Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infleinflem1 Structured version   Visualization version   GIF version

Theorem infleinflem1 45285
Description: Lemma for infleinf 45287, case 𝐵 ≠ ∅ ∧ -∞ < inf(𝐵, ℝ*, < ). (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
infleinflem1.a (𝜑𝐴 ⊆ ℝ*)
infleinflem1.b (𝜑𝐵 ⊆ ℝ*)
infleinflem1.w (𝜑𝑊 ∈ ℝ+)
infleinflem1.x (𝜑𝑋𝐵)
infleinflem1.i (𝜑𝑋 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑊 / 2)))
infleinflem1.z (𝜑𝑍𝐴)
infleinflem1.l (𝜑𝑍 ≤ (𝑋 +𝑒 (𝑊 / 2)))
Assertion
Ref Expression
infleinflem1 (𝜑 → inf(𝐴, ℝ*, < ) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑊))

Proof of Theorem infleinflem1
StepHypRef Expression
1 infleinflem1.a . . . 4 (𝜑𝐴 ⊆ ℝ*)
2 infxrcl 13395 . . . 4 (𝐴 ⊆ ℝ* → inf(𝐴, ℝ*, < ) ∈ ℝ*)
31, 2syl 17 . . 3 (𝜑 → inf(𝐴, ℝ*, < ) ∈ ℝ*)
4 id 22 . . 3 (inf(𝐴, ℝ*, < ) ∈ ℝ* → inf(𝐴, ℝ*, < ) ∈ ℝ*)
53, 4syl 17 . 2 (𝜑 → inf(𝐴, ℝ*, < ) ∈ ℝ*)
6 infleinflem1.z . . 3 (𝜑𝑍𝐴)
71, 6sseldd 4009 . 2 (𝜑𝑍 ∈ ℝ*)
8 infleinflem1.b . . . 4 (𝜑𝐵 ⊆ ℝ*)
9 infxrcl 13395 . . . 4 (𝐵 ⊆ ℝ* → inf(𝐵, ℝ*, < ) ∈ ℝ*)
108, 9syl 17 . . 3 (𝜑 → inf(𝐵, ℝ*, < ) ∈ ℝ*)
11 infleinflem1.w . . . 4 (𝜑𝑊 ∈ ℝ+)
12 rpxr 13066 . . . 4 (𝑊 ∈ ℝ+𝑊 ∈ ℝ*)
1311, 12syl 17 . . 3 (𝜑𝑊 ∈ ℝ*)
1410, 13xaddcld 13363 . 2 (𝜑 → (inf(𝐵, ℝ*, < ) +𝑒 𝑊) ∈ ℝ*)
15 infxrlb 13396 . . 3 ((𝐴 ⊆ ℝ*𝑍𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑍)
161, 6, 15syl2anc 583 . 2 (𝜑 → inf(𝐴, ℝ*, < ) ≤ 𝑍)
17 infleinflem1.x . . . . 5 (𝜑𝑋𝐵)
188sselda 4008 . . . . 5 ((𝜑𝑋𝐵) → 𝑋 ∈ ℝ*)
1917, 18mpdan 686 . . . 4 (𝜑𝑋 ∈ ℝ*)
2011rpred 13099 . . . . . 6 (𝜑𝑊 ∈ ℝ)
2120rehalfcld 12540 . . . . 5 (𝜑 → (𝑊 / 2) ∈ ℝ)
2221rexrd 11340 . . . 4 (𝜑 → (𝑊 / 2) ∈ ℝ*)
2319, 22xaddcld 13363 . . 3 (𝜑 → (𝑋 +𝑒 (𝑊 / 2)) ∈ ℝ*)
24 infleinflem1.l . . 3 (𝜑𝑍 ≤ (𝑋 +𝑒 (𝑊 / 2)))
25 pnfge 13193 . . . . . . 7 ((𝑋 +𝑒 (𝑊 / 2)) ∈ ℝ* → (𝑋 +𝑒 (𝑊 / 2)) ≤ +∞)
2623, 25syl 17 . . . . . 6 (𝜑 → (𝑋 +𝑒 (𝑊 / 2)) ≤ +∞)
2726adantr 480 . . . . 5 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = +∞) → (𝑋 +𝑒 (𝑊 / 2)) ≤ +∞)
28 oveq1 7455 . . . . . . 7 (inf(𝐵, ℝ*, < ) = +∞ → (inf(𝐵, ℝ*, < ) +𝑒 𝑊) = (+∞ +𝑒 𝑊))
