Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupre Structured version   Visualization version   GIF version

Theorem limsupre 45626
Description: If a sequence is bounded, then the limsup is real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 13-Sep-2020.)
Hypotheses
Ref Expression
limsupre.1 (𝜑𝐵 ⊆ ℝ)
limsupre.2 (𝜑 → sup(𝐵, ℝ*, < ) = +∞)
limsupre.f (𝜑𝐹:𝐵⟶ℝ)
limsupre.bnd (𝜑 → ∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏))
Assertion
Ref Expression
limsupre (𝜑 → (lim sup‘𝐹) ∈ ℝ)
Distinct variable groups:   𝐵,𝑗,𝑘   𝐹,𝑏,𝑗,𝑘   𝜑,𝑏,𝑗,𝑘
Allowed substitution hint:   𝐵(𝑏)

Proof of Theorem limsupre
Dummy variables 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mnfxr 11172 . . . . 5 -∞ ∈ ℝ*
21a1i 11 . . . 4 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → -∞ ∈ ℝ*)
3 renegcl 11427 . . . . . 6 (𝑏 ∈ ℝ → -𝑏 ∈ ℝ)
43rexrd 11165 . . . . 5 (𝑏 ∈ ℝ → -𝑏 ∈ ℝ*)
54ad2antlr 727 . . . 4 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → -𝑏 ∈ ℝ*)
6 limsupre.f . . . . . . 7 (𝜑𝐹:𝐵⟶ℝ)
7 reex 11100 . . . . . . . . 9 ℝ ∈ V
87a1i 11 . . . . . . . 8 (𝜑 → ℝ ∈ V)
9 limsupre.1 . . . . . . . 8 (𝜑𝐵 ⊆ ℝ)
108, 9ssexd 5263 . . . . . . 7 (𝜑𝐵 ∈ V)
116, 10fexd 7163 . . . . . 6 (𝜑𝐹 ∈ V)
12 limsupcl 15380 . . . . . 6 (𝐹 ∈ V → (lim sup‘𝐹) ∈ ℝ*)
1311, 12syl 17 . . . . 5 (𝜑 → (lim sup‘𝐹) ∈ ℝ*)
1413ad2antrr 726 . . . 4 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → (lim sup‘𝐹) ∈ ℝ*)
153mnfltd 13026 . . . . 5 (𝑏 ∈ ℝ → -∞ < -𝑏)
1615ad2antlr 727 . . . 4 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → -∞ < -𝑏)
179ad2antrr 726 . . . . 5 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → 𝐵 ⊆ ℝ)
18 ressxr 11159 . . . . . . . 8 ℝ ⊆ ℝ*
1918a1i 11 . . . . . . 7 (𝜑 → ℝ ⊆ ℝ*)
206, 19fssd 6669 . . . . . 6 (𝜑𝐹:𝐵⟶ℝ*)
2120ad2antrr 726 . . . . 5 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → 𝐹:𝐵⟶ℝ*)
22 limsupre.2 . . . . . 6 (𝜑 → sup(𝐵, ℝ*, < ) = +∞)
2322ad2antrr 726 . . . . 5 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → sup(𝐵, ℝ*, < ) = +∞)
24 simpr 484 . . . . . . 7 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏))
25 nfv 1914 . . . . . . . . 9 𝑘(𝜑𝑏 ∈ ℝ)
26 nfre1 3254 . . . . . . . . 9 𝑘𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)
2725, 26nfan 1899 . . . . . . . 8 𝑘((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏))
28 nfv 1914 . . . . . . . . . . . 12 𝑗(𝜑𝑏 ∈ ℝ)
29 nfv 1914 . . . . . . . . . . . 12 𝑗 𝑘 ∈ ℝ
30 nfra1 3253 . . . . . . . . . . . 12 𝑗𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)
3128, 29, 30nf3an 1901 . . . . . . . . . . 11 𝑗((𝜑𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏))
32 simp13 1206 . . . . . . . . . . . . . . 15 ((((𝜑𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) ∧ 𝑗𝐵𝑘𝑗) → ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏))
33 simp2 1137 . . . . . . . . . . . . . . 15 ((((𝜑𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) ∧ 𝑗𝐵𝑘𝑗) → 𝑗𝐵)
34 simp3 1138 . . . . . . . . . . . . . . 15 ((((𝜑𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) ∧ 𝑗𝐵𝑘𝑗) → 𝑘𝑗)
35 rspa 3218 . . . . . . . . . . . . . . . 16 ((∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏) ∧ 𝑗𝐵) → (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏))
