Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infleinflem1 Structured version   Visualization version   GIF version

Theorem infleinflem1 45339
Description: Lemma for infleinf 45341, case 𝐵 ≠ ∅ ∧ -∞ < inf(𝐵, ℝ*, < ). (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
infleinflem1.a (𝜑𝐴 ⊆ ℝ*)
infleinflem1.b (𝜑𝐵 ⊆ ℝ*)
infleinflem1.w (𝜑𝑊 ∈ ℝ+)
infleinflem1.x (𝜑𝑋𝐵)
infleinflem1.i (𝜑𝑋 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑊 / 2)))
infleinflem1.z (𝜑𝑍𝐴)
infleinflem1.l (𝜑𝑍 ≤ (𝑋 +𝑒 (𝑊 / 2)))
Assertion
Ref Expression
infleinflem1 (𝜑 → inf(𝐴, ℝ*, < ) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑊))

Proof of Theorem infleinflem1
StepHypRef Expression
1 infleinflem1.a . . . 4 (𝜑𝐴 ⊆ ℝ*)
2 infxrcl 13270 . . . 4 (𝐴 ⊆ ℝ* → inf(𝐴, ℝ*, < ) ∈ ℝ*)
31, 2syl 17 . . 3 (𝜑 → inf(𝐴, ℝ*, < ) ∈ ℝ*)
4 id 22 . . 3 (inf(𝐴, ℝ*, < ) ∈ ℝ* → inf(𝐴, ℝ*, < ) ∈ ℝ*)
53, 4syl 17 . 2 (𝜑 → inf(𝐴, ℝ*, < ) ∈ ℝ*)
6 infleinflem1.z . . 3 (𝜑𝑍𝐴)
71, 6sseldd 3944 . 2 (𝜑𝑍 ∈ ℝ*)
8 infleinflem1.b . . . 4 (𝜑𝐵 ⊆ ℝ*)
9 infxrcl 13270 . . . 4 (𝐵 ⊆ ℝ* → inf(𝐵, ℝ*, < ) ∈ ℝ*)
108, 9syl 17 . . 3 (𝜑 → inf(𝐵, ℝ*, < ) ∈ ℝ*)
11 infleinflem1.w . . . 4 (𝜑𝑊 ∈ ℝ+)
12 rpxr 12937 . . . 4 (𝑊 ∈ ℝ+𝑊 ∈ ℝ*)
1311, 12syl 17 . . 3 (𝜑𝑊 ∈ ℝ*)
1410, 13xaddcld 13237 . 2 (𝜑 → (inf(𝐵, ℝ*, < ) +𝑒 𝑊) ∈ ℝ*)
15 infxrlb 13271 . . 3 ((𝐴 ⊆ ℝ*𝑍𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑍)
161, 6, 15syl2anc 584 . 2 (𝜑 → inf(𝐴, ℝ*, < ) ≤ 𝑍)
17 infleinflem1.x . . . . 5 (𝜑𝑋𝐵)
188sselda 3943 . . . . 5 ((𝜑𝑋𝐵) → 𝑋 ∈ ℝ*)
1917, 18mpdan 687 . . . 4 (𝜑𝑋 ∈ ℝ*)
2011rpred 12971 . . . . . 6 (𝜑𝑊 ∈ ℝ)
2120rehalfcld 12405 . . . . 5 (𝜑 → (𝑊 / 2) ∈ ℝ)
2221rexrd 11200 . . . 4 (𝜑 → (𝑊 / 2) ∈ ℝ*)
2319, 22xaddcld 13237 . . 3 (𝜑 → (𝑋 +𝑒 (𝑊 / 2)) ∈ ℝ*)
24 infleinflem1.l . . 3 (𝜑𝑍 ≤ (𝑋 +𝑒 (𝑊 / 2)))
25 pnfge 13066 . . . . . . 7 ((𝑋 +𝑒 (𝑊 / 2)) ∈ ℝ* → (𝑋 +𝑒 (𝑊 / 2)) ≤ +∞)
2623, 25syl 17 . . . . . 6 (𝜑 → (𝑋 +𝑒 (𝑊 / 2)) ≤ +∞)
2726adantr 480 . . . . 5 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = +∞) → (𝑋 +𝑒 (𝑊 / 2)) ≤ +∞)
28 oveq1 7376 . . . . . . 7 (inf(𝐵, ℝ*, < ) = +∞ → (inf(𝐵, ℝ*, < ) +𝑒 𝑊) = (+∞ +𝑒 𝑊))
