Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupre Structured version   Visualization version   GIF version

Theorem limsupre 45562
Description: If a sequence is bounded, then the limsup is real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 13-Sep-2020.)
Hypotheses
Ref Expression
limsupre.1 (𝜑𝐵 ⊆ ℝ)
limsupre.2 (𝜑 → sup(𝐵, ℝ*, < ) = +∞)
limsupre.f (𝜑𝐹:𝐵⟶ℝ)
limsupre.bnd (𝜑 → ∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏))
Assertion
Ref Expression
limsupre (𝜑 → (lim sup‘𝐹) ∈ ℝ)
Distinct variable groups:   𝐵,𝑗,𝑘   𝐹,𝑏,𝑗,𝑘   𝜑,𝑏,𝑗,𝑘
Allowed substitution hint:   𝐵(𝑏)

Proof of Theorem limsupre
Dummy variables 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mnfxr 11347 . . . . 5 -∞ ∈ ℝ*
21a1i 11 . . . 4 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → -∞ ∈ ℝ*)
3 renegcl 11599 . . . . . 6 (𝑏 ∈ ℝ → -𝑏 ∈ ℝ)
43rexrd 11340 . . . . 5 (𝑏 ∈ ℝ → -𝑏 ∈ ℝ*)
54ad2antlr 726 . . . 4 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → -𝑏 ∈ ℝ*)
6 limsupre.f . . . . . . 7 (𝜑𝐹:𝐵⟶ℝ)
7 reex 11275 . . . . . . . . 9 ℝ ∈ V
87a1i 11 . . . . . . . 8 (𝜑 → ℝ ∈ V)
9 limsupre.1 . . . . . . . 8 (𝜑𝐵 ⊆ ℝ)
108, 9ssexd 5342 . . . . . . 7 (𝜑𝐵 ∈ V)
116, 10fexd 7264 . . . . . 6 (𝜑𝐹 ∈ V)
12 limsupcl 15519 . . . . . 6 (𝐹 ∈ V → (lim sup‘𝐹) ∈ ℝ*)
1311, 12syl 17 . . . . 5 (𝜑 → (lim sup‘𝐹) ∈ ℝ*)
1413ad2antrr 725 . . . 4 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → (lim sup‘𝐹) ∈ ℝ*)
153mnfltd 13187 . . . . 5 (𝑏 ∈ ℝ → -∞ < -𝑏)
1615ad2antlr 726 . . . 4 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → -∞ < -𝑏)
179ad2antrr 725 . . . . 5 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → 𝐵 ⊆ ℝ)
18 ressxr 11334 . . . . . . . 8 ℝ ⊆ ℝ*
1918a1i 11 . . . . . . 7 (𝜑 → ℝ ⊆ ℝ*)
206, 19fssd 6764 . . . . . 6 (𝜑𝐹:𝐵⟶ℝ*)
2120ad2antrr 725 . . . . 5 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → 𝐹:𝐵⟶ℝ*)
22 limsupre.2 . . . . . 6 (𝜑 → sup(𝐵, ℝ*, < ) = +∞)
2322ad2antrr 725 . . . . 5 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → sup(𝐵, ℝ*, < ) = +∞)
24 simpr 484 . . . . . . 7 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏))
25 nfv 1913 . . . . . . . . 9 𝑘(𝜑𝑏 ∈ ℝ)
26 nfre1 3291 . . . . . . . . 9 𝑘𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)
2725, 26nfan 1898 . . . . . . . 8 𝑘((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏))
28 nfv 1913 . . . . . . . . . . . 12 𝑗(𝜑𝑏 ∈ ℝ)
29 nfv 1913 . . . . . . . . . . . 12 𝑗 𝑘 ∈ ℝ
30 nfra1 3290 . . . . . . . . . . . 12 𝑗𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)
3128, 29, 30nf3an 1900 . . . . . . . . . . 11 𝑗((𝜑𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏))
32 simp13 1205 . . . . . . . . . . . . . . 15 ((((𝜑𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) ∧ 𝑗𝐵𝑘𝑗) → ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏))
33 simp2 1137 . . . . . . . . . . . . . . 15 ((((𝜑𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) ∧ 𝑗𝐵𝑘𝑗) → 𝑗𝐵)
34 simp3 1138 . . . . . . . . . . . . . . 15 ((((𝜑𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) ∧ 𝑗𝐵𝑘𝑗) → 𝑘𝑗)
35 rspa 3254 . . . . . . . . . . . . . . . 16 ((∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏) ∧ 𝑗𝐵) → (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏))
3635imp 406 . . . . . . . . . . . . . . 15 (((∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏) ∧ 𝑗𝐵) ∧ 𝑘𝑗) → (abs‘(𝐹𝑗)) ≤ 𝑏)
