MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xaddrid Structured version   Visualization version   GIF version

Theorem xaddrid 13140
Description: Extended real version of addrid 11293. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddrid (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴)

Proof of Theorem xaddrid
StepHypRef Expression
1 elxr 13015 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 0re 11114 . . . . 5 0 ∈ ℝ
3 rexadd 13131 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 +𝑒 0) = (𝐴 + 0))
42, 3mpan2 691 . . . 4 (𝐴 ∈ ℝ → (𝐴 +𝑒 0) = (𝐴 + 0))
5 recn 11096 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
65addridd 11313 . . . 4 (𝐴 ∈ ℝ → (𝐴 + 0) = 𝐴)
74, 6eqtrd 2766 . . 3 (𝐴 ∈ ℝ → (𝐴 +𝑒 0) = 𝐴)
8 0xr 11159 . . . . 5 0 ∈ ℝ*
9 renemnf 11161 . . . . . 6 (0 ∈ ℝ → 0 ≠ -∞)
102, 9ax-mp 5 . . . . 5 0 ≠ -∞
11 xaddpnf2 13126 . . . . 5 ((0 ∈ ℝ* ∧ 0 ≠ -∞) → (+∞ +𝑒 0) = +∞)
128, 10, 11mp2an 692 . . . 4 (+∞ +𝑒 0) = +∞
13 oveq1 7353 . . . 4 (𝐴 = +∞ → (𝐴 +𝑒 0) = (+∞ +𝑒 0))
14 id 22 . . . 4 (𝐴 = +∞ → 𝐴 = +∞)
1512, 13, 143eqtr4a 2792 . . 3 (𝐴 = +∞ → (𝐴 +𝑒 0) = 𝐴)
16 renepnf 11160 . . . . . 6 (0 ∈ ℝ → 0 ≠ +∞)
172, 16ax-mp 5 . . . . 5 0 ≠ +∞
18 xaddmnf2 13128 . . . . 5 ((0 ∈ ℝ* ∧ 0 ≠ +∞) → (-∞ +𝑒 0) = -∞)
198, 17, 18mp2an 692 . . . 4 (-∞ +𝑒 0) = -∞
20 oveq1 7353 . . . 4 (𝐴 = -∞ → (𝐴 +𝑒 0) = (-∞ +𝑒 0))
21 id 22 . . . 4 (𝐴 = -∞ → 𝐴 = -∞)
2219, 20, 213eqtr4a 2792 . . 3 (𝐴 = -∞ → (𝐴 +𝑒 0) = 𝐴)
237, 15, 223jaoi 1430 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 +𝑒 0) = 𝐴)
241, 23sylbi 217 1 (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1085   = wceq 1541  wcel 2111  wne 2928  (class class class)co 7346  cr 11005  0cc0 11006   + caddc 11009  +∞cpnf 11143  -∞cmnf 11144  *cxr 11145   +𝑒 cxad 13009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-xadd 13012
This theorem is referenced by:  xaddlid  13141  xaddridd  13142  xnn0xadd0  13146  xpncan  13150  xadddi  13194  xrsnsgrp  21345  imasdsf1olem  24289  vtxdlfgrval  29465  vtxdginducedm1  29523  xraddge02  32738  xlt2addrd  32740  xrs0  32985  xrge0addgt0  32996  xrge0npcan  32999  metideq  33904  metider  33905  esumpad  34066  esumpr2  34078  esumpfinvallem  34085  esumpmono  34090  ddemeas  34247  aean  34255  baselcarsg  34317  carsgclctunlem2  34330  xadd0ge  45366  sge0tsms  46424  sge0ss  46456
  Copyright terms: Public domain W3C validator