MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xaddrid Structured version   Visualization version   GIF version

Theorem xaddrid 13201
Description: Extended real version of addrid 11354. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddrid (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴)

Proof of Theorem xaddrid
StepHypRef Expression
1 elxr 13076 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 0re 11176 . . . . 5 0 ∈ ℝ
3 rexadd 13192 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 +𝑒 0) = (𝐴 + 0))
42, 3mpan2 691 . . . 4 (𝐴 ∈ ℝ → (𝐴 +𝑒 0) = (𝐴 + 0))
5 recn 11158 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
65addridd 11374 . . . 4 (𝐴 ∈ ℝ → (𝐴 + 0) = 𝐴)
74, 6eqtrd 2764 . . 3 (𝐴 ∈ ℝ → (𝐴 +𝑒 0) = 𝐴)
8 0xr 11221 . . . . 5 0 ∈ ℝ*
9 renemnf 11223 . . . . . 6 (0 ∈ ℝ → 0 ≠ -∞)
102, 9ax-mp 5 . . . . 5 0 ≠ -∞
11 xaddpnf2 13187 . . . . 5 ((0 ∈ ℝ* ∧ 0 ≠ -∞) → (+∞ +𝑒 0) = +∞)
128, 10, 11mp2an 692 . . . 4 (+∞ +𝑒 0) = +∞
13 oveq1 7394 . . . 4 (𝐴 = +∞ → (𝐴 +𝑒 0) = (+∞ +𝑒 0))
14 id 22 . . . 4 (𝐴 = +∞ → 𝐴 = +∞)
1512, 13, 143eqtr4a 2790 . . 3 (𝐴 = +∞ → (𝐴 +𝑒 0) = 𝐴)
16 renepnf 11222 . . . . . 6 (0 ∈ ℝ → 0 ≠ +∞)
172, 16ax-mp 5 . . . . 5 0 ≠ +∞
18 xaddmnf2 13189 . . . . 5 ((0 ∈ ℝ* ∧ 0 ≠ +∞) → (-∞ +𝑒 0) = -∞)
198, 17, 18mp2an 692 . . . 4 (-∞ +𝑒 0) = -∞
20 oveq1 7394 . . . 4 (𝐴 = -∞ → (𝐴 +𝑒 0) = (-∞ +𝑒 0))
21 id 22 . . . 4 (𝐴 = -∞ → 𝐴 = -∞)
2219, 20, 213eqtr4a 2790 . . 3 (𝐴 = -∞ → (𝐴 +𝑒 0) = 𝐴)
237, 15, 223jaoi 1430 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 +𝑒 0) = 𝐴)
241, 23sylbi 217 1 (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1085   = wceq 1540  wcel 2109  wne 2925  (class class class)co 7387  cr 11067  0cc0 11068   + caddc 11071  +∞cpnf 11205  -∞cmnf 11206  *cxr 11207   +𝑒 cxad 13070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-xadd 13073
This theorem is referenced by:  xaddlid  13202  xaddridd  13203  xnn0xadd0  13207  xpncan  13211  xadddi  13255  xrsnsgrp  21319  imasdsf1olem  24261  vtxdlfgrval  29413  vtxdginducedm1  29471  xraddge02  32680  xlt2addrd  32682  xrs0  32944  xrge0addgt0  32958  xrge0npcan  32961  metideq  33883  metider  33884  esumpad  34045  esumpr2  34057  esumpfinvallem  34064  esumpmono  34069  ddemeas  34226  aean  34234  baselcarsg  34297  carsgclctunlem2  34310  xadd0ge  45317  sge0tsms  46378  sge0ss  46410
  Copyright terms: Public domain W3C validator