Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hash1snb | Structured version Visualization version GIF version |
Description: The size of a set is 1 if and only if it is a singleton (containing a set). (Contributed by Alexander van der Vekens, 7-Dec-2017.) |
Ref | Expression |
---|---|
hash1snb | ⊢ (𝑉 ∈ 𝑊 → ((♯‘𝑉) = 1 ↔ ∃𝑎 𝑉 = {𝑎})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . . . . . 9 ⊢ ((♯‘𝑉) = 1 → (♯‘𝑉) = 1) | |
2 | hash1 14223 | . . . . . . . . 9 ⊢ (♯‘1o) = 1 | |
3 | 1, 2 | eqtr4di 2795 | . . . . . . . 8 ⊢ ((♯‘𝑉) = 1 → (♯‘𝑉) = (♯‘1o)) |
4 | 3 | adantl 483 | . . . . . . 7 ⊢ ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 1) → (♯‘𝑉) = (♯‘1o)) |
5 | 1onn 8545 | . . . . . . . . 9 ⊢ 1o ∈ ω | |
6 | nnfi 9036 | . . . . . . . . 9 ⊢ (1o ∈ ω → 1o ∈ Fin) | |
7 | 5, 6 | mp1i 13 | . . . . . . . 8 ⊢ ((♯‘𝑉) = 1 → 1o ∈ Fin) |
8 | hashen 14166 | . . . . . . . 8 ⊢ ((𝑉 ∈ Fin ∧ 1o ∈ Fin) → ((♯‘𝑉) = (♯‘1o) ↔ 𝑉 ≈ 1o)) | |
9 | 7, 8 | sylan2 594 | . . . . . . 7 ⊢ ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 1) → ((♯‘𝑉) = (♯‘1o) ↔ 𝑉 ≈ 1o)) |
10 | 4, 9 | mpbid 231 | . . . . . 6 ⊢ ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 1) → 𝑉 ≈ 1o) |
11 | en1 8890 | . . . . . 6 ⊢ (𝑉 ≈ 1o ↔ ∃𝑎 𝑉 = {𝑎}) | |
12 | 10, 11 | sylib 217 | . . . . 5 ⊢ ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 1) → ∃𝑎 𝑉 = {𝑎}) |
13 | 12 | ex 414 | . . . 4 ⊢ (𝑉 ∈ Fin → ((♯‘𝑉) = 1 → ∃𝑎 𝑉 = {𝑎})) |
14 | 13 | a1d 25 | . . 3 ⊢ (𝑉 ∈ Fin → (𝑉 ∈ 𝑊 → ((♯‘𝑉) = 1 → ∃𝑎 𝑉 = {𝑎}))) |
15 | hashinf 14154 | . . . . 5 ⊢ ((𝑉 ∈ 𝑊 ∧ ¬ 𝑉 ∈ Fin) → (♯‘𝑉) = +∞) | |
16 | eqeq1 2741 | . . . . . 6 ⊢ ((♯‘𝑉) = +∞ → ((♯‘𝑉) = 1 ↔ +∞ = 1)) | |
17 | 1re 11080 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
18 | renepnf 11128 | . . . . . . . 8 ⊢ (1 ∈ ℝ → 1 ≠ +∞) | |
19 | df-ne 2942 | . . . . . . . . 9 ⊢ (1 ≠ +∞ ↔ ¬ 1 = +∞) | |
20 | pm2.21 123 | . . . . . . . . 9 ⊢ (¬ 1 = +∞ → (1 = +∞ → ∃𝑎 𝑉 = {𝑎})) | |
21 | 19, 20 | sylbi 216 | . . . . . . . 8 ⊢ (1 ≠ +∞ → (1 = +∞ → ∃𝑎 𝑉 = {𝑎})) |
22 | 17, 18, 21 | mp2b 10 | . . . . . . 7 ⊢ (1 = +∞ → ∃𝑎 𝑉 = {𝑎}) |
23 | 22 | eqcoms 2745 | . . . . . 6 ⊢ (+∞ = 1 → ∃𝑎 𝑉 = {𝑎}) |
24 | 16, 23 | syl6bi 253 | . . . . 5 ⊢ ((♯‘𝑉) = +∞ → ((♯‘𝑉) = 1 → ∃𝑎 𝑉 = {𝑎})) |
25 | 15, 24 | syl 17 | . . . 4 ⊢ ((𝑉 ∈ 𝑊 ∧ ¬ 𝑉 ∈ Fin) → ((♯‘𝑉) = 1 → ∃𝑎 𝑉 = {𝑎})) |
26 | 25 | expcom 415 | . . 3 ⊢ (¬ 𝑉 ∈ Fin → (𝑉 ∈ 𝑊 → ((♯‘𝑉) = 1 → ∃𝑎 𝑉 = {𝑎}))) |
27 | 14, 26 | pm2.61i 182 | . 2 ⊢ (𝑉 ∈ 𝑊 → ((♯‘𝑉) = 1 → ∃𝑎 𝑉 = {𝑎})) |
28 | fveq2 6829 | . . . 4 ⊢ (𝑉 = {𝑎} → (♯‘𝑉) = (♯‘{𝑎})) | |
29 | hashsng 14188 | . . . . 5 ⊢ (𝑎 ∈ V → (♯‘{𝑎}) = 1) | |
30 | 29 | elv 3448 | . . . 4 ⊢ (♯‘{𝑎}) = 1 |
31 | 28, 30 | eqtrdi 2793 | . . 3 ⊢ (𝑉 = {𝑎} → (♯‘𝑉) = 1) |
32 | 31 | exlimiv 1933 | . 2 ⊢ (∃𝑎 𝑉 = {𝑎} → (♯‘𝑉) = 1) |
33 | 27, 32 | impbid1 224 | 1 ⊢ (𝑉 ∈ 𝑊 → ((♯‘𝑉) = 1 ↔ ∃𝑎 𝑉 = {𝑎})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ≠ wne 2941 Vcvv 3442 {csn 4577 class class class wbr 5096 ‘cfv 6483 ωcom 7784 1oc1o 8364 ≈ cen 8805 Fincfn 8808 ℝcr 10975 1c1 10977 +∞cpnf 11111 ♯chash 14149 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-cnex 11032 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 ax-pre-mulgt0 11053 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-int 4899 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7785 df-1st 7903 df-2nd 7904 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-1o 8371 df-oadd 8375 df-er 8573 df-en 8809 df-dom 8810 df-sdom 8811 df-fin 8812 df-dju 9762 df-card 9800 df-pnf 11116 df-mnf 11117 df-xr 11118 df-ltxr 11119 df-le 11120 df-sub 11312 df-neg 11313 df-nn 12079 df-n0 12339 df-z 12425 df-uz 12688 df-fz 13345 df-hash 14150 |
This theorem is referenced by: hash1n0 14240 hashle2pr 14295 hashge2el2difr 14299 hash1to3 14309 cshwrepswhash1 16901 symgvalstruct 19100 symgvalstructOLD 19101 mat1scmat 21793 tgldim0eq 27152 lfuhgr1v0e 27909 usgr1v0e 27981 nbgr1vtx 28013 uvtx01vtx 28052 cplgr1vlem 28084 cplgr1v 28085 1loopgrvd2 28158 vdgn1frgrv2 28947 frgrwopreg1 28969 frgrwopreg2 28970 extdg1id 32034 c0snmgmhm 45890 |
Copyright terms: Public domain | W3C validator |