2928adantl 481 . . . . . 6 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = +∞) → (inf(𝐵, ℝ*, < ) +𝑒 𝑊) = (+∞ +𝑒 𝑊))
30 rpre 12936 . . . . . . . . . 10 (𝑊 ∈ ℝ+𝑊 ∈ ℝ)
31 renemnf 11199 . . . . . . . . . 10 (𝑊 ∈ ℝ → 𝑊 ≠ -∞)
3230, 31syl 17 . . . . . . . . 9 (𝑊 ∈ ℝ+𝑊 ≠ -∞)
33 xaddpnf2 13163 . . . . . . . . 9 ((𝑊 ∈ ℝ*𝑊 ≠ -∞) → (+∞ +𝑒 𝑊) = +∞)
3412, 32, 33syl2anc 584 . . . . . . . 8 (𝑊 ∈ ℝ+ → (+∞ +𝑒 𝑊) = +∞)
3511, 34syl 17 . . . . . . 7 (𝜑 → (+∞ +𝑒 𝑊) = +∞)
3635adantr 480 . . . . . 6 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = +∞) → (+∞ +𝑒 𝑊) = +∞)
3729, 36eqtr2d 2765 . . . . 5 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = +∞) → +∞ = (inf(𝐵, ℝ*, < ) +𝑒 𝑊))
3827, 37breqtrd 5128 . . . 4 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = +∞) → (𝑋 +𝑒 (𝑊 / 2)) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑊))
398, 17sseldd 3944 . . . . . . 7 (𝜑𝑋 ∈ ℝ*)
4010, 22xaddcld 13237 . . . . . . 7 (𝜑 → (inf(𝐵, ℝ*, < ) +𝑒 (𝑊 / 2)) ∈ ℝ*)
41 rphalfcl 12956 . . . . . . . . 9 (𝑊 ∈ ℝ+ → (𝑊 / 2) ∈ ℝ+)
4211, 41syl 17 . . . . . . . 8 (𝜑 → (𝑊 / 2) ∈ ℝ+)
4342rpxrd 12972 . . . . . . 7 (𝜑 → (𝑊 / 2) ∈ ℝ*)
44 infleinflem1.i . . . . . . 7 (𝜑𝑋 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑊 / 2)))
4539, 40, 43, 44xleadd1d 45298 . . . . . 6 (𝜑 → (𝑋 +𝑒 (𝑊 / 2)) ≤ ((inf(𝐵, ℝ*, < ) +𝑒 (𝑊 / 2)) +𝑒 (𝑊 / 2)))
4645adantr 480 . . . . 5 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → (𝑋 +𝑒 (𝑊 / 2)) ≤ ((inf(𝐵, ℝ*, < ) +𝑒 (𝑊 / 2)) +𝑒 (𝑊 / 2)))
4710adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → inf(𝐵, ℝ*, < ) ∈ ℝ*)
48 neqne 2933 . . . . . . . 8 (¬ inf(𝐵, ℝ*, < ) = +∞ → inf(𝐵, ℝ*, < ) ≠ +∞)
4948adantl 481 . . . . . . 7 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → inf(𝐵, ℝ*, < ) ≠ +∞)
5043adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → (𝑊 / 2) ∈ ℝ*)
5111adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → 𝑊 ∈ ℝ+)
52 rpre 12936 . . . . . . . 8 ((𝑊 / 2) ∈ ℝ+ → (𝑊 / 2) ∈ ℝ)
53 renepnf 11198 . . . . . . . 8 ((𝑊 / 2) ∈ ℝ → (𝑊 / 2) ≠ +∞)
5451, 41, 52, 534syl 19 . . . . . . 7 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → (𝑊 / 2) ≠ +∞)
