MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpncan Structured version   Visualization version   GIF version

Theorem xpncan 13293
Description: Extended real version of pncan 11514. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xpncan ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴 +𝑒 𝐵) +𝑒 -𝑒𝐵) = 𝐴)

Proof of Theorem xpncan
StepHypRef Expression
1 rexneg 13253 . . . 4 (𝐵 ∈ ℝ → -𝑒𝐵 = -𝐵)
21adantl 481 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → -𝑒𝐵 = -𝐵)
32oveq2d 7447 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴 +𝑒 𝐵) +𝑒 -𝑒𝐵) = ((𝐴 +𝑒 𝐵) +𝑒 -𝐵))
4 renegcl 11572 . . . . . 6 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
54ad2antlr 727 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → -𝐵 ∈ ℝ)
6 rexr 11307 . . . . . 6 (-𝐵 ∈ ℝ → -𝐵 ∈ ℝ*)
7 renepnf 11309 . . . . . 6 (-𝐵 ∈ ℝ → -𝐵 ≠ +∞)
8 xaddmnf2 13271 . . . . . 6 ((-𝐵 ∈ ℝ* ∧ -𝐵 ≠ +∞) → (-∞ +𝑒 -𝐵) = -∞)
96, 7, 8syl2anc 584 . . . . 5 (-𝐵 ∈ ℝ → (-∞ +𝑒 -𝐵) = -∞)
105, 9syl 17 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → (-∞ +𝑒 -𝐵) = -∞)
11 oveq1 7438 . . . . . 6 (𝐴 = -∞ → (𝐴 +𝑒 𝐵) = (-∞ +𝑒 𝐵))
12 rexr 11307 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
13 renepnf 11309 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ≠ +∞)
14 xaddmnf2 13271 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐵 ≠ +∞) → (-∞ +𝑒 𝐵) = -∞)
1512, 13, 14syl2anc 584 . . . . . . 7 (𝐵 ∈ ℝ → (-∞ +𝑒 𝐵) = -∞)
1615adantl 481 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (-∞ +𝑒 𝐵) = -∞)
1711, 16sylan9eqr 2799 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → (𝐴 +𝑒 𝐵) = -∞)
1817oveq1d 7446 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → ((𝐴 +𝑒 𝐵) +𝑒 -𝐵) = (-∞ +𝑒 -𝐵))
19 simpr 484 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → 𝐴 = -∞)
2010, 18, 193eqtr4d 2787 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → ((𝐴 +𝑒 𝐵) +𝑒 -𝐵) = 𝐴)
21 simpll 767 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → 𝐴 ∈ ℝ*)
22 simpr 484 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → 𝐴 ≠ -∞)
2312ad2antlr 727 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → 𝐵 ∈ ℝ*)
24 renemnf 11310 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ≠ -∞)
2524ad2antlr 727 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → 𝐵 ≠ -∞)
264ad2antlr 727 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → -𝐵 ∈ ℝ)
2726, 6syl 17 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → -𝐵 ∈ ℝ*)
28 renemnf 11310 . . . . . 6 (-𝐵 ∈ ℝ → -𝐵 ≠ -∞)
2926, 28syl 17 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → -𝐵 ≠ -∞)
30 xaddass 13291 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (-𝐵 ∈ ℝ* ∧ -𝐵 ≠ -∞)) → ((𝐴 +𝑒 𝐵) +𝑒 -𝐵) = (𝐴 +𝑒 (𝐵 +𝑒 -𝐵)))
3121, 22, 23, 25, 27, 29, 30syl222anc 1388 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → ((𝐴 +𝑒 𝐵) +𝑒 -𝐵) = (𝐴 +𝑒 (𝐵 +𝑒 -𝐵)))
32 simplr 769 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → 𝐵 ∈ ℝ)
3332, 26rexaddd 13276 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → (𝐵 +𝑒 -𝐵) = (𝐵 + -𝐵))
3432recnd 11289 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → 𝐵 ∈ ℂ)
3534negidd 11610 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → (𝐵 + -𝐵) = 0)
3633, 35eqtrd 2777 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → (𝐵 +𝑒 -𝐵) = 0)
3736oveq2d 7447 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → (𝐴 +𝑒 (𝐵 +𝑒 -𝐵)) = (𝐴 +𝑒 0))
38 xaddrid 13283 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴)
3938ad2antrr 726 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → (𝐴 +𝑒 0) = 𝐴)
4037, 39eqtrd 2777 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → (𝐴 +𝑒 (𝐵 +𝑒 -𝐵)) = 𝐴)
4131, 40eqtrd 2777 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → ((𝐴 +𝑒 𝐵) +𝑒 -𝐵) = 𝐴)
4220, 41pm2.61dane 3029 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴 +𝑒 𝐵) +𝑒 -𝐵) = 𝐴)
433, 42eqtrd 2777 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴 +𝑒 𝐵) +𝑒 -𝑒𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  (class class class)co 7431  cr 11154  0cc0 11155   + caddc 11158  +∞cpnf 11292  -∞cmnf 11293  *cxr 11294  -cneg 11493  -𝑒cxne 13151   +𝑒 cxad 13152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-sub 11494  df-neg 11495  df-xneg 13154  df-xadd 13155
This theorem is referenced by:  xnpcan  13294  xleadd1  13297  xaddeq0  32757
  Copyright terms: Public domain W3C validator