Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  acunirnmpt2 Structured version   Visualization version   GIF version

Theorem acunirnmpt2 32678
Description: Axiom of choice for the union of the range of a mapping to function. (Contributed by Thierry Arnoux, 7-Nov-2019.)
Hypotheses
Ref Expression
acunirnmpt.0 (𝜑𝐴𝑉)
acunirnmpt.1 ((𝜑𝑗𝐴) → 𝐵 ≠ ∅)
acunirnmpt2.2 𝐶 = ran (𝑗𝐴𝐵)
acunirnmpt2.3 (𝑗 = (𝑓𝑥) → 𝐵 = 𝐷)
Assertion
Ref Expression
acunirnmpt2 (𝜑 → ∃𝑓(𝑓:𝐶𝐴 ∧ ∀𝑥𝐶 𝑥𝐷))
Distinct variable groups:   𝑓,𝑗,𝑥,𝐴   𝐵,𝑓   𝐶,𝑓,𝑗,𝑥   𝐷,𝑗   𝜑,𝑓,𝑗,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑗)   𝐷(𝑥,𝑓)   𝑉(𝑥,𝑓,𝑗)

Proof of Theorem acunirnmpt2
Dummy variables 𝑐 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . . . 6 ((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) → 𝑦 ∈ ran (𝑗𝐴𝐵))
2 vex 3492 . . . . . . 7 𝑦 ∈ V
3 eqid 2740 . . . . . . . 8 (𝑗𝐴𝐵) = (𝑗𝐴𝐵)
43elrnmpt 5981 . . . . . . 7 (𝑦 ∈ V → (𝑦 ∈ ran (𝑗𝐴𝐵) ↔ ∃𝑗𝐴 𝑦 = 𝐵))
52, 4ax-mp 5 . . . . . 6 (𝑦 ∈ ran (𝑗𝐴𝐵) ↔ ∃𝑗𝐴 𝑦 = 𝐵)
61, 5sylib 218 . . . . 5 ((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) → ∃𝑗𝐴 𝑦 = 𝐵)
7 nfv 1913 . . . . . . . 8 𝑗(𝜑𝑥𝐶)
8 nfcv 2908 . . . . . . . . 9 𝑗𝑦
9 nfmpt1 5274 . . . . . . . . . 10 𝑗(𝑗𝐴𝐵)
109nfrn 5977 . . . . . . . . 9 𝑗ran (𝑗𝐴𝐵)
118, 10nfel 2923 . . . . . . . 8 𝑗 𝑦 ∈ ran (𝑗𝐴𝐵)
127, 11nfan 1898 . . . . . . 7 𝑗((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵))
13 nfv 1913 . . . . . . 7 𝑗 𝑥𝑦
1412, 13nfan 1898 . . . . . 6 𝑗(((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦)
15 simpllr 775 . . . . . . . . 9 ((((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → 𝑥𝑦)
16 simpr 484 . . . . . . . . 9 ((((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵)
1715, 16eleqtrd 2846 . . . . . . . 8 ((((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → 𝑥𝐵)
1817ex 412 . . . . . . 7 (((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) ∧ 𝑗𝐴) → (𝑦 = 𝐵𝑥𝐵))
1918ex 412 . . . . . 6 ((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) → (𝑗𝐴 → (𝑦 = 𝐵𝑥𝐵)))
