Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupre Structured version   Visualization version   GIF version

Theorem limsupre 41915
Description: If a sequence is bounded, then the limsup is real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 13-Sep-2020.)
Hypotheses
Ref Expression
limsupre.1 (𝜑𝐵 ⊆ ℝ)
limsupre.2 (𝜑 → sup(𝐵, ℝ*, < ) = +∞)
limsupre.f (𝜑𝐹:𝐵⟶ℝ)
limsupre.bnd (𝜑 → ∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏))
Assertion
Ref Expression
limsupre (𝜑 → (lim sup‘𝐹) ∈ ℝ)
Distinct variable groups:   𝐵,𝑗,𝑘   𝐹,𝑏,𝑗,𝑘   𝜑,𝑏,𝑗,𝑘
Allowed substitution hint:   𝐵(𝑏)

Proof of Theorem limsupre
Dummy variables 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mnfxr 10692 . . . . 5 -∞ ∈ ℝ*
21a1i 11 . . . 4 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → -∞ ∈ ℝ*)
3 renegcl 10943 . . . . . 6 (𝑏 ∈ ℝ → -𝑏 ∈ ℝ)
43rexrd 10685 . . . . 5 (𝑏 ∈ ℝ → -𝑏 ∈ ℝ*)
54ad2antlr 725 . . . 4 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → -𝑏 ∈ ℝ*)
6 limsupre.f . . . . . . 7 (𝜑𝐹:𝐵⟶ℝ)
7 reex 10622 . . . . . . . . 9 ℝ ∈ V
87a1i 11 . . . . . . . 8 (𝜑 → ℝ ∈ V)
9 limsupre.1 . . . . . . . 8 (𝜑𝐵 ⊆ ℝ)
108, 9ssexd 5220 . . . . . . 7 (𝜑𝐵 ∈ V)
11 fex 6983 . . . . . . 7 ((𝐹:𝐵⟶ℝ ∧ 𝐵 ∈ V) → 𝐹 ∈ V)
126, 10, 11syl2anc 586 . . . . . 6 (𝜑𝐹 ∈ V)
13 limsupcl 14824 . . . . . 6 (𝐹 ∈ V → (lim sup‘𝐹) ∈ ℝ*)
1412, 13syl 17 . . . . 5 (𝜑 → (lim sup‘𝐹) ∈ ℝ*)
1514ad2antrr 724 . . . 4 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → (lim sup‘𝐹) ∈ ℝ*)
163mnfltd 12513 . . . . 5 (𝑏 ∈ ℝ → -∞ < -𝑏)
1716ad2antlr 725 . . . 4 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → -∞ < -𝑏)
189ad2antrr 724 . . . . 5 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → 𝐵 ⊆ ℝ)
19 ressxr 10679 . . . . . . . 8 ℝ ⊆ ℝ*
2019a1i 11 . . . . . . 7 (𝜑 → ℝ ⊆ ℝ*)
216, 20fssd 6522 . . . . . 6 (𝜑𝐹:𝐵⟶ℝ*)
2221ad2antrr 724 . . . . 5 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → 𝐹:𝐵⟶ℝ*)
23 limsupre.2 . . . . . 6 (𝜑 → sup(𝐵, ℝ*, < ) = +∞)
2423ad2antrr 724 . . . . 5 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → sup(𝐵, ℝ*, < ) = +∞)
25 simpr 487 . . . . . . 7 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏))
26 nfv 1911 . . . . . . . . 9 𝑘(𝜑𝑏 ∈ ℝ)
27 nfre1 3306 . . . . . . . . 9 𝑘𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)
2826, 27nfan 1896 . . . . . . . 8 𝑘((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏))
29 nfv 1911 . . . . . . . . . . . 12 𝑗(𝜑𝑏 ∈ ℝ)
30 nfv 1911 . . . . . . . . . . . 12 𝑗 𝑘 ∈ ℝ
31 nfra1 3219 . . . . . . . . . . . 12 𝑗𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)
3229, 30, 31nf3an 1898 . . . . . . . . . . 11 𝑗((𝜑𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏))
33 simp13 1201 . . . . . . . . . . . . . . 15 ((((𝜑𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) ∧ 𝑗𝐵𝑘𝑗) → ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏))
34 simp2 1133 . . . . . . . . . . . . . . 15 ((((𝜑𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) ∧ 𝑗𝐵𝑘𝑗) → 𝑗𝐵)
35 simp3 1134 . . . . . . . . . . . . . . 15 ((((𝜑𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) ∧ 𝑗𝐵𝑘𝑗) → 𝑘𝑗)
36 rspa 3206 . . . . . . . . . . . . . . . 16 ((∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏) ∧ 𝑗𝐵) → (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏))