3732, 33, 34, 36syl21anc 837 . . . . . . . . . . . . . 14 ((((𝜑𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) ∧ 𝑗𝐵𝑘𝑗) → (abs‘(𝐹𝑗)) ≤ 𝑏)
38 simp11l 1284 . . . . . . . . . . . . . . . 16 ((((𝜑𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) ∧ 𝑗𝐵𝑘𝑗) → 𝜑)
396ffvelcdmda 7118 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝐵) → (𝐹𝑗) ∈ ℝ)
4038, 33, 39syl2anc 583 . . . . . . . . . . . . . . 15 ((((𝜑𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) ∧ 𝑗𝐵𝑘𝑗) → (𝐹𝑗) ∈ ℝ)
41 simp11r 1285 . . . . . . . . . . . . . . 15 ((((𝜑𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) ∧ 𝑗𝐵𝑘𝑗) → 𝑏 ∈ ℝ)
4240, 41absled 15479 . . . . . . . . . . . . . 14 ((((𝜑𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) ∧ 𝑗𝐵𝑘𝑗) → ((abs‘(𝐹𝑗)) ≤ 𝑏 ↔ (-𝑏 ≤ (𝐹𝑗) ∧ (𝐹𝑗) ≤ 𝑏)))
4337, 42mpbid 232 . . . . . . . . . . . . 13 ((((𝜑𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) ∧ 𝑗𝐵𝑘𝑗) → (-𝑏 ≤ (𝐹𝑗) ∧ (𝐹𝑗) ≤ 𝑏))
4443simpld 494 . . . . . . . . . . . 12 ((((𝜑𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) ∧ 𝑗𝐵𝑘𝑗) → -𝑏 ≤ (𝐹𝑗))
45443exp 1119 . . . . . . . . . . 11 (((𝜑𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → (𝑗𝐵 → (𝑘𝑗 → -𝑏 ≤ (𝐹𝑗))))
4631, 45ralrimi 3263 . . . . . . . . . 10 (((𝜑𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → ∀𝑗𝐵 (𝑘𝑗 → -𝑏 ≤ (𝐹𝑗)))
47463exp 1119 . . . . . . . . 9 ((𝜑𝑏 ∈ ℝ) → (𝑘 ∈ ℝ → (∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏) → ∀𝑗𝐵 (𝑘𝑗 → -𝑏 ≤ (𝐹𝑗)))))
4847adantr 480 . . . . . . . 8 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → (𝑘 ∈ ℝ → (∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏) → ∀𝑗𝐵 (𝑘𝑗 → -𝑏 ≤ (𝐹𝑗)))))
4927, 48reximdai 3267 . . . . . . 7 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → (∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏) → ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → -𝑏 ≤ (𝐹𝑗))))
5024, 49mpd 15 . . . . . 6 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → -𝑏 ≤ (𝐹𝑗)))
51 breq2 5170 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝑖𝑗))
52 fveq2 6920 . . . . . . . . . . 11 (𝑖 = 𝑗 → (𝐹𝑖) = (𝐹𝑗))
5352breq2d 5178 . . . . . . . . . 10 (𝑖 = 𝑗 → (-𝑏 ≤ (𝐹𝑖) ↔ -𝑏 ≤ (𝐹𝑗)))
5451, 53imbi12d 344 . . . . . . . . 9 (𝑖 = 𝑗 → ((𝑖 → -𝑏 ≤ (𝐹𝑖)) ↔ (𝑗 → -𝑏 ≤ (𝐹𝑗))))
5554cbvralvw 3243 . . . . . . . 8 (∀𝑖𝐵 (𝑖 → -𝑏 ≤ (𝐹𝑖)) ↔ ∀𝑗𝐵 (𝑗 → -𝑏 ≤ (𝐹𝑗)))
56 breq1 5169 . . . . . . . . . 10 ( = 𝑘 → (𝑗𝑘𝑗))
5756imbi1d 341 . . . . . . . . 9 ( = 𝑘 → ((𝑗 → -𝑏 ≤ (𝐹𝑗)) ↔ (𝑘𝑗 → -𝑏 ≤ (𝐹𝑗))))
5857ralbidv 3184 . . . . . . . 8 ( = 𝑘 → (∀𝑗𝐵 (𝑗 → -𝑏 ≤ (𝐹𝑗)) ↔ ∀𝑗𝐵 (𝑘𝑗 → -𝑏 ≤ (𝐹𝑗))))
5955, 58bitrid 283 . . . . . . 7 ( = 𝑘 → (∀𝑖𝐵 (𝑖 → -𝑏 ≤ (𝐹𝑖)) ↔ ∀𝑗𝐵 (𝑘𝑗 → -𝑏 ≤ (𝐹𝑗))))
6059cbvrexvw 3244 . . . . . 6 (∃ ∈ ℝ ∀𝑖𝐵 (𝑖 → -𝑏 ≤ (𝐹𝑖)) ↔ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → -𝑏 ≤ (𝐹𝑗)))
6150, 60sylibr 234 . . . . 5 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → ∃ ∈ ℝ ∀𝑖𝐵 (𝑖 → -𝑏 ≤ (𝐹𝑖)))
6217, 21, 5, 23, 61limsupbnd2 15529 . . . 4 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → -𝑏 ≤ (lim sup‘𝐹))
632, 5, 14, 16, 62xrltletrd 13223 . . 3 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → -∞ < (lim sup‘𝐹))
64 limsupre.bnd . . 3 (𝜑 → ∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏))
6563, 64r19.29a 3168 . 2 (𝜑 → -∞ < (lim sup‘𝐹))
