![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xaddrid | Structured version Visualization version GIF version |
Description: Extended real version of addrid 11470. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xaddrid | ⊢ (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxr 13179 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
2 | 0re 11292 | . . . . 5 ⊢ 0 ∈ ℝ | |
3 | rexadd 13294 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 +𝑒 0) = (𝐴 + 0)) | |
4 | 2, 3 | mpan2 690 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 +𝑒 0) = (𝐴 + 0)) |
5 | recn 11274 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
6 | 5 | addridd 11490 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 + 0) = 𝐴) |
7 | 4, 6 | eqtrd 2780 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 +𝑒 0) = 𝐴) |
8 | 0xr 11337 | . . . . 5 ⊢ 0 ∈ ℝ* | |
9 | renemnf 11339 | . . . . . 6 ⊢ (0 ∈ ℝ → 0 ≠ -∞) | |
10 | 2, 9 | ax-mp 5 | . . . . 5 ⊢ 0 ≠ -∞ |
11 | xaddpnf2 13289 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ 0 ≠ -∞) → (+∞ +𝑒 0) = +∞) | |
12 | 8, 10, 11 | mp2an 691 | . . . 4 ⊢ (+∞ +𝑒 0) = +∞ |
13 | oveq1 7455 | . . . 4 ⊢ (𝐴 = +∞ → (𝐴 +𝑒 0) = (+∞ +𝑒 0)) | |
14 | id 22 | . . . 4 ⊢ (𝐴 = +∞ → 𝐴 = +∞) | |
15 | 12, 13, 14 | 3eqtr4a 2806 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 +𝑒 0) = 𝐴) |
16 | renepnf 11338 | . . . . . 6 ⊢ (0 ∈ ℝ → 0 ≠ +∞) | |
17 | 2, 16 | ax-mp 5 | . . . . 5 ⊢ 0 ≠ +∞ |
18 | xaddmnf2 13291 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ 0 ≠ +∞) → (-∞ +𝑒 0) = -∞) | |
19 | 8, 17, 18 | mp2an 691 | . . . 4 ⊢ (-∞ +𝑒 0) = -∞ |
20 | oveq1 7455 | . . . 4 ⊢ (𝐴 = -∞ → (𝐴 +𝑒 0) = (-∞ +𝑒 0)) | |
21 | id 22 | . . . 4 ⊢ (𝐴 = -∞ → 𝐴 = -∞) | |
22 | 19, 20, 21 | 3eqtr4a 2806 | . . 3 ⊢ (𝐴 = -∞ → (𝐴 +𝑒 0) = 𝐴) |
23 | 7, 15, 22 | 3jaoi 1428 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 +𝑒 0) = 𝐴) |
24 | 1, 23 | sylbi 217 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1086 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 (class class class)co 7448 ℝcr 11183 0cc0 11184 + caddc 11187 +∞cpnf 11321 -∞cmnf 11322 ℝ*cxr 11323 +𝑒 cxad 13173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-xadd 13176 |
This theorem is referenced by: xaddlid 13304 xaddridd 13305 xnn0xadd0 13309 xpncan 13313 xadddi 13357 xrsnsgrp 21443 imasdsf1olem 24404 vtxdlfgrval 29521 vtxdginducedm1 29579 xraddge02 32763 xlt2addrd 32765 xrs0 32989 xrge0addgt0 33003 xrge0npcan 33006 metideq 33839 metider 33840 esumpad 34019 esumpr2 34031 esumpfinvallem 34038 esumpmono 34043 ddemeas 34200 aean 34208 baselcarsg 34271 carsgclctunlem2 34284 xadd0ge 45235 sge0tsms 46301 sge0ss 46333 |
Copyright terms: Public domain | W3C validator |