MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexadd Structured version   Visualization version   GIF version

Theorem rexadd 13275
Description: The extended real addition operation when both arguments are real. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
rexadd ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵))

Proof of Theorem rexadd
StepHypRef Expression
1 rexr 11308 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
2 rexr 11308 . . 3 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
3 xaddval 13266 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))))
41, 2, 3syl2an 596 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))))
5 renepnf 11310 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
6 ifnefalse 4536 . . . . 5 (𝐴 ≠ +∞ → if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))) = if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵)))))
75, 6syl 17 . . . 4 (𝐴 ∈ ℝ → if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))) = if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵)))))
8 renemnf 11311 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
9 ifnefalse 4536 . . . . 5 (𝐴 ≠ -∞ → if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵)))) = if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))
108, 9syl 17 . . . 4 (𝐴 ∈ ℝ → if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵)))) = if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))
117, 10eqtrd 2776 . . 3 (𝐴 ∈ ℝ → if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))) = if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))
12 renepnf 11310 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ≠ +∞)
13 ifnefalse 4536 . . . . 5 (𝐵 ≠ +∞ → if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))) = if(𝐵 = -∞, -∞, (𝐴 + 𝐵)))
1412, 13syl 17 . . . 4 (𝐵 ∈ ℝ → if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))) = if(𝐵 = -∞, -∞, (𝐴 + 𝐵)))
15 renemnf 11311 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ≠ -∞)
16 ifnefalse 4536 . . . . 5 (𝐵 ≠ -∞ → if(𝐵 = -∞, -∞, (𝐴 + 𝐵)) = (𝐴 + 𝐵))
1715, 16syl 17 . . . 4 (𝐵 ∈ ℝ → if(𝐵 = -∞, -∞, (𝐴 + 𝐵)) = (𝐴 + 𝐵))
1814, 17eqtrd 2776 . . 3 (𝐵 ∈ ℝ → if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))) = (𝐴 + 𝐵))
1911, 18sylan9eq 2796 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))) = (𝐴 + 𝐵))
204, 19eqtrd 2776 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2939  ifcif 4524  (class class class)co 7432  cr 11155  0cc0 11156   + caddc 11159  +∞cpnf 11293  -∞cmnf 11294  *cxr 11295   +𝑒 cxad 13153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-mulcl 11218  ax-i2m1 11224
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-xadd 13156
This theorem is referenced by:  rexsub  13276  rexaddd  13277  xnn0xaddcl  13278  xaddnemnf  13279  xaddnepnf  13280  xnegid  13281  xaddcom  13283  xaddrid  13284  xnn0xadd0  13290  xnegdi  13291  xaddass  13292  xadddilem  13337  x2times  13342  hashunx  14426  hashunsnggt  14434  isxmet2d  24338  xmeter  24444  vtxdgfival  29488  1loopgrvd2  29522  vdegp1bi  29556  xlt2addrd  32763  xrsmulgzz  33012  xrge0slmod  33377  xrge0iifhom  33937  esumfsupre  34073  esumpfinvallem  34076  omssubadd  34303  probun  34422  heicant  37663  cntotbnd  37804  heiborlem6  37824  supxrgelem  45353  supxrge  45354  infrpge  45367  xrlexaddrp  45368  ovolsplit  46008  sge0tsms  46400  sge0pr  46414  sge0resplit  46426  sge0split  46429  sge0iunmptlemfi  46433  sge0iunmptlemre  46435  sge0xaddlem1  46453  sge0xaddlem2  46454  carageniuncllem1  46541  carageniuncllem2  46542  hoidmv1lelem2  46612  hoidmvlelem2  46616  hspmbllem3  46648
  Copyright terms: Public domain W3C validator