66 rexr 11336 . . . . 5 (𝑏 ∈ ℝ → 𝑏 ∈ ℝ*)
6766ad2antlr 726 . . . 4 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → 𝑏 ∈ ℝ*)
68 pnfxr 11344 . . . . 5 +∞ ∈ ℝ*
6968a1i 11 . . . 4 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → +∞ ∈ ℝ*)
7043simprd 495 . . . . . . . . . . . 12 ((((𝜑𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) ∧ 𝑗𝐵𝑘𝑗) → (𝐹𝑗) ≤ 𝑏)
71703exp 1119 . . . . . . . . . . 11 (((𝜑𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → (𝑗𝐵 → (𝑘𝑗 → (𝐹𝑗) ≤ 𝑏)))
7231, 71ralrimi 3263 . . . . . . . . . 10 (((𝜑𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑏))
73723exp 1119 . . . . . . . . 9 ((𝜑𝑏 ∈ ℝ) → (𝑘 ∈ ℝ → (∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏) → ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑏))))
7473adantr 480 . . . . . . . 8 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → (𝑘 ∈ ℝ → (∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏) → ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑏))))
7527, 74reximdai 3267 . . . . . . 7 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → (∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏) → ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑏)))
7624, 75mpd 15 . . . . . 6 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑏))
7752breq1d 5176 . . . . . . . . . 10 (𝑖 = 𝑗 → ((𝐹𝑖) ≤ 𝑏 ↔ (𝐹𝑗) ≤ 𝑏))
7851, 77imbi12d 344 . . . . . . . . 9 (𝑖 = 𝑗 → ((𝑖 → (𝐹𝑖) ≤ 𝑏) ↔ (𝑗 → (𝐹𝑗) ≤ 𝑏)))
7978cbvralvw 3243 . . . . . . . 8 (∀𝑖𝐵 (𝑖 → (𝐹𝑖) ≤ 𝑏) ↔ ∀𝑗𝐵 (𝑗 → (𝐹𝑗) ≤ 𝑏))
8056imbi1d 341 . . . . . . . . 9 ( = 𝑘 → ((𝑗 → (𝐹𝑗) ≤ 𝑏) ↔ (𝑘𝑗 → (𝐹𝑗) ≤ 𝑏)))
8180ralbidv 3184 . . . . . . . 8 ( = 𝑘 → (∀𝑗𝐵 (𝑗 → (𝐹𝑗) ≤ 𝑏) ↔ ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑏)))
8279, 81bitrid 283 . . . . . . 7 ( = 𝑘 → (∀𝑖𝐵 (𝑖 → (𝐹𝑖) ≤ 𝑏) ↔ ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑏)))
8382cbvrexvw 3244 . . . . . 6 (∃ ∈ ℝ ∀𝑖𝐵 (𝑖 → (𝐹𝑖) ≤ 𝑏) ↔ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑏))
8476, 83sylibr 234 . . . . 5 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → ∃ ∈ ℝ ∀𝑖𝐵 (𝑖 → (𝐹𝑖) ≤ 𝑏))
8517, 21, 67, 84limsupbnd1 15528 . . . 4 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → (lim sup‘𝐹) ≤ 𝑏)
86 ltpnf 13183 . . . . 5 (𝑏 ∈ ℝ → 𝑏 < +∞)
8786ad2antlr 726 . . . 4 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → 𝑏 < +∞)
8814, 67, 69, 85, 87xrlelttrd 13222 . . 3 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → (lim sup‘𝐹) < +∞)
8988, 64r19.29a 3168 . 2 (𝜑 → (lim sup‘𝐹) < +∞)
90 xrrebnd 13230 . . 3 ((lim sup‘𝐹) ∈ ℝ* → ((lim sup‘𝐹) ∈ ℝ ↔ (-∞ < (lim sup‘𝐹) ∧ (lim sup‘𝐹) < +∞)))
9113, 90syl 17 . 2 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (-∞ < (lim sup‘𝐹) ∧ (lim sup‘𝐹) < +∞)))
9265, 89, 91mpbir2and 712 1 (𝜑 → (lim sup‘𝐹) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  wss 3976   class class class wbr 5166  wf 6569  cfv 6573  supcsup 9509  cr 11183  +∞cpnf 11321  -∞cmnf 11322  *cxr 11323   < clt 11324  cle 11325  -cneg 11521  abscabs 15283  lim supclsp 15516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-ico 13413  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517
This theorem is referenced by:  limsupref  45606  ioodvbdlimc1lem2  45853  ioodvbdlimc2lem  45855
  Copyright terms: Public domain W3C validator