Proof of Theorem infleinflem1
Step | Hyp | Ref
| Expression |
1 | | infleinflem1.a |
. . . 4
⊢ (𝜑 → 𝐴 ⊆
ℝ*) |
2 | | infxrcl 13067 |
. . . 4
⊢ (𝐴 ⊆ ℝ*
→ inf(𝐴,
ℝ*, < ) ∈ ℝ*) |
3 | 1, 2 | syl 17 |
. . 3
⊢ (𝜑 → inf(𝐴, ℝ*, < ) ∈
ℝ*) |
4 | | id 22 |
. . 3
⊢
(inf(𝐴,
ℝ*, < ) ∈ ℝ* → inf(𝐴, ℝ*, < )
∈ ℝ*) |
5 | 3, 4 | syl 17 |
. 2
⊢ (𝜑 → inf(𝐴, ℝ*, < ) ∈
ℝ*) |
6 | | infleinflem1.z |
. . 3
⊢ (𝜑 → 𝑍 ∈ 𝐴) |
7 | 1, 6 | sseldd 3922 |
. 2
⊢ (𝜑 → 𝑍 ∈
ℝ*) |
8 | | infleinflem1.b |
. . . 4
⊢ (𝜑 → 𝐵 ⊆
ℝ*) |
9 | | infxrcl 13067 |
. . . 4
⊢ (𝐵 ⊆ ℝ*
→ inf(𝐵,
ℝ*, < ) ∈ ℝ*) |
10 | 8, 9 | syl 17 |
. . 3
⊢ (𝜑 → inf(𝐵, ℝ*, < ) ∈
ℝ*) |
11 | | infleinflem1.w |
. . . 4
⊢ (𝜑 → 𝑊 ∈
ℝ+) |
12 | | rpxr 12739 |
. . . 4
⊢ (𝑊 ∈ ℝ+
→ 𝑊 ∈
ℝ*) |
13 | 11, 12 | syl 17 |
. . 3
⊢ (𝜑 → 𝑊 ∈
ℝ*) |
14 | 10, 13 | xaddcld 13035 |
. 2
⊢ (𝜑 → (inf(𝐵, ℝ*, < )
+𝑒 𝑊)
∈ ℝ*) |
15 | | infxrlb 13068 |
. . 3
⊢ ((𝐴 ⊆ ℝ*
∧ 𝑍 ∈ 𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑍) |
16 | 1, 6, 15 | syl2anc 584 |
. 2
⊢ (𝜑 → inf(𝐴, ℝ*, < ) ≤ 𝑍) |
17 | | infleinflem1.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
18 | 8 | sselda 3921 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈
ℝ*) |
19 | 17, 18 | mpdan 684 |
. . . 4
⊢ (𝜑 → 𝑋 ∈
ℝ*) |
20 | 11 | rpred 12772 |
. . . . . 6
⊢ (𝜑 → 𝑊 ∈ ℝ) |
21 | 20 | rehalfcld 12220 |
. . . . 5
⊢ (𝜑 → (𝑊 / 2) ∈ ℝ) |
22 | 21 | rexrd 11025 |
. . . 4
⊢ (𝜑 → (𝑊 / 2) ∈
ℝ*) |
23 | 19, 22 | xaddcld 13035 |
. . 3
⊢ (𝜑 → (𝑋 +𝑒 (𝑊 / 2)) ∈
ℝ*) |
24 | | infleinflem1.l |
. . 3
⊢ (𝜑 → 𝑍 ≤ (𝑋 +𝑒 (𝑊 / 2))) |
25 | | pnfge 12866 |
. . . . . . 7
⊢ ((𝑋 +𝑒 (𝑊 / 2)) ∈
ℝ* → (𝑋 +𝑒 (𝑊 / 2)) ≤ +∞) |
26 | 23, 25 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑋 +𝑒 (𝑊 / 2)) ≤ +∞) |
27 | 26 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ inf(𝐵, ℝ*, < ) = +∞)
→ (𝑋
+𝑒 (𝑊 /
2)) ≤ +∞) |
28 | | oveq1 7282 |
. . . . . . 7
⊢
(inf(𝐵,
ℝ*, < ) = +∞ → (inf(𝐵, ℝ*, < )
+𝑒 𝑊) =
(+∞ +𝑒 𝑊)) |
29 | 28 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ inf(𝐵, ℝ*, < ) = +∞)
→ (inf(𝐵,
