MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexadd Structured version   Visualization version   GIF version

Theorem rexadd 12626
Description: The extended real addition operation when both arguments are real. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
rexadd ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵))

Proof of Theorem rexadd
StepHypRef Expression
1 rexr 10687 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
2 rexr 10687 . . 3 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
3 xaddval 12617 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))))
41, 2, 3syl2an 597 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))))
5 renepnf 10689 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
6 ifnefalse 4479 . . . . 5 (𝐴 ≠ +∞ → if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))) = if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵)))))
75, 6syl 17 . . . 4 (𝐴 ∈ ℝ → if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))) = if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵)))))
8 renemnf 10690 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
9 ifnefalse 4479 . . . . 5 (𝐴 ≠ -∞ → if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵)))) = if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))
108, 9syl 17 . . . 4 (𝐴 ∈ ℝ → if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵)))) = if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))
117, 10eqtrd 2856 . . 3 (𝐴 ∈ ℝ → if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))) = if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))
12 renepnf 10689 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ≠ +∞)
13 ifnefalse 4479 . . . . 5 (𝐵 ≠ +∞ → if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))) = if(𝐵 = -∞, -∞, (𝐴 + 𝐵)))
1412, 13syl 17 . . . 4 (𝐵 ∈ ℝ → if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))) = if(𝐵 = -∞, -∞, (𝐴 + 𝐵)))
15 renemnf 10690 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ≠ -∞)
16 ifnefalse 4479 . . . . 5 (𝐵 ≠ -∞ → if(𝐵 = -∞, -∞, (𝐴 + 𝐵)) = (𝐴 + 𝐵))
1715, 16syl 17 . . . 4 (𝐵 ∈ ℝ → if(𝐵 = -∞, -∞, (𝐴 + 𝐵)) = (𝐴 + 𝐵))
1814, 17eqtrd 2856 . . 3 (𝐵 ∈ ℝ → if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))) = (𝐴 + 𝐵))
1911, 18sylan9eq 2876 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))) = (𝐴 + 𝐵))
204, 19eqtrd 2856 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3016  ifcif 4467  (class class class)co 7156  cr 10536  0cc0 10537   + caddc 10540  +∞cpnf 10672  -∞cmnf 10673  *cxr 10674   +𝑒 cxad 12506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-mulcl 10599  ax-i2m1 10605
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-xadd 12509
This theorem is referenced by:  rexsub  12627  rexaddd  12628  xnn0xaddcl  12629  xaddnemnf  12630  xaddnepnf  12631  xnegid  12632  xaddcom  12634  xaddid1  12635  xnn0xadd0  12641  xnegdi  12642  xaddass  12643  xadddilem  12688  x2times  12693  hashunx  13748  hashunsnggt  13756  isxmet2d  22937  xmeter  23043  vtxdgfival  27251  1loopgrvd2  27285  vdegp1bi  27319  xlt2addrd  30482  xrsmulgzz  30665  xrge0slmod  30917  xrge0iifhom  31180  esumfsupre  31330  esumpfinvallem  31333  omssubadd  31558  probun  31677  heicant  34942  cntotbnd  35089  heiborlem6  35109  supxrgelem  41654  supxrge  41655  infrpge  41668  xrlexaddrp  41669  ovolsplit  42322  sge0tsms  42711  sge0pr  42725  sge0resplit  42737  sge0split  42740  sge0iunmptlemfi  42744  sge0iunmptlemre  42746  sge0xaddlem1  42764  sge0xaddlem2  42765  carageniuncllem1  42852  carageniuncllem2  42853  hoidmv1lelem2  42923  hoidmvlelem2  42927  hspmbllem3  42959
  Copyright terms: Public domain W3C validator