55 xaddass2 13186 . . . . . . 7 (((inf(𝐵, ℝ*, < ) ∈ ℝ* ∧ inf(𝐵, ℝ*, < ) ≠ +∞) ∧ ((𝑊 / 2) ∈ ℝ* ∧ (𝑊 / 2) ≠ +∞) ∧ ((𝑊 / 2) ∈ ℝ* ∧ (𝑊 / 2) ≠ +∞)) → ((inf(𝐵, ℝ*, < ) +𝑒 (𝑊 / 2)) +𝑒 (𝑊 / 2)) = (inf(𝐵, ℝ*, < ) +𝑒 ((𝑊 / 2) +𝑒 (𝑊 / 2))))
5647, 49, 50, 54, 50, 54, 55syl222anc 1388 . . . . . 6 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → ((inf(𝐵, ℝ*, < ) +𝑒 (𝑊 / 2)) +𝑒 (𝑊 / 2)) = (inf(𝐵, ℝ*, < ) +𝑒 ((𝑊 / 2) +𝑒 (𝑊 / 2))))
57 rehalfcl 12385 . . . . . . . . . 10 (𝑊 ∈ ℝ → (𝑊 / 2) ∈ ℝ)
5857, 57rexaddd 13170 . . . . . . . . 9 (𝑊 ∈ ℝ → ((𝑊 / 2) +𝑒 (𝑊 / 2)) = ((𝑊 / 2) + (𝑊 / 2)))
59 recn 11134 . . . . . . . . . 10 (𝑊 ∈ ℝ → 𝑊 ∈ ℂ)
60 2halves 12376 . . . . . . . . . 10 (𝑊 ∈ ℂ → ((𝑊 / 2) + (𝑊 / 2)) = 𝑊)
6159, 60syl 17 . . . . . . . . 9 (𝑊 ∈ ℝ → ((𝑊 / 2) + (𝑊 / 2)) = 𝑊)
6258, 61eqtrd 2764 . . . . . . . 8 (𝑊 ∈ ℝ → ((𝑊 / 2) +𝑒 (𝑊 / 2)) = 𝑊)
6362oveq2d 7385 . . . . . . 7 (𝑊 ∈ ℝ → (inf(𝐵, ℝ*, < ) +𝑒 ((𝑊 / 2) +𝑒 (𝑊 / 2))) = (inf(𝐵, ℝ*, < ) +𝑒 𝑊))
6451, 30, 633syl 18 . . . . . 6 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → (inf(𝐵, ℝ*, < ) +𝑒 ((𝑊 / 2) +𝑒 (𝑊 / 2))) = (inf(𝐵, ℝ*, < ) +𝑒 𝑊))
6556, 64eqtrd 2764 . . . . 5 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → ((inf(𝐵, ℝ*, < ) +𝑒 (𝑊 / 2)) +𝑒 (𝑊 / 2)) = (inf(𝐵, ℝ*, < ) +𝑒 𝑊))
6646, 65breqtrd 5128 . . . 4 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → (𝑋 +𝑒 (𝑊 / 2)) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑊))
6738, 66pm2.61dan 812 . . 3 (𝜑 → (𝑋 +𝑒 (𝑊 / 2)) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑊))
687, 23, 14, 24, 67xrletrd 13098 . 2 (𝜑𝑍 ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑊))
695, 7, 14, 16, 68xrletrd 13098 1 (𝜑 → inf(𝐴, ℝ*, < ) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wss 3911   class class class wbr 5102  (class class class)co 7369  infcinf 9368  cc 11042  cr 11043   + caddc 11047  +∞cpnf 11181  -∞cmnf 11182  *cxr 11183   < clt 11184  cle 11185   / cdiv 11811  2c2 12217  +crp 12927   +𝑒 cxad 13046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-rp 12928  df-xneg 13048  df-xadd 13049
This theorem is referenced by:  infleinf  45341
  Copyright terms: Public domain W3C validator