3635imp 406 . . . . . . . . . . . . . . 15 (((∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏) ∧ 𝑗𝐵) ∧ 𝑘𝑗) → (abs‘(𝐹𝑗)) ≤ 𝑏)
3732, 33, 34, 36syl21anc 837 . . . . . . . . . . . . . 14 ((((𝜑𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) ∧ 𝑗𝐵𝑘𝑗) → (abs‘(𝐹𝑗)) ≤ 𝑏)
38 simp11l 1285 . . . . . . . . . . . . . . . 16 ((((𝜑𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) ∧ 𝑗𝐵𝑘𝑗) → 𝜑)
396ffvelcdmda 7018 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝐵) → (𝐹𝑗) ∈ ℝ)
4038, 33, 39syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) ∧ 𝑗𝐵𝑘𝑗) → (𝐹𝑗) ∈ ℝ)
41 simp11r 1286 . . . . . . . . . . . . . . 15 ((((𝜑𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) ∧ 𝑗𝐵𝑘𝑗) → 𝑏 ∈ ℝ)
4240, 41absled 15340 . . . . . . . . . . . . . 14 ((((𝜑𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) ∧ 𝑗𝐵𝑘𝑗) → ((abs‘(𝐹𝑗)) ≤ 𝑏 ↔ (-𝑏 ≤ (𝐹𝑗) ∧ (𝐹𝑗) ≤ 𝑏)))
4337, 42mpbid 232 . . . . . . . . . . . . 13 ((((𝜑𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) ∧ 𝑗𝐵𝑘𝑗) → (-𝑏 ≤ (𝐹𝑗) ∧ (𝐹𝑗) ≤ 𝑏))
4443simpld 494 . . . . . . . . . . . 12 ((((𝜑𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) ∧ 𝑗𝐵𝑘𝑗) → -𝑏 ≤ (𝐹𝑗))
45443exp 1119 . . . . . . . . . . 11 (((𝜑𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → (𝑗𝐵 → (𝑘𝑗 → -𝑏 ≤ (𝐹𝑗))))
4631, 45ralrimi 3227 . . . . . . . . . 10 (((𝜑𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → ∀𝑗𝐵 (𝑘𝑗 → -𝑏 ≤ (𝐹𝑗)))
47463exp 1119 . . . . . . . . 9 ((𝜑𝑏 ∈ ℝ) → (𝑘 ∈ ℝ → (∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏) → ∀𝑗𝐵 (𝑘𝑗 → -𝑏 ≤ (𝐹𝑗)))))
4847adantr 480 . . . . . . . 8 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → (𝑘 ∈ ℝ → (∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏) → ∀𝑗𝐵 (𝑘𝑗 → -𝑏 ≤ (𝐹𝑗)))))
4927, 48reximdai 3231 . . . . . . 7 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → (∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏) → ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → -𝑏 ≤ (𝐹𝑗))))
5024, 49mpd 15 . . . . . 6 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → -𝑏 ≤ (𝐹𝑗)))
51 breq2 5096 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝑖𝑗))
52 fveq2 6822 . . . . . . . . . . 11 (𝑖 = 𝑗 → (𝐹𝑖) = (𝐹𝑗))
5352breq2d 5104 . . . . . . . . . 10 (𝑖 = 𝑗 → (-𝑏 ≤ (𝐹𝑖) ↔ -𝑏 ≤ (𝐹𝑗)))
5451, 53imbi12d 344 . . . . . . . . 9 (𝑖 = 𝑗 → ((𝑖 → -𝑏 ≤ (𝐹𝑖)) ↔ (𝑗 → -𝑏 ≤ (𝐹𝑗))))
5554cbvralvw 3207 . . . . . . . 8 (∀𝑖𝐵 (𝑖 → -𝑏 ≤ (𝐹𝑖)) ↔ ∀𝑗𝐵 (𝑗 → -𝑏 ≤ (𝐹𝑗)))
56 breq1 5095 . . . . . . . . . 10 ( = 𝑘 → (𝑗𝑘𝑗))
5756imbi1d 341 . . . . . . . . 9 ( = 𝑘 → ((𝑗 → -𝑏 ≤ (𝐹𝑗)) ↔ (𝑘𝑗 → -𝑏 ≤ (𝐹𝑗))))
5857ralbidv 3152 . . . . . . . 8 ( = 𝑘 → (∀𝑗𝐵 (𝑗 → -𝑏 ≤ (𝐹𝑗)) ↔ ∀𝑗𝐵 (𝑘𝑗 → -𝑏 ≤ (𝐹𝑗))))
5955, 58bitrid 283 . . . . . . 7 ( = 𝑘 → (∀𝑖𝐵 (𝑖 → -𝑏 ≤ (𝐹𝑖)) ↔ ∀𝑗𝐵 (𝑘𝑗 → -𝑏 ≤ (𝐹𝑗))))
6059cbvrexvw 3208 . . . . . 6 (∃ ∈ ℝ ∀𝑖𝐵 (𝑖 → -𝑏 ≤ (𝐹𝑖)) ↔ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → -𝑏 ≤ (𝐹𝑗)))
6150, 60sylibr 234 . . . . 5 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → ∃ ∈ ℝ ∀𝑖𝐵 (𝑖 → -𝑏 ≤ (𝐹𝑖)))
6217, 21, 5, 23, 61limsupbnd2 15390 . . . 4 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → -𝑏 ≤ (lim sup‘𝐹))
632, 5, 14, 16, 62xrltletrd 13063 . . 3 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → -∞ < (lim sup‘𝐹))
64 limsupre.bnd . . 3 (𝜑 → ∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏))
6563, 64r19.29a 3137 . 2 (𝜑 → -∞ < (lim sup‘𝐹))
66 rexr 11161 . . . . 5 (𝑏 ∈ ℝ → 𝑏 ∈ ℝ*)
