Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infleinflem1 Structured version   Visualization version   GIF version

Theorem infleinflem1 42799
Description: Lemma for infleinf 42801, case 𝐵 ≠ ∅ ∧ -∞ < inf(𝐵, ℝ*, < ). (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
infleinflem1.a (𝜑𝐴 ⊆ ℝ*)
infleinflem1.b (𝜑𝐵 ⊆ ℝ*)
infleinflem1.w (𝜑𝑊 ∈ ℝ+)
infleinflem1.x (𝜑𝑋𝐵)
infleinflem1.i (𝜑𝑋 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑊 / 2)))
infleinflem1.z (𝜑𝑍𝐴)
infleinflem1.l (𝜑𝑍 ≤ (𝑋 +𝑒 (𝑊 / 2)))
Assertion
Ref Expression
infleinflem1 (𝜑 → inf(𝐴, ℝ*, < ) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑊))

Proof of Theorem infleinflem1
StepHypRef Expression
1 infleinflem1.a . . . 4 (𝜑𝐴 ⊆ ℝ*)
2 infxrcl 12996 . . . 4 (𝐴 ⊆ ℝ* → inf(𝐴, ℝ*, < ) ∈ ℝ*)
31, 2syl 17 . . 3 (𝜑 → inf(𝐴, ℝ*, < ) ∈ ℝ*)
4 id 22 . . 3 (inf(𝐴, ℝ*, < ) ∈ ℝ* → inf(𝐴, ℝ*, < ) ∈ ℝ*)
53, 4syl 17 . 2 (𝜑 → inf(𝐴, ℝ*, < ) ∈ ℝ*)
6 infleinflem1.z . . 3 (𝜑𝑍𝐴)
71, 6sseldd 3918 . 2 (𝜑𝑍 ∈ ℝ*)
8 infleinflem1.b . . . 4 (𝜑𝐵 ⊆ ℝ*)
9 infxrcl 12996 . . . 4 (𝐵 ⊆ ℝ* → inf(𝐵, ℝ*, < ) ∈ ℝ*)
108, 9syl 17 . . 3 (𝜑 → inf(𝐵, ℝ*, < ) ∈ ℝ*)
11 infleinflem1.w . . . 4 (𝜑𝑊 ∈ ℝ+)
12 rpxr 12668 . . . 4 (𝑊 ∈ ℝ+𝑊 ∈ ℝ*)
1311, 12syl 17 . . 3 (𝜑𝑊 ∈ ℝ*)
1410, 13xaddcld 12964 . 2 (𝜑 → (inf(𝐵, ℝ*, < ) +𝑒 𝑊) ∈ ℝ*)
15 infxrlb 12997 . . 3 ((𝐴 ⊆ ℝ*𝑍𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑍)
161, 6, 15syl2anc 583 . 2 (𝜑 → inf(𝐴, ℝ*, < ) ≤ 𝑍)
17 infleinflem1.x . . . . 5 (𝜑𝑋𝐵)
188sselda 3917 . . . . 5 ((𝜑𝑋𝐵) → 𝑋 ∈ ℝ*)
1917, 18mpdan 683 . . . 4 (𝜑𝑋 ∈ ℝ*)
2011rpred 12701 . . . . . 6 (𝜑𝑊 ∈ ℝ)
2120rehalfcld 12150 . . . . 5 (𝜑 → (𝑊 / 2) ∈ ℝ)
2221rexrd 10956 . . . 4 (𝜑 → (𝑊 / 2) ∈ ℝ*)
2319, 22xaddcld 12964 . . 3 (𝜑 → (𝑋 +𝑒 (𝑊 / 2)) ∈ ℝ*)
24 infleinflem1.l . . 3 (𝜑𝑍 ≤ (𝑋 +𝑒 (𝑊 / 2)))
25 pnfge 12795 . . . . . . 7 ((𝑋 +𝑒 (𝑊 / 2)) ∈ ℝ* → (𝑋 +𝑒 (𝑊 / 2)) ≤ +∞)
2623, 25syl 17 . . . . . 6 (𝜑 → (𝑋 +𝑒 (𝑊 / 2)) ≤ +∞)
2726adantr 480 . . . . 5 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = +∞) → (𝑋 +𝑒 (𝑊 / 2)) ≤ +∞)
28 oveq1 7262 . . . . . . 7 (inf(𝐵, ℝ*, < ) = +∞ → (inf(𝐵, ℝ*, < ) +𝑒 𝑊) = (+∞ +𝑒 𝑊))
