MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpncan Structured version   Visualization version   GIF version

Theorem xpncan 12636
Description: Extended real version of pncan 10885. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xpncan ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴 +𝑒 𝐵) +𝑒 -𝑒𝐵) = 𝐴)

Proof of Theorem xpncan
StepHypRef Expression
1 rexneg 12596 . . . 4 (𝐵 ∈ ℝ → -𝑒𝐵 = -𝐵)
21adantl 485 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → -𝑒𝐵 = -𝐵)
32oveq2d 7155 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴 +𝑒 𝐵) +𝑒 -𝑒𝐵) = ((𝐴 +𝑒 𝐵) +𝑒 -𝐵))
4 renegcl 10942 . . . . . 6 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
54ad2antlr 726 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → -𝐵 ∈ ℝ)
6 rexr 10680 . . . . . 6 (-𝐵 ∈ ℝ → -𝐵 ∈ ℝ*)
7 renepnf 10682 . . . . . 6 (-𝐵 ∈ ℝ → -𝐵 ≠ +∞)
8 xaddmnf2 12614 . . . . . 6 ((-𝐵 ∈ ℝ* ∧ -𝐵 ≠ +∞) → (-∞ +𝑒 -𝐵) = -∞)
96, 7, 8syl2anc 587 . . . . 5 (-𝐵 ∈ ℝ → (-∞ +𝑒 -𝐵) = -∞)
105, 9syl 17 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → (-∞ +𝑒 -𝐵) = -∞)
11 oveq1 7146 . . . . . 6 (𝐴 = -∞ → (𝐴 +𝑒 𝐵) = (-∞ +𝑒 𝐵))
12 rexr 10680 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
13 renepnf 10682 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ≠ +∞)
14 xaddmnf2 12614 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐵 ≠ +∞) → (-∞ +𝑒 𝐵) = -∞)
1512, 13, 14syl2anc 587 . . . . . . 7 (𝐵 ∈ ℝ → (-∞ +𝑒 𝐵) = -∞)
1615adantl 485 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (-∞ +𝑒 𝐵) = -∞)
1711, 16sylan9eqr 2858 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → (𝐴 +𝑒 𝐵) = -∞)
1817oveq1d 7154 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → ((𝐴 +𝑒 𝐵) +𝑒 -𝐵) = (-∞ +𝑒 -𝐵))
19 simpr 488 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → 𝐴 = -∞)
2010, 18, 193eqtr4d 2846 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → ((𝐴 +𝑒 𝐵) +𝑒 -𝐵) = 𝐴)
21 simpll 766 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → 𝐴 ∈ ℝ*)
22 simpr 488 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → 𝐴 ≠ -∞)
2312ad2antlr 726 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → 𝐵 ∈ ℝ*)
24 renemnf 10683 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ≠ -∞)
2524ad2antlr 726 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → 𝐵 ≠ -∞)
264ad2antlr 726 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → -𝐵 ∈ ℝ)
2726, 6syl 17 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → -𝐵 ∈ ℝ*)
28 renemnf 10683 . . . . . 6 (-𝐵 ∈ ℝ → -𝐵 ≠ -∞)
2926, 28syl 17 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → -𝐵 ≠ -∞)
30 xaddass 12634 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (-𝐵 ∈ ℝ* ∧ -𝐵 ≠ -∞)) → ((𝐴 +𝑒 𝐵) +𝑒 -𝐵) = (𝐴 +𝑒 (𝐵 +𝑒 -𝐵)))
3121, 22, 23, 25, 27, 29, 30syl222anc 1383 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → ((𝐴 +𝑒 𝐵) +𝑒 -𝐵) = (𝐴 +𝑒 (𝐵 +𝑒 -𝐵)))
32 simplr 768 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → 𝐵 ∈ ℝ)
3332, 26rexaddd 12619 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → (𝐵 +𝑒 -𝐵) = (𝐵 + -𝐵))
3432recnd 10662 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → 𝐵 ∈ ℂ)
3534negidd 10980 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → (𝐵 + -𝐵) = 0)
3633, 35eqtrd 2836 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → (𝐵 +𝑒 -𝐵) = 0)
3736oveq2d 7155 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → (𝐴 +𝑒 (𝐵 +𝑒 -𝐵)) = (𝐴 +𝑒 0))
38 xaddid1 12626 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴)
3938ad2antrr 725 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → (𝐴 +𝑒 0) = 𝐴)
4037, 39eqtrd 2836 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → (𝐴 +𝑒 (𝐵 +𝑒 -𝐵)) = 𝐴)
4131, 40eqtrd 2836 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → ((𝐴 +𝑒 𝐵) +𝑒 -𝐵) = 𝐴)
4220, 41pm2.61dane 3077 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴 +𝑒 𝐵) +𝑒 -𝐵) = 𝐴)
433, 42eqtrd 2836 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴 +𝑒 𝐵) +𝑒 -𝑒𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2112  wne 2990  (class class class)co 7139  cr 10529  0cc0 10530   + caddc 10533  +∞cpnf 10665  -∞cmnf 10666  *cxr 10667  -cneg 10864  -𝑒cxne 12496   +𝑒 cxad 12497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-po 5442  df-so 5443  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-1st 7675  df-2nd 7676  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-sub 10865  df-neg 10866  df-xneg 12499  df-xadd 12500
This theorem is referenced by:  xnpcan  12637  xleadd1  12640  xaddeq0  30507
  Copyright terms: Public domain W3C validator