2928adantl 481 . . . . . 6 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = +∞) → (inf(𝐵, ℝ*, < ) +𝑒 𝑊) = (+∞ +𝑒 𝑊))
30 rpre 13065 . . . . . . . . . 10 (𝑊 ∈ ℝ+𝑊 ∈ ℝ)
31 renemnf 11339 . . . . . . . . . 10 (𝑊 ∈ ℝ → 𝑊 ≠ -∞)
3230, 31syl 17 . . . . . . . . 9 (𝑊 ∈ ℝ+𝑊 ≠ -∞)
33 xaddpnf2 13289 . . . . . . . . 9 ((𝑊 ∈ ℝ*𝑊 ≠ -∞) → (+∞ +𝑒 𝑊) = +∞)
3412, 32, 33syl2anc 583 . . . . . . . 8 (𝑊 ∈ ℝ+ → (+∞ +𝑒 𝑊) = +∞)
3511, 34syl 17 . . . . . . 7 (𝜑 → (+∞ +𝑒 𝑊) = +∞)
3635adantr 480 . . . . . 6 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = +∞) → (+∞ +𝑒 𝑊) = +∞)
3729, 36eqtr2d 2781 . . . . 5 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = +∞) → +∞ = (inf(𝐵, ℝ*, < ) +𝑒 𝑊))
3827, 37breqtrd 5192 . . . 4 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = +∞) → (𝑋 +𝑒 (𝑊 / 2)) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑊))
398, 17sseldd 4009 . . . . . . 7 (𝜑𝑋 ∈ ℝ*)
4010, 22xaddcld 13363 . . . . . . 7 (𝜑 → (inf(𝐵, ℝ*, < ) +𝑒 (𝑊 / 2)) ∈ ℝ*)
41 rphalfcl 13084 . . . . . . . . 9 (𝑊 ∈ ℝ+ → (𝑊 / 2) ∈ ℝ+)
4211, 41syl 17 . . . . . . . 8 (𝜑 → (𝑊 / 2) ∈ ℝ+)
4342rpxrd 13100 . . . . . . 7 (𝜑 → (𝑊 / 2) ∈ ℝ*)
44 infleinflem1.i . . . . . . 7 (𝜑𝑋 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑊 / 2)))
4539, 40, 43, 44xleadd1d 45244 . . . . . 6 (𝜑 → (𝑋 +𝑒 (𝑊 / 2)) ≤ ((inf(𝐵, ℝ*, < ) +𝑒 (𝑊 / 2)) +𝑒 (𝑊 / 2)))
4645adantr 480 . . . . 5 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → (𝑋 +𝑒 (𝑊 / 2)) ≤ ((inf(𝐵, ℝ*, < ) +𝑒 (𝑊 / 2)) +𝑒 (𝑊 / 2)))
4710adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → inf(𝐵, ℝ*, < ) ∈ ℝ*)
48 neqne 2954 . . . . . . . 8 (¬ inf(𝐵, ℝ*, < ) = +∞ → inf(𝐵, ℝ*, < ) ≠ +∞)
4948adantl 481 . . . . . . 7 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → inf(𝐵, ℝ*, < ) ≠ +∞)
5043adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → (𝑊 / 2) ∈ ℝ*)
5111adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → 𝑊 ∈ ℝ+)
52 rpre 13065 . . . . . . . 8 ((𝑊 / 2) ∈ ℝ+ → (𝑊 / 2) ∈ ℝ)
53 renepnf 11338 . . . . . . . 8 ((𝑊 / 2) ∈ ℝ → (𝑊 / 2) ≠ +∞)
5451, 41, 52, 534syl 19 . . . . . . 7 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → (𝑊 / 2) ≠ +∞)
