MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xaddrid Structured version   Visualization version   GIF version

Theorem xaddrid 13219
Description: Extended real version of addrid 11393. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddrid (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴)

Proof of Theorem xaddrid
StepHypRef Expression
1 elxr 13095 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 0re 11215 . . . . 5 0 ∈ ℝ
3 rexadd 13210 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 +𝑒 0) = (𝐴 + 0))
42, 3mpan2 689 . . . 4 (𝐴 ∈ ℝ → (𝐴 +𝑒 0) = (𝐴 + 0))
5 recn 11199 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
65addridd 11413 . . . 4 (𝐴 ∈ ℝ → (𝐴 + 0) = 𝐴)
74, 6eqtrd 2772 . . 3 (𝐴 ∈ ℝ → (𝐴 +𝑒 0) = 𝐴)
8 0xr 11260 . . . . 5 0 ∈ ℝ*
9 renemnf 11262 . . . . . 6 (0 ∈ ℝ → 0 ≠ -∞)
102, 9ax-mp 5 . . . . 5 0 ≠ -∞
11 xaddpnf2 13205 . . . . 5 ((0 ∈ ℝ* ∧ 0 ≠ -∞) → (+∞ +𝑒 0) = +∞)
128, 10, 11mp2an 690 . . . 4 (+∞ +𝑒 0) = +∞
13 oveq1 7415 . . . 4 (𝐴 = +∞ → (𝐴 +𝑒 0) = (+∞ +𝑒 0))
14 id 22 . . . 4 (𝐴 = +∞ → 𝐴 = +∞)
1512, 13, 143eqtr4a 2798 . . 3 (𝐴 = +∞ → (𝐴 +𝑒 0) = 𝐴)
16 renepnf 11261 . . . . . 6 (0 ∈ ℝ → 0 ≠ +∞)
172, 16ax-mp 5 . . . . 5 0 ≠ +∞
18 xaddmnf2 13207 . . . . 5 ((0 ∈ ℝ* ∧ 0 ≠ +∞) → (-∞ +𝑒 0) = -∞)
198, 17, 18mp2an 690 . . . 4 (-∞ +𝑒 0) = -∞
20 oveq1 7415 . . . 4 (𝐴 = -∞ → (𝐴 +𝑒 0) = (-∞ +𝑒 0))
21 id 22 . . . 4 (𝐴 = -∞ → 𝐴 = -∞)
2219, 20, 213eqtr4a 2798 . . 3 (𝐴 = -∞ → (𝐴 +𝑒 0) = 𝐴)
237, 15, 223jaoi 1427 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 +𝑒 0) = 𝐴)
241, 23sylbi 216 1 (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1086   = wceq 1541  wcel 2106  wne 2940  (class class class)co 7408  cr 11108  0cc0 11109   + caddc 11112  +∞cpnf 11244  -∞cmnf 11245  *cxr 11246   +𝑒 cxad 13089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-xadd 13092
This theorem is referenced by:  xaddlid  13220  xaddridd  13221  xnn0xadd0  13225  xpncan  13229  xadddi  13273  xrsnsgrp  20980  imasdsf1olem  23878  vtxdlfgrval  28739  vtxdginducedm1  28797  xraddge02  31964  xlt2addrd  31966  xrs0  32171  xrge0addgt0  32187  xrge0npcan  32190  metideq  32868  metider  32869  esumpad  33048  esumpr2  33060  esumpfinvallem  33067  esumpmono  33072  ddemeas  33229  aean  33237  baselcarsg  33300  carsgclctunlem2  33313  xadd0ge  44020  sge0tsms  45086  sge0ss  45118
  Copyright terms: Public domain W3C validator