3736imp 409 . . . . . . . . . . . . . . 15 (((∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏) ∧ 𝑗𝐵) ∧ 𝑘𝑗) → (abs‘(𝐹𝑗)) ≤ 𝑏)
3833, 34, 35, 37syl21anc 835 . . . . . . . . . . . . . 14 ((((𝜑𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) ∧ 𝑗𝐵𝑘𝑗) → (abs‘(𝐹𝑗)) ≤ 𝑏)
39 simp11l 1280 . . . . . . . . . . . . . . . 16 ((((𝜑𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) ∧ 𝑗𝐵𝑘𝑗) → 𝜑)
406ffvelrnda 6845 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝐵) → (𝐹𝑗) ∈ ℝ)
4139, 34, 40syl2anc 586 . . . . . . . . . . . . . . 15 ((((𝜑𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) ∧ 𝑗𝐵𝑘𝑗) → (𝐹𝑗) ∈ ℝ)
42 simp11r 1281 . . . . . . . . . . . . . . 15 ((((𝜑𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) ∧ 𝑗𝐵𝑘𝑗) → 𝑏 ∈ ℝ)
4341, 42absled 14784 . . . . . . . . . . . . . 14 ((((𝜑𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) ∧ 𝑗𝐵𝑘𝑗) → ((abs‘(𝐹𝑗)) ≤ 𝑏 ↔ (-𝑏 ≤ (𝐹𝑗) ∧ (𝐹𝑗) ≤ 𝑏)))
4438, 43mpbid 234 . . . . . . . . . . . . 13 ((((𝜑𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) ∧ 𝑗𝐵𝑘𝑗) → (-𝑏 ≤ (𝐹𝑗) ∧ (𝐹𝑗) ≤ 𝑏))
4544simpld 497 . . . . . . . . . . . 12 ((((𝜑𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) ∧ 𝑗𝐵𝑘𝑗) → -𝑏 ≤ (𝐹𝑗))
46453exp 1115 . . . . . . . . . . 11 (((𝜑𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → (𝑗𝐵 → (𝑘𝑗 → -𝑏 ≤ (𝐹𝑗))))
4732, 46ralrimi 3216 . . . . . . . . . 10 (((𝜑𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → ∀𝑗𝐵 (𝑘𝑗 → -𝑏 ≤ (𝐹𝑗)))
48473exp 1115 . . . . . . . . 9 ((𝜑𝑏 ∈ ℝ) → (𝑘 ∈ ℝ → (∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏) → ∀𝑗𝐵 (𝑘𝑗 → -𝑏 ≤ (𝐹𝑗)))))
4948adantr 483 . . . . . . . 8 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → (𝑘 ∈ ℝ → (∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏) → ∀𝑗𝐵 (𝑘𝑗 → -𝑏 ≤ (𝐹𝑗)))))
5028, 49reximdai 3311 . . . . . . 7 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → (∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏) → ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → -𝑏 ≤ (𝐹𝑗))))
5125, 50mpd 15 . . . . . 6 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → -𝑏 ≤ (𝐹𝑗)))
52 breq2 5062 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝑖𝑗))
53 fveq2 6664 . . . . . . . . . . 11 (𝑖 = 𝑗 → (𝐹𝑖) = (𝐹𝑗))
5453breq2d 5070 . . . . . . . . . 10 (𝑖 = 𝑗 → (-𝑏 ≤ (𝐹𝑖) ↔ -𝑏 ≤ (𝐹𝑗)))
5552, 54imbi12d 347 . . . . . . . . 9 (𝑖 = 𝑗 → ((𝑖 → -𝑏 ≤ (𝐹𝑖)) ↔ (𝑗 → -𝑏 ≤ (𝐹𝑗))))
5655cbvralvw 3449 . . . . . . . 8 (∀𝑖𝐵 (𝑖 → -𝑏 ≤ (𝐹𝑖)) ↔ ∀𝑗𝐵 (𝑗 → -𝑏 ≤ (𝐹𝑗)))
57 breq1 5061 . . . . . . . . . 10 ( = 𝑘 → (𝑗𝑘𝑗))
5857imbi1d 344 . . . . . . . . 9 ( = 𝑘 → ((𝑗 → -𝑏 ≤ (𝐹𝑗)) ↔ (𝑘𝑗 → -𝑏 ≤ (𝐹𝑗))))
5958ralbidv 3197 . . . . . . . 8 ( = 𝑘 → (∀𝑗𝐵 (𝑗 → -𝑏 ≤ (𝐹𝑗)) ↔ ∀𝑗𝐵 (𝑘𝑗 → -𝑏 ≤ (𝐹𝑗))))
6056, 59syl5bb 285 . . . . . . 7 ( = 𝑘 → (∀𝑖𝐵 (𝑖 → -𝑏 ≤ (𝐹𝑖)) ↔ ∀𝑗𝐵 (𝑘𝑗 → -𝑏 ≤ (𝐹𝑗))))
6160cbvrexvw 3450 . . . . . 6 (∃ ∈ ℝ ∀𝑖𝐵 (𝑖 → -𝑏 ≤ (𝐹𝑖)) ↔ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → -𝑏 ≤ (𝐹𝑗)))
6251, 61sylibr 236 . . . . 5 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → ∃ ∈ ℝ ∀𝑖𝐵 (𝑖 → -𝑏 ≤ (𝐹𝑖)))
6318, 22, 5, 24, 62limsupbnd2 14834 . . . 4 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → -𝑏 ≤ (lim sup‘𝐹))
642, 5, 15, 17, 63xrltletrd 12548 . . 3 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → -∞ < (lim sup‘𝐹))
65 limsupre.bnd . . 3 (𝜑 → ∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏))
6664, 65r19.29a 3289 . 2 (𝜑 → -∞ < (lim sup‘𝐹))