55 xaddass2 13312 . . . . . . 7 (((inf(𝐵, ℝ*, < ) ∈ ℝ* ∧ inf(𝐵, ℝ*, < ) ≠ +∞) ∧ ((𝑊 / 2) ∈ ℝ* ∧ (𝑊 / 2) ≠ +∞) ∧ ((𝑊 / 2) ∈ ℝ* ∧ (𝑊 / 2) ≠ +∞)) → ((inf(𝐵, ℝ*, < ) +𝑒 (𝑊 / 2)) +𝑒 (𝑊 / 2)) = (inf(𝐵, ℝ*, < ) +𝑒 ((𝑊 / 2) +𝑒 (𝑊 / 2))))
5647, 49, 50, 54, 50, 54, 55syl222anc 1386 . . . . . 6 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → ((inf(𝐵, ℝ*, < ) +𝑒 (𝑊 / 2)) +𝑒 (𝑊 / 2)) = (inf(𝐵, ℝ*, < ) +𝑒 ((𝑊 / 2) +𝑒 (𝑊 / 2))))
57 rehalfcl 12519 . . . . . . . . . 10 (𝑊 ∈ ℝ → (𝑊 / 2) ∈ ℝ)
5857, 57rexaddd 13296 . . . . . . . . 9 (𝑊 ∈ ℝ → ((𝑊 / 2) +𝑒 (𝑊 / 2)) = ((𝑊 / 2) + (𝑊 / 2)))
59 recn 11274 . . . . . . . . . 10 (𝑊 ∈ ℝ → 𝑊 ∈ ℂ)
60 2halves 12521 . . . . . . . . . 10 (𝑊 ∈ ℂ → ((𝑊 / 2) + (𝑊 / 2)) = 𝑊)
6159, 60syl 17 . . . . . . . . 9 (𝑊 ∈ ℝ → ((𝑊 / 2) + (𝑊 / 2)) = 𝑊)
6258, 61eqtrd 2780 . . . . . . . 8 (𝑊 ∈ ℝ → ((𝑊 / 2) +𝑒 (𝑊 / 2)) = 𝑊)
6362oveq2d 7464 . . . . . . 7 (𝑊 ∈ ℝ → (inf(𝐵, ℝ*, < ) +𝑒 ((𝑊 / 2) +𝑒 (𝑊 / 2))) = (inf(𝐵, ℝ*, < ) +𝑒 𝑊))
6451, 30, 633syl 18 . . . . . 6 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → (inf(𝐵, ℝ*, < ) +𝑒 ((𝑊 / 2) +𝑒 (𝑊 / 2))) = (inf(𝐵, ℝ*, < ) +𝑒 𝑊))
6556, 64eqtrd 2780 . . . . 5 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → ((inf(𝐵, ℝ*, < ) +𝑒 (𝑊 / 2)) +𝑒 (𝑊 / 2)) = (inf(𝐵, ℝ*, < ) +𝑒 𝑊))
6646, 65breqtrd 5192 . . . 4 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → (𝑋 +𝑒 (𝑊 / 2)) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑊))
6738, 66pm2.61dan 812 . . 3 (𝜑 → (𝑋 +𝑒 (𝑊 / 2)) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑊))
687, 23, 14, 24, 67xrletrd 13224 . 2 (𝜑𝑍 ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑊))
695, 7, 14, 16, 68xrletrd 13224 1 (𝜑 → inf(𝐴, ℝ*, < ) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  wss 3976   class class class wbr 5166  (class class class)co 7448  infcinf 9510  cc 11182  cr 11183   + caddc 11187  +∞cpnf 11321  -∞cmnf 11322  *cxr 11323   < clt 11324  cle 11325   / cdiv 11947  2c2 12348  +crp 13057   +𝑒 cxad 13173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-2 12356  df-rp 13058  df-xneg 13175  df-xadd 13176
This theorem is referenced by:  infleinf  45287
  Copyright terms: Public domain W3C validator