6766ad2antlr 727 . . . 4 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → 𝑏 ∈ ℝ*)
68 pnfxr 11169 . . . . 5 +∞ ∈ ℝ*
6968a1i 11 . . . 4 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → +∞ ∈ ℝ*)
7043simprd 495 . . . . . . . . . . . 12 ((((𝜑𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) ∧ 𝑗𝐵𝑘𝑗) → (𝐹𝑗) ≤ 𝑏)
71703exp 1119 . . . . . . . . . . 11 (((𝜑𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → (𝑗𝐵 → (𝑘𝑗 → (𝐹𝑗) ≤ 𝑏)))
7231, 71ralrimi 3227 . . . . . . . . . 10 (((𝜑𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑏))
73723exp 1119 . . . . . . . . 9 ((𝜑𝑏 ∈ ℝ) → (𝑘 ∈ ℝ → (∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏) → ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑏))))
7473adantr 480 . . . . . . . 8 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → (𝑘 ∈ ℝ → (∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏) → ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑏))))
7527, 74reximdai 3231 . . . . . . 7 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → (∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏) → ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑏)))
7624, 75mpd 15 . . . . . 6 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑏))
7752breq1d 5102 . . . . . . . . . 10 (𝑖 = 𝑗 → ((𝐹𝑖) ≤ 𝑏 ↔ (𝐹𝑗) ≤ 𝑏))
7851, 77imbi12d 344 . . . . . . . . 9 (𝑖 = 𝑗 → ((𝑖 → (𝐹𝑖) ≤ 𝑏) ↔ (𝑗 → (𝐹𝑗) ≤ 𝑏)))
7978cbvralvw 3207 . . . . . . . 8 (∀𝑖𝐵 (𝑖 → (𝐹𝑖) ≤ 𝑏) ↔ ∀𝑗𝐵 (𝑗 → (𝐹𝑗) ≤ 𝑏))
8056imbi1d 341 . . . . . . . . 9 ( = 𝑘 → ((𝑗 → (𝐹𝑗) ≤ 𝑏) ↔ (𝑘𝑗 → (𝐹𝑗) ≤ 𝑏)))
8180ralbidv 3152 . . . . . . . 8 ( = 𝑘 → (∀𝑗𝐵 (𝑗 → (𝐹𝑗) ≤ 𝑏) ↔ ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑏)))
8279, 81bitrid 283 . . . . . . 7 ( = 𝑘 → (∀𝑖𝐵 (𝑖 → (𝐹𝑖) ≤ 𝑏) ↔ ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑏)))
8382cbvrexvw 3208 . . . . . 6 (∃ ∈ ℝ ∀𝑖𝐵 (𝑖 → (𝐹𝑖) ≤ 𝑏) ↔ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑏))
8476, 83sylibr 234 . . . . 5 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → ∃ ∈ ℝ ∀𝑖𝐵 (𝑖 → (𝐹𝑖) ≤ 𝑏))
8517, 21, 67, 84limsupbnd1 15389 . . . 4 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → (lim sup‘𝐹) ≤ 𝑏)
86 ltpnf 13022 . . . . 5 (𝑏 ∈ ℝ → 𝑏 < +∞)
8786ad2antlr 727 . . . 4 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → 𝑏 < +∞)
8814, 67, 69, 85, 87xrlelttrd 13062 . . 3 (((𝜑𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐵 (𝑘𝑗 → (abs‘(𝐹𝑗)) ≤ 𝑏)) → (lim sup‘𝐹) < +∞)
8988, 64r19.29a 3137 . 2 (𝜑 → (lim sup‘𝐹) < +∞)
90 xrrebnd 13070 . . 3 ((lim sup‘𝐹) ∈ ℝ* → ((lim sup‘𝐹) ∈ ℝ ↔ (-∞ < (lim sup‘𝐹) ∧ (lim sup‘𝐹) < +∞)))
9113, 90syl 17 . 2 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (-∞ < (lim sup‘𝐹) ∧ (lim sup‘𝐹) < +∞)))
9265, 89, 91mpbir2and 713 1 (𝜑 → (lim sup‘𝐹) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3436  wss 3903   class class class wbr 5092  wf 6478  cfv 6482  supcsup 9330  cr 11008  +∞cpnf 11146  -∞cmnf 11147  *cxr 11148   < clt 11149  cle 11150  -cneg 11348  abscabs 15141  lim supclsp 15377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-ico 13254  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378
This theorem is referenced by:  limsupref  45670  ioodvbdlimc1lem2  45917  ioodvbdlimc2lem  45919
  Copyright terms: Public domain W3C validator