67 rexr 10681 . . . . 5 (𝑏 ∈ ℝ → 𝑏 ∈ ℝ*)
6867ad2antlr 725 . . . 4 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → 𝑏 ∈ ℝ*)
69 pnfxr 10689 . . . . 5 +∞ ∈ ℝ*
7069a1i 11 . . . 4 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → +∞ ∈ ℝ*)
7144simprd 498 . . . . . . . . . . . 12 ((((𝜑𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) ∧ 𝑗𝐵𝑘𝑗) → (𝐹𝑗) ≤ 𝑏)
72713exp 1115 . . . . . . . . . . 11 (((𝜑𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → (𝑗𝐵 → (𝑘𝑗 → (𝐹𝑗) ≤ 𝑏)))
7332, 72ralrimi 3216 . . . . . . . . . 10 (((𝜑𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑏))
74733exp 1115 . . . . . . . . 9 ((𝜑𝑏 ∈ ℝ) → (𝑘 ∈ ℝ → (∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏) → ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑏))))
7574adantr 483 . . . . . . . 8 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → (𝑘 ∈ ℝ → (∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏) → ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑏))))
7628, 75reximdai 3311 . . . . . . 7 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → (∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏) → ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑏)))
7725, 76mpd 15 . . . . . 6 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑏))
7853breq1d 5068 . . . . . . . . . 10 (𝑖 = 𝑗 → ((𝐹𝑖) ≤ 𝑏 ↔ (𝐹𝑗) ≤ 𝑏))
7952, 78imbi12d 347 . . . . . . . . 9 (𝑖 = 𝑗 → ((𝑖 → (𝐹𝑖) ≤ 𝑏) ↔ (𝑗 → (𝐹𝑗) ≤ 𝑏)))
8079cbvralvw 3449 . . . . . . . 8 (∀𝑖𝐵 (𝑖 → (𝐹𝑖) ≤ 𝑏) ↔ ∀𝑗𝐵 (𝑗 → (𝐹𝑗) ≤ 𝑏))
8157imbi1d 344 . . . . . . . . 9 ( = 𝑘 → ((𝑗 → (𝐹𝑗) ≤ 𝑏) ↔ (𝑘𝑗 → (𝐹𝑗) ≤ 𝑏)))
8281ralbidv 3197 . . . . . . . 8 ( = 𝑘 → (∀𝑗𝐵 (𝑗 → (𝐹𝑗) ≤ 𝑏) ↔ ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑏)))
8380, 82syl5bb 285 . . . . . . 7 ( = 𝑘 → (∀𝑖𝐵 (𝑖 → (𝐹𝑖) ≤ 𝑏) ↔ ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑏)))
8483cbvrexvw 3450 . . . . . 6 (∃ ∈ ℝ ∀𝑖𝐵 (𝑖 → (𝐹𝑖) ≤ 𝑏) ↔ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑏))
8577, 84sylibr 236 . . . . 5 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → ∃ ∈ ℝ ∀𝑖𝐵 (𝑖 → (𝐹𝑖) ≤ 𝑏))
8618, 22, 68, 85limsupbnd1 14833 . . . 4 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → (lim sup‘𝐹) ≤ 𝑏)
87 ltpnf 12509 . . . . 5 (𝑏 ∈ ℝ → 𝑏 < +∞)
8887ad2antlr 725 . . . 4 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → 𝑏 < +∞)
8915, 68, 70, 86, 88xrlelttrd 12547 . . 3 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → (lim sup‘𝐹) < +∞)
9089, 65r19.29a 3289 . 2 (𝜑 → (lim sup‘𝐹) < +∞)
91 xrrebnd 12555 . . 3 ((lim sup‘𝐹) ∈ ℝ* → ((lim sup‘𝐹) ∈ ℝ ↔ (-∞ < (lim sup‘𝐹) ∧ (lim sup‘𝐹) < +∞)))
9214, 91syl 17 . 2 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (-∞ < (lim sup‘𝐹) ∧ (lim sup‘𝐹) < +∞)))
9366, 90, 92mpbir2and 711 1 (𝜑 → (lim sup‘𝐹) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  wrex 3139  Vcvv 3494  wss 3935   class class class wbr 5058  wf 6345  cfv 6349  supcsup 8898  cr 10530  +∞cpnf 10666  -∞cmnf 10667  *cxr 10668   < clt 10669  cle 10670  -cneg 10865  abscabs 14587  lim supclsp 14821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-ico 12738  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-limsup 14822
This theorem is referenced by:  limsupref  41959  ioodvbdlimc1lem2  42210  ioodvbdlimc2lem  42212
  Copyright terms: Public domain W3C validator