MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpncan Structured version   Visualization version   GIF version

Theorem xpncan 12806
Description: Extended real version of pncan 11049. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xpncan ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴 +𝑒 𝐵) +𝑒 -𝑒𝐵) = 𝐴)

Proof of Theorem xpncan
StepHypRef Expression
1 rexneg 12766 . . . 4 (𝐵 ∈ ℝ → -𝑒𝐵 = -𝐵)
21adantl 485 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → -𝑒𝐵 = -𝐵)
32oveq2d 7207 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴 +𝑒 𝐵) +𝑒 -𝑒𝐵) = ((𝐴 +𝑒 𝐵) +𝑒 -𝐵))
4 renegcl 11106 . . . . . 6 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
54ad2antlr 727 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → -𝐵 ∈ ℝ)
6 rexr 10844 . . . . . 6 (-𝐵 ∈ ℝ → -𝐵 ∈ ℝ*)
7 renepnf 10846 . . . . . 6 (-𝐵 ∈ ℝ → -𝐵 ≠ +∞)
8 xaddmnf2 12784 . . . . . 6 ((-𝐵 ∈ ℝ* ∧ -𝐵 ≠ +∞) → (-∞ +𝑒 -𝐵) = -∞)
96, 7, 8syl2anc 587 . . . . 5 (-𝐵 ∈ ℝ → (-∞ +𝑒 -𝐵) = -∞)
105, 9syl 17 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → (-∞ +𝑒 -𝐵) = -∞)
11 oveq1 7198 . . . . . 6 (𝐴 = -∞ → (𝐴 +𝑒 𝐵) = (-∞ +𝑒 𝐵))
12 rexr 10844 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
13 renepnf 10846 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ≠ +∞)
14 xaddmnf2 12784 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐵 ≠ +∞) → (-∞ +𝑒 𝐵) = -∞)
1512, 13, 14syl2anc 587 . . . . . . 7 (𝐵 ∈ ℝ → (-∞ +𝑒 𝐵) = -∞)
1615adantl 485 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (-∞ +𝑒 𝐵) = -∞)
1711, 16sylan9eqr 2793 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → (𝐴 +𝑒 𝐵) = -∞)
1817oveq1d 7206 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → ((𝐴 +𝑒 𝐵) +𝑒 -𝐵) = (-∞ +𝑒 -𝐵))
19 simpr 488 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → 𝐴 = -∞)
2010, 18, 193eqtr4d 2781 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → ((𝐴 +𝑒 𝐵) +𝑒 -𝐵) = 𝐴)
21 simpll 767 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → 𝐴 ∈ ℝ*)
22 simpr 488 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → 𝐴 ≠ -∞)
2312ad2antlr 727 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → 𝐵 ∈ ℝ*)
24 renemnf 10847 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ≠ -∞)
2524ad2antlr 727 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → 𝐵 ≠ -∞)
264ad2antlr 727 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → -𝐵 ∈ ℝ)
2726, 6syl 17 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → -𝐵 ∈ ℝ*)
28 renemnf 10847 . . . . . 6 (-𝐵 ∈ ℝ → -𝐵 ≠ -∞)
2926, 28syl 17 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → -𝐵 ≠ -∞)
30 xaddass 12804 . . . . 5 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (-𝐵 ∈ ℝ* ∧ -𝐵 ≠ -∞)) → ((𝐴 +𝑒 𝐵) +𝑒 -𝐵) = (𝐴 +𝑒 (𝐵 +𝑒 -𝐵)))
3121, 22, 23, 25, 27, 29, 30syl222anc 1388 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → ((𝐴 +𝑒 𝐵) +𝑒 -𝐵) = (𝐴 +𝑒 (𝐵 +𝑒 -𝐵)))
32 simplr 769 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → 𝐵 ∈ ℝ)
3332, 26rexaddd 12789 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → (𝐵 +𝑒 -𝐵) = (𝐵 + -𝐵))
3432recnd 10826 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → 𝐵 ∈ ℂ)
3534negidd 11144 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → (𝐵 + -𝐵) = 0)
3633, 35eqtrd 2771 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → (𝐵 +𝑒 -𝐵) = 0)
3736oveq2d 7207 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → (𝐴 +𝑒 (𝐵 +𝑒 -𝐵)) = (𝐴 +𝑒 0))
38 xaddid1 12796 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴)
3938ad2antrr 726 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → (𝐴 +𝑒 0) = 𝐴)
4037, 39eqtrd 2771 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → (𝐴 +𝑒 (𝐵 +𝑒 -𝐵)) = 𝐴)
4131, 40eqtrd 2771 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴 ≠ -∞) → ((𝐴 +𝑒 𝐵) +𝑒 -𝐵) = 𝐴)
4220, 41pm2.61dane 3019 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴 +𝑒 𝐵) +𝑒 -𝐵) = 𝐴)
433, 42eqtrd 2771 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴 +𝑒 𝐵) +𝑒 -𝑒𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  wne 2932  (class class class)co 7191  cr 10693  0cc0 10694   + caddc 10697  +∞cpnf 10829  -∞cmnf 10830  *cxr 10831  -cneg 11028  -𝑒cxne 12666   +𝑒 cxad 12667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-po 5453  df-so 5454  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-1st 7739  df-2nd 7740  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-sub 11029  df-neg 11030  df-xneg 12669  df-xadd 12670
This theorem is referenced by:  xnpcan  12807  xleadd1  12810  xaddeq0  30750
  Copyright terms: Public domain W3C validator