Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infleinflem1 Structured version   Visualization version   GIF version

Theorem infleinflem1 44066
Description: Lemma for infleinf 44068, case 𝐵 ≠ ∅ ∧ -∞ < inf(𝐵, ℝ*, < ). (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
infleinflem1.a (𝜑𝐴 ⊆ ℝ*)
infleinflem1.b (𝜑𝐵 ⊆ ℝ*)
infleinflem1.w (𝜑𝑊 ∈ ℝ+)
infleinflem1.x (𝜑𝑋𝐵)
infleinflem1.i (𝜑𝑋 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑊 / 2)))
infleinflem1.z (𝜑𝑍𝐴)
infleinflem1.l (𝜑𝑍 ≤ (𝑋 +𝑒 (𝑊 / 2)))
Assertion
Ref Expression
infleinflem1 (𝜑 → inf(𝐴, ℝ*, < ) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑊))

Proof of Theorem infleinflem1
StepHypRef Expression
1 infleinflem1.a . . . 4 (𝜑𝐴 ⊆ ℝ*)
2 infxrcl 13308 . . . 4 (𝐴 ⊆ ℝ* → inf(𝐴, ℝ*, < ) ∈ ℝ*)
31, 2syl 17 . . 3 (𝜑 → inf(𝐴, ℝ*, < ) ∈ ℝ*)
4 id 22 . . 3 (inf(𝐴, ℝ*, < ) ∈ ℝ* → inf(𝐴, ℝ*, < ) ∈ ℝ*)
53, 4syl 17 . 2 (𝜑 → inf(𝐴, ℝ*, < ) ∈ ℝ*)
6 infleinflem1.z . . 3 (𝜑𝑍𝐴)
71, 6sseldd 3982 . 2 (𝜑𝑍 ∈ ℝ*)
8 infleinflem1.b . . . 4 (𝜑𝐵 ⊆ ℝ*)
9 infxrcl 13308 . . . 4 (𝐵 ⊆ ℝ* → inf(𝐵, ℝ*, < ) ∈ ℝ*)
108, 9syl 17 . . 3 (𝜑 → inf(𝐵, ℝ*, < ) ∈ ℝ*)
11 infleinflem1.w . . . 4 (𝜑𝑊 ∈ ℝ+)
12 rpxr 12979 . . . 4 (𝑊 ∈ ℝ+𝑊 ∈ ℝ*)
1311, 12syl 17 . . 3 (𝜑𝑊 ∈ ℝ*)
1410, 13xaddcld 13276 . 2 (𝜑 → (inf(𝐵, ℝ*, < ) +𝑒 𝑊) ∈ ℝ*)
15 infxrlb 13309 . . 3 ((𝐴 ⊆ ℝ*𝑍𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑍)
161, 6, 15syl2anc 584 . 2 (𝜑 → inf(𝐴, ℝ*, < ) ≤ 𝑍)
17 infleinflem1.x . . . . 5 (𝜑𝑋𝐵)
188sselda 3981 . . . . 5 ((𝜑𝑋𝐵) → 𝑋 ∈ ℝ*)
1917, 18mpdan 685 . . . 4 (𝜑𝑋 ∈ ℝ*)
2011rpred 13012 . . . . . 6 (𝜑𝑊 ∈ ℝ)
2120rehalfcld 12455 . . . . 5 (𝜑 → (𝑊 / 2) ∈ ℝ)
2221rexrd 11260 . . . 4 (𝜑 → (𝑊 / 2) ∈ ℝ*)
2319, 22xaddcld 13276 . . 3 (𝜑 → (𝑋 +𝑒 (𝑊 / 2)) ∈ ℝ*)
24 infleinflem1.l . . 3 (𝜑𝑍 ≤ (𝑋 +𝑒 (𝑊 / 2)))
25 pnfge 13106 . . . . . . 7 ((𝑋 +𝑒 (𝑊 / 2)) ∈ ℝ* → (𝑋 +𝑒 (𝑊 / 2)) ≤ +∞)
2623, 25syl 17 . . . . . 6 (𝜑 → (𝑋 +𝑒 (𝑊 / 2)) ≤ +∞)
2726adantr 481 . . . . 5 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = +∞) → (𝑋 +𝑒 (𝑊 / 2)) ≤ +∞)
28 oveq1 7412 . . . . . . 7 (inf(𝐵, ℝ*, < ) = +∞ → (inf(𝐵, ℝ*, < ) +𝑒 𝑊) = (+∞ +𝑒 𝑊))
2928adantl 482 . . . . . 6 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = +∞) → (inf(𝐵, ℝ*, < ) +𝑒 𝑊) = (+∞ +𝑒 𝑊))
