| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xaddrid | Structured version Visualization version GIF version | ||
| Description: Extended real version of addrid 11423. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xaddrid | ⊢ (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 13140 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
| 2 | 0re 11245 | . . . . 5 ⊢ 0 ∈ ℝ | |
| 3 | rexadd 13256 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 +𝑒 0) = (𝐴 + 0)) | |
| 4 | 2, 3 | mpan2 691 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 +𝑒 0) = (𝐴 + 0)) |
| 5 | recn 11227 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 6 | 5 | addridd 11443 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 + 0) = 𝐴) |
| 7 | 4, 6 | eqtrd 2769 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 +𝑒 0) = 𝐴) |
| 8 | 0xr 11290 | . . . . 5 ⊢ 0 ∈ ℝ* | |
| 9 | renemnf 11292 | . . . . . 6 ⊢ (0 ∈ ℝ → 0 ≠ -∞) | |
| 10 | 2, 9 | ax-mp 5 | . . . . 5 ⊢ 0 ≠ -∞ |
| 11 | xaddpnf2 13251 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ 0 ≠ -∞) → (+∞ +𝑒 0) = +∞) | |
| 12 | 8, 10, 11 | mp2an 692 | . . . 4 ⊢ (+∞ +𝑒 0) = +∞ |
| 13 | oveq1 7420 | . . . 4 ⊢ (𝐴 = +∞ → (𝐴 +𝑒 0) = (+∞ +𝑒 0)) | |
| 14 | id 22 | . . . 4 ⊢ (𝐴 = +∞ → 𝐴 = +∞) | |
| 15 | 12, 13, 14 | 3eqtr4a 2795 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 +𝑒 0) = 𝐴) |
| 16 | renepnf 11291 | . . . . . 6 ⊢ (0 ∈ ℝ → 0 ≠ +∞) | |
| 17 | 2, 16 | ax-mp 5 | . . . . 5 ⊢ 0 ≠ +∞ |
| 18 | xaddmnf2 13253 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ 0 ≠ +∞) → (-∞ +𝑒 0) = -∞) | |
| 19 | 8, 17, 18 | mp2an 692 | . . . 4 ⊢ (-∞ +𝑒 0) = -∞ |
| 20 | oveq1 7420 | . . . 4 ⊢ (𝐴 = -∞ → (𝐴 +𝑒 0) = (-∞ +𝑒 0)) | |
| 21 | id 22 | . . . 4 ⊢ (𝐴 = -∞ → 𝐴 = -∞) | |
| 22 | 19, 20, 21 | 3eqtr4a 2795 | . . 3 ⊢ (𝐴 = -∞ → (𝐴 +𝑒 0) = 𝐴) |
| 23 | 7, 15, 22 | 3jaoi 1429 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 +𝑒 0) = 𝐴) |
| 24 | 1, 23 | sylbi 217 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 (class class class)co 7413 ℝcr 11136 0cc0 11137 + caddc 11140 +∞cpnf 11274 -∞cmnf 11275 ℝ*cxr 11276 +𝑒 cxad 13134 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-po 5572 df-so 5573 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-xadd 13137 |
| This theorem is referenced by: xaddlid 13266 xaddridd 13267 xnn0xadd0 13271 xpncan 13275 xadddi 13319 xrsnsgrp 21382 imasdsf1olem 24328 vtxdlfgrval 29431 vtxdginducedm1 29489 xraddge02 32697 xlt2addrd 32699 xrs0 32947 xrge0addgt0 32961 xrge0npcan 32964 metideq 33851 metider 33852 esumpad 34015 esumpr2 34027 esumpfinvallem 34034 esumpmono 34039 ddemeas 34196 aean 34204 baselcarsg 34267 carsgclctunlem2 34280 xadd0ge 45289 sge0tsms 46352 sge0ss 46384 |
| Copyright terms: Public domain | W3C validator |