2014, 19reximdai 3267 . . . . 5 ((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) → (∃𝑗𝐴 𝑦 = 𝐵 → ∃𝑗𝐴 𝑥𝐵))
216, 20mpd 15 . . . 4 ((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) → ∃𝑗𝐴 𝑥𝐵)
22 acunirnmpt2.2 . . . . . . . 8 𝐶 = ran (𝑗𝐴𝐵)
2322eleq2i 2836 . . . . . . 7 (𝑥𝐶𝑥 ran (𝑗𝐴𝐵))
2423biimpi 216 . . . . . 6 (𝑥𝐶𝑥 ran (𝑗𝐴𝐵))
25 eluni2 4935 . . . . . 6 (𝑥 ran (𝑗𝐴𝐵) ↔ ∃𝑦 ∈ ran (𝑗𝐴𝐵)𝑥𝑦)
2624, 25sylib 218 . . . . 5 (𝑥𝐶 → ∃𝑦 ∈ ran (𝑗𝐴𝐵)𝑥𝑦)
2726adantl 481 . . . 4 ((𝜑𝑥𝐶) → ∃𝑦 ∈ ran (𝑗𝐴𝐵)𝑥𝑦)
2821, 27r19.29a 3168 . . 3 ((𝜑𝑥𝐶) → ∃𝑗𝐴 𝑥𝐵)
2928ralrimiva 3152 . 2 (𝜑 → ∀𝑥𝐶𝑗𝐴 𝑥𝐵)
30 acunirnmpt.0 . . . . 5 (𝜑𝐴𝑉)
31 mptexg 7258 . . . . 5 (𝐴𝑉 → (𝑗𝐴𝐵) ∈ V)
32 rnexg 7942 . . . . 5 ((𝑗𝐴𝐵) ∈ V → ran (𝑗𝐴𝐵) ∈ V)
33 uniexg 7775 . . . . 5 (ran (𝑗𝐴𝐵) ∈ V → ran (𝑗𝐴𝐵) ∈ V)
3430, 31, 32, 334syl 19 . . . 4 (𝜑 ran (𝑗𝐴𝐵) ∈ V)
3522, 34eqeltrid 2848 . . 3 (𝜑𝐶 ∈ V)
36 id 22 . . . . . 6 (𝑐 = 𝐶𝑐 = 𝐶)
3736raleqdv 3334 . . . . 5 (𝑐 = 𝐶 → (∀𝑥𝑐𝑗𝐴 𝑥𝐵 ↔ ∀𝑥𝐶𝑗𝐴 𝑥𝐵))
3836feq2d 6733 . . . . . . 7 (𝑐 = 𝐶 → (𝑓:𝑐𝐴𝑓:𝐶𝐴))
3936raleqdv 3334 . . . . . . 7 (𝑐 = 𝐶 → (∀𝑥𝑐 𝑥𝐷 ↔ ∀𝑥𝐶 𝑥𝐷))
4038, 39anbi12d 631 . . . . . 6 (𝑐 = 𝐶 → ((𝑓:𝑐𝐴 ∧ ∀𝑥𝑐 𝑥𝐷) ↔ (𝑓:𝐶𝐴 ∧ ∀𝑥𝐶 𝑥𝐷)))
4140exbidv 1920 . . . . 5 (𝑐 = 𝐶 → (∃𝑓(𝑓:𝑐𝐴 ∧ ∀𝑥𝑐 𝑥𝐷) ↔ ∃𝑓(𝑓:𝐶𝐴 ∧ ∀𝑥𝐶 𝑥𝐷)))
4237, 41imbi12d 344 . . . 4 (𝑐 = 𝐶 → ((∀𝑥𝑐𝑗𝐴 𝑥𝐵 → ∃𝑓(𝑓:𝑐𝐴 ∧ ∀𝑥𝑐 𝑥𝐷)) ↔ (∀𝑥𝐶𝑗𝐴 𝑥𝐵 → ∃𝑓(𝑓:𝐶𝐴 ∧ ∀𝑥𝐶 𝑥𝐷))))
43 vex 3492 . . . . 5 𝑐 ∈ V
44 acunirnmpt2.3 . . . . . 6 (𝑗 = (𝑓𝑥) → 𝐵 = 𝐷)
4544eleq2d 2830 . . . . 5 (𝑗 = (𝑓𝑥) → (𝑥𝐵𝑥𝐷))
4643, 45ac6s 10553 . . . 4 (∀𝑥𝑐𝑗𝐴 𝑥𝐵 → ∃𝑓(𝑓:𝑐𝐴 ∧ ∀𝑥𝑐 𝑥𝐷))
4742, 46vtoclg 3566 . . 3 (𝐶 ∈ V → (∀𝑥𝐶𝑗𝐴 𝑥𝐵 → ∃𝑓(𝑓:𝐶𝐴 ∧ ∀𝑥𝐶 𝑥𝐷)))
4835, 47syl 17 . 2 (𝜑 → (∀𝑥𝐶𝑗𝐴 𝑥𝐵 → ∃𝑓(𝑓:𝐶𝐴 ∧ ∀𝑥𝐶 𝑥𝐷)))
4929, 48mpd 15 1 (𝜑 → ∃𝑓(𝑓:𝐶𝐴 ∧ ∀𝑥𝐶 𝑥𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wne 2946  wral 3067  wrex 3076  Vcvv 3488  c0 4352   cuni 4931  cmpt 5249  ran crn 5701  wf 6569  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-reg 9661  ax-inf2 9710  ax-ac2 10532
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-en 9004  df-r1 9833  df-rank 9834  df-card 10008  df-ac 10185
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator