Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  acunirnmpt2 Structured version   Visualization version   GIF version

Theorem acunirnmpt2 30320
Description: Axiom of choice for the union of the range of a mapping to function. (Contributed by Thierry Arnoux, 7-Nov-2019.)
Hypotheses
Ref Expression
acunirnmpt.0 (𝜑𝐴𝑉)
acunirnmpt.1 ((𝜑𝑗𝐴) → 𝐵 ≠ ∅)
acunirnmpt2.2 𝐶 = ran (𝑗𝐴𝐵)
acunirnmpt2.3 (𝑗 = (𝑓𝑥) → 𝐵 = 𝐷)
Assertion
Ref Expression
acunirnmpt2 (𝜑 → ∃𝑓(𝑓:𝐶𝐴 ∧ ∀𝑥𝐶 𝑥𝐷))
Distinct variable groups:   𝑓,𝑗,𝑥,𝐴   𝐵,𝑓   𝐶,𝑓,𝑗,𝑥   𝐷,𝑗   𝜑,𝑓,𝑗,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑗)   𝐷(𝑥,𝑓)   𝑉(𝑥,𝑓,𝑗)

Proof of Theorem acunirnmpt2
Dummy variables 𝑐 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 765 . . . . . 6 ((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) → 𝑦 ∈ ran (𝑗𝐴𝐵))
2 vex 3503 . . . . . . 7 𝑦 ∈ V
3 eqid 2826 . . . . . . . 8 (𝑗𝐴𝐵) = (𝑗𝐴𝐵)
43elrnmpt 5827 . . . . . . 7 (𝑦 ∈ V → (𝑦 ∈ ran (𝑗𝐴𝐵) ↔ ∃𝑗𝐴 𝑦 = 𝐵))
52, 4ax-mp 5 . . . . . 6 (𝑦 ∈ ran (𝑗𝐴𝐵) ↔ ∃𝑗𝐴 𝑦 = 𝐵)
61, 5sylib 219 . . . . 5 ((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) → ∃𝑗𝐴 𝑦 = 𝐵)
7 nfv 1908 . . . . . . . 8 𝑗(𝜑𝑥𝐶)
8 nfcv 2982 . . . . . . . . 9 𝑗𝑦
9 nfmpt1 5161 . . . . . . . . . 10 𝑗(𝑗𝐴𝐵)
109nfrn 5823 . . . . . . . . 9 𝑗ran (𝑗𝐴𝐵)
118, 10nfel 2997 . . . . . . . 8 𝑗 𝑦 ∈ ran (𝑗𝐴𝐵)
127, 11nfan 1893 . . . . . . 7 𝑗((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵))
13 nfv 1908 . . . . . . 7 𝑗 𝑥𝑦
1412, 13nfan 1893 . . . . . 6 𝑗(((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦)
15 simpllr 772 . . . . . . . . 9 ((((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → 𝑥𝑦)
16 simpr 485 . . . . . . . . 9 ((((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵)
1715, 16eleqtrd 2920 . . . . . . . 8 ((((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) ∧ 𝑗𝐴) ∧ 𝑦 = 𝐵) → 𝑥𝐵)
1817ex 413 . . . . . . 7 (((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) ∧ 𝑗𝐴) → (𝑦 = 𝐵𝑥𝐵))
1918ex 413 . . . . . 6 ((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) → (𝑗𝐴 → (𝑦 = 𝐵𝑥𝐵)))
2014, 19reximdai 3316 . . . . 5 ((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) → (∃𝑗𝐴 𝑦 = 𝐵 → ∃𝑗𝐴 𝑥𝐵))