30 rpre 12978 . . . . . . . . . 10 (𝑊 ∈ ℝ+𝑊 ∈ ℝ)
31 renemnf 11259 . . . . . . . . . 10 (𝑊 ∈ ℝ → 𝑊 ≠ -∞)
3230, 31syl 17 . . . . . . . . 9 (𝑊 ∈ ℝ+𝑊 ≠ -∞)
33 xaddpnf2 13202 . . . . . . . . 9 ((𝑊 ∈ ℝ*𝑊 ≠ -∞) → (+∞ +𝑒 𝑊) = +∞)
3412, 32, 33syl2anc 584 . . . . . . . 8 (𝑊 ∈ ℝ+ → (+∞ +𝑒 𝑊) = +∞)
3511, 34syl 17 . . . . . . 7 (𝜑 → (+∞ +𝑒 𝑊) = +∞)
3635adantr 481 . . . . . 6 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = +∞) → (+∞ +𝑒 𝑊) = +∞)
3729, 36eqtr2d 2773 . . . . 5 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = +∞) → +∞ = (inf(𝐵, ℝ*, < ) +𝑒 𝑊))
3827, 37breqtrd 5173 . . . 4 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = +∞) → (𝑋 +𝑒 (𝑊 / 2)) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑊))
398, 17sseldd 3982 . . . . . . 7 (𝜑𝑋 ∈ ℝ*)
4010, 22xaddcld 13276 . . . . . . 7 (𝜑 → (inf(𝐵, ℝ*, < ) +𝑒 (𝑊 / 2)) ∈ ℝ*)
41 rphalfcl 12997 . . . . . . . . 9 (𝑊 ∈ ℝ+ → (𝑊 / 2) ∈ ℝ+)
4211, 41syl 17 . . . . . . . 8 (𝜑 → (𝑊 / 2) ∈ ℝ+)
4342rpxrd 13013 . . . . . . 7 (𝜑 → (𝑊 / 2) ∈ ℝ*)
44 infleinflem1.i . . . . . . 7 (𝜑𝑋 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑊 / 2)))
4539, 40, 43, 44xleadd1d 44025 . . . . . 6 (𝜑 → (𝑋 +𝑒 (𝑊 / 2)) ≤ ((inf(𝐵, ℝ*, < ) +𝑒 (𝑊 / 2)) +𝑒 (𝑊 / 2)))
4645adantr 481 . . . . 5 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → (𝑋 +𝑒 (𝑊 / 2)) ≤ ((inf(𝐵, ℝ*, < ) +𝑒 (𝑊 / 2)) +𝑒 (𝑊 / 2)))
4710adantr 481 . . . . . . 7 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → inf(𝐵, ℝ*, < ) ∈ ℝ*)
48 neqne 2948 . . . . . . . 8 (¬ inf(𝐵, ℝ*, < ) = +∞ → inf(𝐵, ℝ*, < ) ≠ +∞)
4948adantl 482 . . . . . . 7 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → inf(𝐵, ℝ*, < ) ≠ +∞)
5043adantr 481 . . . . . . 7 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → (𝑊 / 2) ∈ ℝ*)
5111adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → 𝑊 ∈ ℝ+)
52 rpre 12978 . . . . . . . . 9 ((𝑊 / 2) ∈ ℝ+ → (𝑊 / 2) ∈ ℝ)
53 renepnf 11258 . . . . . . . . 9 ((𝑊 / 2) ∈ ℝ → (𝑊 / 2) ≠ +∞)
5441, 52, 533syl 18 . . . . . . . 8 (𝑊 ∈ ℝ+ → (𝑊 / 2) ≠ +∞)
5551, 54syl 17 . . . . . . 7 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → (𝑊 / 2) ≠ +∞)
