![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexadd | Structured version Visualization version GIF version |
Description: The extended real addition operation when both arguments are real. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
rexadd | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr 11305 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
2 | rexr 11305 | . . 3 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
3 | xaddval 13262 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) = if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵)))))) | |
4 | 1, 2, 3 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵)))))) |
5 | renepnf 11307 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) | |
6 | ifnefalse 4543 | . . . . 5 ⊢ (𝐴 ≠ +∞ → if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))) = if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℝ → if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))) = if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))) |
8 | renemnf 11308 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) | |
9 | ifnefalse 4543 | . . . . 5 ⊢ (𝐴 ≠ -∞ → if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵)))) = if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵)))) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℝ → if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵)))) = if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵)))) |
11 | 7, 10 | eqtrd 2775 | . . 3 ⊢ (𝐴 ∈ ℝ → if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))) = if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵)))) |
12 | renepnf 11307 | . . . . 5 ⊢ (𝐵 ∈ ℝ → 𝐵 ≠ +∞) | |
13 | ifnefalse 4543 | . . . . 5 ⊢ (𝐵 ≠ +∞ → if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))) = if(𝐵 = -∞, -∞, (𝐴 + 𝐵))) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝐵 ∈ ℝ → if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))) = if(𝐵 = -∞, -∞, (𝐴 + 𝐵))) |
15 | renemnf 11308 | . . . . 5 ⊢ (𝐵 ∈ ℝ → 𝐵 ≠ -∞) | |
16 | ifnefalse 4543 | . . . . 5 ⊢ (𝐵 ≠ -∞ → if(𝐵 = -∞, -∞, (𝐴 + 𝐵)) = (𝐴 + 𝐵)) | |
17 | 15, 16 | syl 17 | . . . 4 ⊢ (𝐵 ∈ ℝ → if(𝐵 = -∞, -∞, (𝐴 + 𝐵)) = (𝐴 + 𝐵)) |
18 | 14, 17 | eqtrd 2775 | . . 3 ⊢ (𝐵 ∈ ℝ → if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))) = (𝐴 + 𝐵)) |
19 | 11, 18 | sylan9eq 2795 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴 = +∞, if(𝐵 = -∞, 0, +∞), if(𝐴 = -∞, if(𝐵 = +∞, 0, -∞), if(𝐵 = +∞, +∞, if(𝐵 = -∞, -∞, (𝐴 + 𝐵))))) = (𝐴 + 𝐵)) |
20 | 4, 19 | eqtrd 2775 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ifcif 4531 (class class class)co 7431 ℝcr 11152 0cc0 11153 + caddc 11156 +∞cpnf 11290 -∞cmnf 11291 ℝ*cxr 11292 +𝑒 cxad 13150 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-mulcl 11215 ax-i2m1 11221 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-xadd 13153 |
This theorem is referenced by: rexsub 13272 rexaddd 13273 xnn0xaddcl 13274 xaddnemnf 13275 xaddnepnf 13276 xnegid 13277 xaddcom 13279 xaddrid 13280 xnn0xadd0 13286 xnegdi 13287 xaddass 13288 xadddilem 13333 x2times 13338 hashunx 14422 hashunsnggt 14430 isxmet2d 24353 xmeter 24459 vtxdgfival 29502 1loopgrvd2 29536 vdegp1bi 29570 xlt2addrd 32769 xrsmulgzz 32994 xrge0slmod 33356 xrge0iifhom 33898 esumfsupre 34052 esumpfinvallem 34055 omssubadd 34282 probun 34401 heicant 37642 cntotbnd 37783 heiborlem6 37803 supxrgelem 45287 supxrge 45288 infrpge 45301 xrlexaddrp 45302 ovolsplit 45944 sge0tsms 46336 sge0pr 46350 sge0resplit 46362 sge0split 46365 sge0iunmptlemfi 46369 sge0iunmptlemre 46371 sge0xaddlem1 46389 sge0xaddlem2 46390 carageniuncllem1 46477 carageniuncllem2 46478 hoidmv1lelem2 46548 hoidmvlelem2 46552 hspmbllem3 46584 |
Copyright terms: Public domain | W3C validator |