2928adantl 481 . . . . . 6 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = +∞) → (inf(𝐵, ℝ*, < ) +𝑒 𝑊) = (+∞ +𝑒 𝑊))
30 rpre 12667 . . . . . . . . . 10 (𝑊 ∈ ℝ+𝑊 ∈ ℝ)
31 renemnf 10955 . . . . . . . . . 10 (𝑊 ∈ ℝ → 𝑊 ≠ -∞)
3230, 31syl 17 . . . . . . . . 9 (𝑊 ∈ ℝ+𝑊 ≠ -∞)
33 xaddpnf2 12890 . . . . . . . . 9 ((𝑊 ∈ ℝ*𝑊 ≠ -∞) → (+∞ +𝑒 𝑊) = +∞)
3412, 32, 33syl2anc 583 . . . . . . . 8 (𝑊 ∈ ℝ+ → (+∞ +𝑒 𝑊) = +∞)
3511, 34syl 17 . . . . . . 7 (𝜑 → (+∞ +𝑒 𝑊) = +∞)
3635adantr 480 . . . . . 6 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = +∞) → (+∞ +𝑒 𝑊) = +∞)
3729, 36eqtr2d 2779 . . . . 5 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = +∞) → +∞ = (inf(𝐵, ℝ*, < ) +𝑒 𝑊))
3827, 37breqtrd 5096 . . . 4 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = +∞) → (𝑋 +𝑒 (𝑊 / 2)) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑊))
398, 17sseldd 3918 . . . . . . 7 (𝜑𝑋 ∈ ℝ*)
4010, 22xaddcld 12964 . . . . . . 7 (𝜑 → (inf(𝐵, ℝ*, < ) +𝑒 (𝑊 / 2)) ∈ ℝ*)
41 rphalfcl 12686 . . . . . . . . 9 (𝑊 ∈ ℝ+ → (𝑊 / 2) ∈ ℝ+)
4211, 41syl 17 . . . . . . . 8 (𝜑 → (𝑊 / 2) ∈ ℝ+)
4342rpxrd 12702 . . . . . . 7 (𝜑 → (𝑊 / 2) ∈ ℝ*)
44 infleinflem1.i . . . . . . 7 (𝜑𝑋 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑊 / 2)))
4539, 40, 43, 44xleadd1d 42758 . . . . . 6 (𝜑 → (𝑋 +𝑒 (𝑊 / 2)) ≤ ((inf(𝐵, ℝ*, < ) +𝑒 (𝑊 / 2)) +𝑒 (𝑊 / 2)))
4645adantr 480 . . . . 5 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → (𝑋 +𝑒 (𝑊 / 2)) ≤ ((inf(𝐵, ℝ*, < ) +𝑒 (𝑊 / 2)) +𝑒 (𝑊 / 2)))
4710adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → inf(𝐵, ℝ*, < ) ∈ ℝ*)
48 neqne 2950 . . . . . . . 8 (¬ inf(𝐵, ℝ*, < ) = +∞ → inf(𝐵, ℝ*, < ) ≠ +∞)
4948adantl 481 . . . . . . 7 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → inf(𝐵, ℝ*, < ) ≠ +∞)
5043adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → (𝑊 / 2) ∈ ℝ*)
5111adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → 𝑊 ∈ ℝ+)
52 rpre 12667 . . . . . . . . 9 ((𝑊 / 2) ∈ ℝ+ → (𝑊 / 2) ∈ ℝ)
53 renepnf 10954 . . . . . . . . 9 ((𝑊 / 2) ∈ ℝ → (𝑊 / 2) ≠ +∞)
5441, 52, 533syl 18 . . . . . . . 8 (𝑊 ∈ ℝ+ → (𝑊 / 2) ≠ +∞)
5551, 54syl 17 . . . . . . 7 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → (𝑊 / 2) ≠ +∞)
56 xaddass2 12913 . . . . . . 7 (((inf(𝐵, ℝ*, < ) ∈ ℝ* ∧ inf(𝐵, ℝ*, < ) ≠ +∞) ∧ ((𝑊 / 2) ∈ ℝ* ∧ (𝑊 / 2) ≠ +∞) ∧ ((𝑊 / 2) ∈ ℝ* ∧ (𝑊 / 2) ≠ +∞)) → ((inf(𝐵, ℝ*, < ) +𝑒 (𝑊 / 2)) +𝑒 (𝑊 / 2)) = (inf(𝐵, ℝ*, < ) +𝑒 ((𝑊 / 2) +𝑒 (𝑊 / 2))))
5747, 49, 50, 55, 50, 55, 56syl222anc 1384 . . . . . 6 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → ((inf(𝐵, ℝ*, < ) +𝑒 (𝑊 / 2)) +𝑒 (𝑊 / 2)) = (inf(𝐵, ℝ*, < ) +𝑒 ((𝑊 / 2) +𝑒 (𝑊 / 2))))
58 rehalfcl 12129 . . . . . . . . . 10 (𝑊 ∈ ℝ → (𝑊 / 2) ∈ ℝ)
5958, 58rexaddd 12897 . . . . . . . . 9 (𝑊 ∈ ℝ → ((𝑊 / 2) +𝑒 (𝑊 / 2)) = ((𝑊 / 2) + (𝑊 / 2)))
60 recn 10892 . . . . . . . . . 10 (𝑊 ∈ ℝ → 𝑊 ∈ ℂ)
61 2halves 12131 . . . . . . . . . 10 (𝑊 ∈ ℂ → ((𝑊 / 2) + (𝑊 / 2)) = 𝑊)
6260, 61syl 17 . . . . . . . . 9 (𝑊 ∈ ℝ → ((𝑊 / 2) + (𝑊 / 2)) = 𝑊)
6359, 62eqtrd 2778 . . . . . . . 8 (𝑊 ∈ ℝ → ((𝑊 / 2) +𝑒 (𝑊 / 2)) = 𝑊)
6463oveq2d 7271 . . . . . . 7 (𝑊 ∈ ℝ → (inf(𝐵, ℝ*, < ) +𝑒 ((𝑊 / 2) +𝑒 (𝑊 / 2))) = (inf(𝐵, ℝ*, < ) +𝑒 𝑊))
6551, 30, 643syl 18 . . . . . 6 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → (inf(𝐵, ℝ*, < ) +𝑒 ((𝑊 / 2) +𝑒 (𝑊 / 2))) = (inf(𝐵, ℝ*, < ) +𝑒 𝑊))
6657, 65eqtrd 2778 . . . . 5 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → ((inf(𝐵, ℝ*, < ) +𝑒 (𝑊 / 2)) +𝑒 (𝑊 / 2)) = (inf(𝐵, ℝ*, < ) +𝑒 𝑊))
6746, 66breqtrd 5096 . . . 4 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → (𝑋 +𝑒 (𝑊 / 2)) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑊))
6838, 67pm2.61dan 809 . . 3 (𝜑 → (𝑋 +𝑒 (𝑊 / 2)) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑊))
697, 23, 14, 24, 68xrletrd 12825 . 2 (𝜑𝑍 ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑊))
705, 7, 14, 16, 69xrletrd 12825 1 (𝜑 → inf(𝐴, ℝ*, < ) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  wss 3883   class class class wbr 5070  (class class class)co 7255  infcinf 9130  cc 10800  cr 10801   + caddc 10805  +∞cpnf 10937  -∞cmnf 10938  *cxr 10939   < clt 10940  cle 10941   / cdiv 11562  2c2 11958  +crp 12659   +𝑒 cxad 12775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-2 11966  df-rp 12660  df-xneg 12777  df-xadd 12778
This theorem is referenced by:  infleinf  42801
  Copyright terms: Public domain W3C validator