ℝ*, < ) +𝑒 𝑊) = (+∞ +𝑒 𝑊)) |
30 | | rpre 12738 |
. . . . . . . . . 10
⊢ (𝑊 ∈ ℝ+
→ 𝑊 ∈
ℝ) |
31 | | renemnf 11024 |
. . . . . . . . . 10
⊢ (𝑊 ∈ ℝ → 𝑊 ≠ -∞) |
32 | 30, 31 | syl 17 |
. . . . . . . . 9
⊢ (𝑊 ∈ ℝ+
→ 𝑊 ≠
-∞) |
33 | | xaddpnf2 12961 |
. . . . . . . . 9
⊢ ((𝑊 ∈ ℝ*
∧ 𝑊 ≠ -∞)
→ (+∞ +𝑒 𝑊) = +∞) |
34 | 12, 32, 33 | syl2anc 584 |
. . . . . . . 8
⊢ (𝑊 ∈ ℝ+
→ (+∞ +𝑒 𝑊) = +∞) |
35 | 11, 34 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (+∞
+𝑒 𝑊) =
+∞) |
36 | 35 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ inf(𝐵, ℝ*, < ) = +∞)
→ (+∞ +𝑒 𝑊) = +∞) |
37 | 29, 36 | eqtr2d 2779 |
. . . . 5
⊢ ((𝜑 ∧ inf(𝐵, ℝ*, < ) = +∞)
→ +∞ = (inf(𝐵,
ℝ*, < ) +𝑒 𝑊)) |
38 | 27, 37 | breqtrd 5100 |
. . . 4
⊢ ((𝜑 ∧ inf(𝐵, ℝ*, < ) = +∞)
→ (𝑋
+𝑒 (𝑊 /
2)) ≤ (inf(𝐵,
ℝ*, < ) +𝑒 𝑊)) |
39 | 8, 17 | sseldd 3922 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈
ℝ*) |
40 | 10, 22 | xaddcld 13035 |
. . . . . . 7
⊢ (𝜑 → (inf(𝐵, ℝ*, < )
+𝑒 (𝑊 /
2)) ∈ ℝ*) |
41 | | rphalfcl 12757 |
. . . . . . . . 9
⊢ (𝑊 ∈ ℝ+
→ (𝑊 / 2) ∈
ℝ+) |
42 | 11, 41 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑊 / 2) ∈
ℝ+) |
43 | 42 | rpxrd 12773 |
. . . . . . 7
⊢ (𝜑 → (𝑊 / 2) ∈
ℝ*) |
44 | | infleinflem1.i |
. . . . . . 7
⊢ (𝜑 → 𝑋 ≤ (inf(𝐵, ℝ*, < )
+𝑒 (𝑊 /
2))) |
45 | 39, 40, 43, 44 | xleadd1d 42868 |
. . . . . 6
⊢ (𝜑 → (𝑋 +𝑒 (𝑊 / 2)) ≤ ((inf(𝐵, ℝ*, < )
+𝑒 (𝑊 /
2)) +𝑒 (𝑊 / 2))) |
46 | 45 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞)
→ (𝑋
+𝑒 (𝑊 /
2)) ≤ ((inf(𝐵,
ℝ*, < ) +𝑒 (𝑊 / 2)) +𝑒 (𝑊 / 2))) |
47 | 10 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞)
→ inf(𝐵,
ℝ*, < ) ∈ ℝ*) |
48 | | neqne 2951 |
. . . . . . . 8
⊢ (¬
inf(𝐵, ℝ*,
< ) = +∞ → inf(𝐵, ℝ*, < ) ≠
+∞) |
49 | 48 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞)
→ inf(𝐵,
ℝ*, < ) ≠ +∞) |
50 | 43 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞)
→ (𝑊 / 2) ∈
ℝ*) |
51 | 11 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞)
→ 𝑊 ∈
ℝ+) |
52 | | rpre 12738 |
. . . . . . . . 9
⊢ ((𝑊 / 2) ∈ ℝ+