56 xaddass2 13225 . . . . . . 7 (((inf(𝐵, ℝ*, < ) ∈ ℝ* ∧ inf(𝐵, ℝ*, < ) ≠ +∞) ∧ ((𝑊 / 2) ∈ ℝ* ∧ (𝑊 / 2) ≠ +∞) ∧ ((𝑊 / 2) ∈ ℝ* ∧ (𝑊 / 2) ≠ +∞)) → ((inf(𝐵, ℝ*, < ) +𝑒 (𝑊 / 2)) +𝑒 (𝑊 / 2)) = (inf(𝐵, ℝ*, < ) +𝑒 ((𝑊 / 2) +𝑒 (𝑊 / 2))))
5747, 49, 50, 55, 50, 55, 56syl222anc 1386 . . . . . 6 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → ((inf(𝐵, ℝ*, < ) +𝑒 (𝑊 / 2)) +𝑒 (𝑊 / 2)) = (inf(𝐵, ℝ*, < ) +𝑒 ((𝑊 / 2) +𝑒 (𝑊 / 2))))
58 rehalfcl 12434 . . . . . . . . . 10 (𝑊 ∈ ℝ → (𝑊 / 2) ∈ ℝ)
5958, 58rexaddd 13209 . . . . . . . . 9 (𝑊 ∈ ℝ → ((𝑊 / 2) +𝑒 (𝑊 / 2)) = ((𝑊 / 2) + (𝑊 / 2)))
60 recn 11196 . . . . . . . . . 10 (𝑊 ∈ ℝ → 𝑊 ∈ ℂ)
61 2halves 12436 . . . . . . . . . 10 (𝑊 ∈ ℂ → ((𝑊 / 2) + (𝑊 / 2)) = 𝑊)
6260, 61syl 17 . . . . . . . . 9 (𝑊 ∈ ℝ → ((𝑊 / 2) + (𝑊 / 2)) = 𝑊)
6359, 62eqtrd 2772 . . . . . . . 8 (𝑊 ∈ ℝ → ((𝑊 / 2) +𝑒 (𝑊 / 2)) = 𝑊)
6463oveq2d 7421 . . . . . . 7 (𝑊 ∈ ℝ → (inf(𝐵, ℝ*, < ) +𝑒 ((𝑊 / 2) +𝑒 (𝑊 / 2))) = (inf(𝐵, ℝ*, < ) +𝑒 𝑊))
6551, 30, 643syl 18 . . . . . 6 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → (inf(𝐵, ℝ*, < ) +𝑒 ((𝑊 / 2) +𝑒 (𝑊 / 2))) = (inf(𝐵, ℝ*, < ) +𝑒 𝑊))
6657, 65eqtrd 2772 . . . . 5 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → ((inf(𝐵, ℝ*, < ) +𝑒 (𝑊 / 2)) +𝑒 (𝑊 / 2)) = (inf(𝐵, ℝ*, < ) +𝑒 𝑊))
6746, 66breqtrd 5173 . . . 4 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → (𝑋 +𝑒 (𝑊 / 2)) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑊))
6838, 67pm2.61dan 811 . . 3 (𝜑 → (𝑋 +𝑒 (𝑊 / 2)) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑊))
697, 23, 14, 24, 68xrletrd 13137 . 2 (𝜑𝑍 ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑊))
705, 7, 14, 16, 69xrletrd 13137 1 (𝜑 → inf(𝐴, ℝ*, < ) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2940  wss 3947   class class class wbr 5147  (class class class)co 7405  infcinf 9432  cc 11104  cr 11105   + caddc 11109  +∞cpnf 11241  -∞cmnf 11242  *cxr 11243   < clt 11244  cle 11245   / cdiv 11867  2c2 12263  +crp 12970   +𝑒 cxad 13086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-2 12271  df-rp 12971  df-xneg 13088  df-xadd 13089
This theorem is referenced by:  infleinf  44068
  Copyright terms: Public domain W3C validator