr 5579  df-we 5581  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-pred 6242  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-f1 6488  df-fo 6489  df-f1o 6490  df-fv 6491  df-riota 7297  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7785  df-1st 7903  df-2nd 7904  df-frecs 8171  df-wrecs 8202  df-recs 8276  df-rdg 8315  df-1o 8371  df-oadd 8375  df-er 8573  df-en 8809  df-dom 8810  df-sdom 8811  df-fin 8812  df-dju 9762  df-card 9800  df-pnf 11116  df-mnf 11117  df-xr 11118  df-ltxr 11119  df-le 11120  df-sub 11312  df-neg 11313  df-nn 12079  df-n0 12339  df-z 12425  df-uz 12688  df-fz 13345  df-hash 14150
This theorem is referenced by:  hash1n0  14240  hashle2pr  14295  hashge2el2difr  14299  hash1to3  14309  cshwrepswhash1  16901  symgvalstruct  19100  symgvalstructOLD  19101  mat1scmat  21793  tgldim0eq  27152  lfuhgr1v0e  27909  usgr1v0e  27981  nbgr1vtx  28013  uvtx01vtx  28052  cplgr1vlem  28084  cplgr1v  28085  1loopgrvd2  28158  vdgn1frgrv2  28947  frgrwopreg1  28969  frgrwopreg2  28970  extdg1id  32034  c0snmgmhm  45890
  Copyright terms: Public domain W3C validator