→ (𝑊 / 2) ∈
ℝ) |
53 | | renepnf 11023 |
. . . . . . . . 9
⊢ ((𝑊 / 2) ∈ ℝ →
(𝑊 / 2) ≠
+∞) |
54 | 41, 52, 53 | 3syl 18 |
. . . . . . . 8
⊢ (𝑊 ∈ ℝ+
→ (𝑊 / 2) ≠
+∞) |
55 | 51, 54 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞)
→ (𝑊 / 2) ≠
+∞) |
56 | | xaddass2 12984 |
. . . . . . 7
⊢
(((inf(𝐵,
ℝ*, < ) ∈ ℝ* ∧ inf(𝐵, ℝ*, < )
≠ +∞) ∧ ((𝑊 /
2) ∈ ℝ* ∧ (𝑊 / 2) ≠ +∞) ∧ ((𝑊 / 2) ∈ ℝ*
∧ (𝑊 / 2) ≠
+∞)) → ((inf(𝐵,
ℝ*, < ) +𝑒 (𝑊 / 2)) +𝑒 (𝑊 / 2)) = (inf(𝐵, ℝ*, < )
+𝑒 ((𝑊 /
2) +𝑒 (𝑊
/ 2)))) |
57 | 47, 49, 50, 55, 50, 55, 56 | syl222anc 1385 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞)
→ ((inf(𝐵,
ℝ*, < ) +𝑒 (𝑊 / 2)) +𝑒 (𝑊 / 2)) = (inf(𝐵, ℝ*, < )
+𝑒 ((𝑊 /
2) +𝑒 (𝑊
/ 2)))) |
58 | | rehalfcl 12199 |
. . . . . . . . . 10
⊢ (𝑊 ∈ ℝ → (𝑊 / 2) ∈
ℝ) |
59 | 58, 58 | rexaddd 12968 |
. . . . . . . . 9
⊢ (𝑊 ∈ ℝ → ((𝑊 / 2) +𝑒
(𝑊 / 2)) = ((𝑊 / 2) + (𝑊 / 2))) |
60 | | recn 10961 |
. . . . . . . . . 10
⊢ (𝑊 ∈ ℝ → 𝑊 ∈
ℂ) |
61 | | 2halves 12201 |
. . . . . . . . . 10
⊢ (𝑊 ∈ ℂ → ((𝑊 / 2) + (𝑊 / 2)) = 𝑊) |
62 | 60, 61 | syl 17 |
. . . . . . . . 9
⊢ (𝑊 ∈ ℝ → ((𝑊 / 2) + (𝑊 / 2)) = 𝑊) |
63 | 59, 62 | eqtrd 2778 |
. . . . . . . 8
⊢ (𝑊 ∈ ℝ → ((𝑊 / 2) +𝑒
(𝑊 / 2)) = 𝑊) |
64 | 63 | oveq2d 7291 |
. . . . . . 7
⊢ (𝑊 ∈ ℝ →
(inf(𝐵,
ℝ*, < ) +𝑒 ((𝑊 / 2) +𝑒 (𝑊 / 2))) = (inf(𝐵, ℝ*, < )
+𝑒 𝑊)) |
65 | 51, 30, 64 | 3syl 18 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞)
→ (inf(𝐵,
ℝ*, < ) +𝑒 ((𝑊 / 2) +𝑒 (𝑊 / 2))) = (inf(𝐵, ℝ*, < )
+𝑒 𝑊)) |
66 | 57, 65 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞)
→ ((inf(𝐵,
ℝ*, < ) +𝑒 (𝑊 / 2)) +𝑒 (𝑊 / 2)) = (inf(𝐵, ℝ*, < )
+𝑒 𝑊)) |
67 | 46, 66 | breqtrd 5100 |
. . . 4
⊢ ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞)
→ (𝑋
+𝑒 (𝑊 /
2)) ≤ (inf(𝐵,
ℝ*, < ) +𝑒 𝑊)) |
68 | 38, 67 | pm2.61dan 810 |
. . 3
⊢ (𝜑 → (𝑋 +𝑒 (𝑊 / 2)) ≤ (inf(𝐵, ℝ*, < )
+𝑒 𝑊)) |
69 | 7, 23, 14, 24, 68 | xrletrd 12896 |
. 2
⊢ (𝜑 → 𝑍 ≤ (inf(𝐵, ℝ*, < )
+𝑒 𝑊)) |
70 | 5, 7, 14, 16, 69 | xrletrd 12896 |
1
⊢ (𝜑 → inf(𝐴, ℝ*, < ) ≤
(inf(𝐵,
ℝ*, < ) +𝑒 𝑊)) |