216, 20mpd 15 . . . 4 ((((𝜑𝑥𝐶) ∧ 𝑦 ∈ ran (𝑗𝐴𝐵)) ∧ 𝑥𝑦) → ∃𝑗𝐴 𝑥𝐵)
22 acunirnmpt2.2 . . . . . . . 8 𝐶 = ran (𝑗𝐴𝐵)
2322eleq2i 2909 . . . . . . 7 (𝑥𝐶𝑥 ran (𝑗𝐴𝐵))
2423biimpi 217 . . . . . 6 (𝑥𝐶𝑥 ran (𝑗𝐴𝐵))
25 eluni2 4841 . . . . . 6 (𝑥 ran (𝑗𝐴𝐵) ↔ ∃𝑦 ∈ ran (𝑗𝐴𝐵)𝑥𝑦)
2624, 25sylib 219 . . . . 5 (𝑥𝐶 → ∃𝑦 ∈ ran (𝑗𝐴𝐵)𝑥𝑦)
2726adantl 482 . . . 4 ((𝜑𝑥𝐶) → ∃𝑦 ∈ ran (𝑗𝐴𝐵)𝑥𝑦)
2821, 27r19.29a 3294 . . 3 ((𝜑𝑥𝐶) → ∃𝑗𝐴 𝑥𝐵)
2928ralrimiva 3187 . 2 (𝜑 → ∀𝑥𝐶𝑗𝐴 𝑥𝐵)
30 acunirnmpt.0 . . . . 5 (𝜑𝐴𝑉)
31 mptexg 6979 . . . . 5 (𝐴𝑉 → (𝑗𝐴𝐵) ∈ V)
32 rnexg 7602 . . . . 5 ((𝑗𝐴𝐵) ∈ V → ran (𝑗𝐴𝐵) ∈ V)
33 uniexg 7457 . . . . 5 (ran (𝑗𝐴𝐵) ∈ V → ran (𝑗𝐴𝐵) ∈ V)
3430, 31, 32, 334syl 19 . . . 4 (𝜑 ran (𝑗𝐴𝐵) ∈ V)
3522, 34eqeltrid 2922 . . 3 (𝜑𝐶 ∈ V)
36 id 22 . . . . . 6 (𝑐 = 𝐶𝑐 = 𝐶)
3736raleqdv 3421 . . . . 5 (𝑐 = 𝐶 → (∀𝑥𝑐𝑗𝐴 𝑥𝐵 ↔ ∀𝑥𝐶𝑗𝐴 𝑥𝐵))
3836feq2d 6497 . . . . . . 7 (𝑐 = 𝐶 → (𝑓:𝑐𝐴𝑓:𝐶𝐴))
3936raleqdv 3421 . . . . . . 7 (𝑐 = 𝐶 → (∀𝑥𝑐 𝑥𝐷 ↔ ∀𝑥𝐶 𝑥𝐷))
4038, 39anbi12d 630 . . . . . 6 (𝑐 = 𝐶 → ((𝑓:𝑐𝐴 ∧ ∀𝑥𝑐 𝑥𝐷) ↔ (𝑓:𝐶𝐴 ∧ ∀𝑥𝐶 𝑥𝐷)))
4140exbidv 1915 . . . . 5 (𝑐 = 𝐶 → (∃𝑓(𝑓:𝑐𝐴 ∧ ∀𝑥𝑐 𝑥𝐷) ↔ ∃𝑓(𝑓:𝐶𝐴 ∧ ∀𝑥𝐶 𝑥𝐷)))
4237, 41imbi12d 346 . . . 4 (𝑐 = 𝐶 → ((∀𝑥𝑐𝑗𝐴 𝑥𝐵 → ∃𝑓(𝑓:𝑐𝐴 ∧ ∀𝑥𝑐 𝑥𝐷)) ↔ (∀𝑥𝐶𝑗𝐴 𝑥𝐵 → ∃𝑓(𝑓:𝐶𝐴 ∧ ∀𝑥𝐶 𝑥𝐷))))
43 vex 3503 . . . . 5 𝑐 ∈ V
44 acunirnmpt2.3 . . . . . 6 (𝑗 = (𝑓𝑥) → 𝐵 = 𝐷)
4544eleq2d 2903 . . . . 5 (𝑗 = (𝑓𝑥) → (𝑥𝐵𝑥𝐷))
4643, 45ac6s 9895 . . . 4 (∀𝑥𝑐𝑗𝐴 𝑥𝐵 → ∃𝑓(𝑓:𝑐𝐴 ∧ ∀𝑥𝑐 𝑥𝐷))
4742, 46vtoclg 3573 . . 3 (𝐶 ∈ V → (∀𝑥𝐶𝑗𝐴 𝑥𝐵 → ∃𝑓(𝑓:𝐶𝐴 ∧ ∀𝑥𝐶 𝑥𝐷)))
4835, 47syl 17 . 2 (𝜑 → (∀𝑥𝐶𝑗𝐴 𝑥𝐵 → ∃𝑓(𝑓:𝐶𝐴 ∧ ∀𝑥𝐶 𝑥𝐷)))
4929, 48mpd 15 1 (𝜑 → ∃𝑓(𝑓:𝐶𝐴 ∧ ∀𝑥𝐶 𝑥𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wex 1773  wcel 2107  wne 3021  wral 3143  wrex 3144  Vcvv 3500  c0 4295   cuni 4837  cmpt 5143  ran crn 5555  wf 6348  cfv 6352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-reg 9045  ax-inf2 9093  ax-ac2 9874
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-iin 4920  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-isom 6361  df-riota 7106  df-om 7569  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-en 8499  df-r1 9182  df-rank 9183  df-card 9357  df-ac 9531
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator