Step | Hyp | Ref
| Expression |
1 | | mnfxr 10963 |
. . . . 5
⊢ -∞
∈ ℝ* |
2 | 1 | a1i 11 |
. . . 4
⊢ (((𝜑 ∧ 𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) → -∞ ∈
ℝ*) |
3 | | renegcl 11214 |
. . . . . 6
⊢ (𝑏 ∈ ℝ → -𝑏 ∈
ℝ) |
4 | 3 | rexrd 10956 |
. . . . 5
⊢ (𝑏 ∈ ℝ → -𝑏 ∈
ℝ*) |
5 | 4 | ad2antlr 723 |
. . . 4
⊢ (((𝜑 ∧ 𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) → -𝑏 ∈ ℝ*) |
6 | | limsupre.f |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝐵⟶ℝ) |
7 | | reex 10893 |
. . . . . . . . 9
⊢ ℝ
∈ V |
8 | 7 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → ℝ ∈
V) |
9 | | limsupre.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ⊆ ℝ) |
10 | 8, 9 | ssexd 5243 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ V) |
11 | 6, 10 | fexd 7085 |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ V) |
12 | | limsupcl 15110 |
. . . . . 6
⊢ (𝐹 ∈ V → (lim
sup‘𝐹) ∈
ℝ*) |
13 | 11, 12 | syl 17 |
. . . . 5
⊢ (𝜑 → (lim sup‘𝐹) ∈
ℝ*) |
14 | 13 | ad2antrr 722 |
. . . 4
⊢ (((𝜑 ∧ 𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) → (lim sup‘𝐹) ∈
ℝ*) |
15 | 3 | mnfltd 12789 |
. . . . 5
⊢ (𝑏 ∈ ℝ → -∞
< -𝑏) |
16 | 15 | ad2antlr 723 |
. . . 4
⊢ (((𝜑 ∧ 𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) → -∞ < -𝑏) |
17 | 9 | ad2antrr 722 |
. . . . 5
⊢ (((𝜑 ∧ 𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) → 𝐵 ⊆ ℝ) |
18 | | ressxr 10950 |
. . . . . . . 8
⊢ ℝ
⊆ ℝ* |
19 | 18 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ℝ ⊆
ℝ*) |
20 | 6, 19 | fssd 6602 |
. . . . . 6
⊢ (𝜑 → 𝐹:𝐵⟶ℝ*) |
21 | 20 | ad2antrr 722 |
. . . . 5
⊢ (((𝜑 ∧ 𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) → 𝐹:𝐵⟶ℝ*) |
22 | | limsupre.2 |
. . . . . 6
⊢ (𝜑 → sup(𝐵, ℝ*, < ) =
+∞) |
23 | 22 | ad2antrr 722 |
. . . . 5
⊢ (((𝜑 ∧ 𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) → sup(𝐵, ℝ*, < ) =
+∞) |
24 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) → ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) |
25 | | nfv 1918 |
. . . . . . . . 9
⊢
Ⅎ𝑘(𝜑 ∧ 𝑏 ∈ ℝ) |
26 | | nfre1 3234 |
. . . . . . . . 9
⊢
Ⅎ𝑘∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏) |
27 | 25, 26 | nfan 1903 |
. . . . . . . 8
⊢
Ⅎ𝑘((𝜑 ∧ 𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) |
28 | | nfv 1918 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑗(𝜑 ∧ 𝑏 ∈ ℝ) |
29 | | nfv 1918 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑗 𝑘 ∈ ℝ |
30 | | nfra1 3142 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑗∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏) |
31 | 28, 29, 30 | nf3an 1905 |
. . . . . . . . . . 11
⊢
Ⅎ𝑗((𝜑 ∧ 𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) |
32 | | simp13 1203 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) ∧ 𝑗 ∈ 𝐵 ∧ 𝑘 ≤ 𝑗) → ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) |
33 | | simp2 1135 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) ∧ 𝑗 ∈ 𝐵 ∧ 𝑘 ≤ 𝑗) → 𝑗 ∈ 𝐵) |
34 | | simp3 1136 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) ∧ 𝑗 ∈ 𝐵 ∧ 𝑘 ≤ 𝑗) → 𝑘 ≤ 𝑗) |
35 | | rspa 3130 |
. . . . . . . . . . . . . . . 16
⊢
((∀𝑗 ∈
𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏) ∧ 𝑗 ∈ 𝐵) → (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) |
36 | 35 | imp 406 |
. . . . . . . . . . . . . . 15
⊢
(((∀𝑗 ∈
𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏) ∧ 𝑗 ∈ 𝐵) ∧ 𝑘 ≤ 𝑗) → (abs‘(𝐹‘𝑗)) ≤ 𝑏) |
37 | 32, 33, 34, 36 | syl21anc 834 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) ∧ 𝑗 ∈ 𝐵 ∧ 𝑘 ≤ 𝑗) → (abs‘(𝐹‘𝑗)) ≤ 𝑏) |
38 | | simp11l 1282 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) ∧ 𝑗 ∈ 𝐵 ∧ 𝑘 ≤ 𝑗) → 𝜑) |
39 | 6 | ffvelrnda 6943 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐵) → (𝐹‘𝑗) ∈ ℝ) |
40 | 38, 33, 39 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) ∧ 𝑗 ∈ 𝐵 ∧ 𝑘 ≤ 𝑗) → (𝐹‘𝑗) ∈ ℝ) |
41 | | simp11r 1283 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) ∧ 𝑗 ∈ 𝐵 ∧ 𝑘 ≤ 𝑗) → 𝑏 ∈ ℝ) |
42 | 40, 41 | absled 15070 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) ∧ 𝑗 ∈ 𝐵 ∧ 𝑘 ≤ 𝑗) → ((abs‘(𝐹‘𝑗)) ≤ 𝑏 ↔ (-𝑏 ≤ (𝐹‘𝑗) ∧ (𝐹‘𝑗) ≤ 𝑏))) |
43 | 37, 42 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) ∧ 𝑗 ∈ 𝐵 ∧ 𝑘 ≤ 𝑗) → (-𝑏 ≤ (𝐹‘𝑗) ∧ (𝐹‘𝑗) ≤ 𝑏)) |
44 | 43 | simpld 494 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) ∧ 𝑗 ∈ 𝐵 ∧ 𝑘 ≤ 𝑗) → -𝑏 ≤ (𝐹‘𝑗)) |
45 | 44 | 3exp 1117 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) → (𝑗 ∈ 𝐵 → (𝑘 ≤ 𝑗 → -𝑏 ≤ (𝐹‘𝑗)))) |
46 | 31, 45 | ralrimi 3139 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) → ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → -𝑏 ≤ (𝐹‘𝑗))) |
47 | 46 | 3exp 1117 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ ℝ) → (𝑘 ∈ ℝ → (∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏) → ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → -𝑏 ≤ (𝐹‘𝑗))))) |
48 | 47 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) → (𝑘 ∈ ℝ → (∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏) → ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → -𝑏 ≤ (𝐹‘𝑗))))) |
49 | 27, 48 | reximdai 3239 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) → (∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏) → ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → -𝑏 ≤ (𝐹‘𝑗)))) |
50 | 24, 49 | mpd 15 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) → ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → -𝑏 ≤ (𝐹‘𝑗))) |
51 | | breq2 5074 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → (ℎ ≤ 𝑖 ↔ ℎ ≤ 𝑗)) |
52 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑗 → (𝐹‘𝑖) = (𝐹‘𝑗)) |
53 | 52 | breq2d 5082 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → (-𝑏 ≤ (𝐹‘𝑖) ↔ -𝑏 ≤ (𝐹‘𝑗))) |
54 | 51, 53 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑖 = 𝑗 → ((ℎ ≤ 𝑖 → -𝑏 ≤ (𝐹‘𝑖)) ↔ (ℎ ≤ 𝑗 → -𝑏 ≤ (𝐹‘𝑗)))) |
55 | 54 | cbvralvw 3372 |
. . . . . . . 8
⊢
(∀𝑖 ∈
𝐵 (ℎ ≤ 𝑖 → -𝑏 ≤ (𝐹‘𝑖)) ↔ ∀𝑗 ∈ 𝐵 (ℎ ≤ 𝑗 → -𝑏 ≤ (𝐹‘𝑗))) |
56 | | breq1 5073 |
. . . . . . . . . 10
⊢ (ℎ = 𝑘 → (ℎ ≤ 𝑗 ↔ 𝑘 ≤ 𝑗)) |
57 | 56 | imbi1d 341 |
. . . . . . . . 9
⊢ (ℎ = 𝑘 → ((ℎ ≤ 𝑗 → -𝑏 ≤ (𝐹‘𝑗)) ↔ (𝑘 ≤ 𝑗 → -𝑏 ≤ (𝐹‘𝑗)))) |
58 | 57 | ralbidv 3120 |
. . . . . . . 8
⊢ (ℎ = 𝑘 → (∀𝑗 ∈ 𝐵 (ℎ ≤ 𝑗 → -𝑏 ≤ (𝐹‘𝑗)) ↔ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → -𝑏 ≤ (𝐹‘𝑗)))) |
59 | 55, 58 | syl5bb 282 |
. . . . . . 7
⊢ (ℎ = 𝑘 → (∀𝑖 ∈ 𝐵 (ℎ ≤ 𝑖 → -𝑏 ≤ (𝐹‘𝑖)) ↔ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → -𝑏 ≤ (𝐹‘𝑗)))) |
60 | 59 | cbvrexvw 3373 |
. . . . . 6
⊢
(∃ℎ ∈
ℝ ∀𝑖 ∈
𝐵 (ℎ ≤ 𝑖 → -𝑏 ≤ (𝐹‘𝑖)) ↔ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → -𝑏 ≤ (𝐹‘𝑗))) |
61 | 50, 60 | sylibr 233 |
. . . . 5
⊢ (((𝜑 ∧ 𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) → ∃ℎ ∈ ℝ ∀𝑖 ∈ 𝐵 (ℎ ≤ 𝑖 → -𝑏 ≤ (𝐹‘𝑖))) |
62 | 17, 21, 5, 23, 61 | limsupbnd2 15120 |
. . . 4
⊢ (((𝜑 ∧ 𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) → -𝑏 ≤ (lim sup‘𝐹)) |
63 | 2, 5, 14, 16, 62 | xrltletrd 12824 |
. . 3
⊢ (((𝜑 ∧ 𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) → -∞ < (lim sup‘𝐹)) |
64 | | limsupre.bnd |
. . 3
⊢ (𝜑 → ∃𝑏 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) |
65 | 63, 64 | r19.29a 3217 |
. 2
⊢ (𝜑 → -∞ < (lim
sup‘𝐹)) |
66 | | rexr 10952 |
. . . . 5
⊢ (𝑏 ∈ ℝ → 𝑏 ∈
ℝ*) |
67 | 66 | ad2antlr 723 |
. . . 4
⊢ (((𝜑 ∧ 𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) → 𝑏 ∈ ℝ*) |
68 | | pnfxr 10960 |
. . . . 5
⊢ +∞
∈ ℝ* |
69 | 68 | a1i 11 |
. . . 4
⊢ (((𝜑 ∧ 𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) → +∞ ∈
ℝ*) |
70 | 43 | simprd 495 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) ∧ 𝑗 ∈ 𝐵 ∧ 𝑘 ≤ 𝑗) → (𝐹‘𝑗) ≤ 𝑏) |
71 | 70 | 3exp 1117 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) → (𝑗 ∈ 𝐵 → (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑏))) |
72 | 31, 71 | ralrimi 3139 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑏 ∈ ℝ) ∧ 𝑘 ∈ ℝ ∧ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) → ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑏)) |
73 | 72 | 3exp 1117 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ ℝ) → (𝑘 ∈ ℝ → (∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏) → ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑏)))) |
74 | 73 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) → (𝑘 ∈ ℝ → (∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏) → ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑏)))) |
75 | 27, 74 | reximdai 3239 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) → (∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏) → ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑏))) |
76 | 24, 75 | mpd 15 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) → ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑏)) |
77 | 52 | breq1d 5080 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → ((𝐹‘𝑖) ≤ 𝑏 ↔ (𝐹‘𝑗) ≤ 𝑏)) |
78 | 51, 77 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑖 = 𝑗 → ((ℎ ≤ 𝑖 → (𝐹‘𝑖) ≤ 𝑏) ↔ (ℎ ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑏))) |
79 | 78 | cbvralvw 3372 |
. . . . . . . 8
⊢
(∀𝑖 ∈
𝐵 (ℎ ≤ 𝑖 → (𝐹‘𝑖) ≤ 𝑏) ↔ ∀𝑗 ∈ 𝐵 (ℎ ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑏)) |
80 | 56 | imbi1d 341 |
. . . . . . . . 9
⊢ (ℎ = 𝑘 → ((ℎ ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑏) ↔ (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑏))) |
81 | 80 | ralbidv 3120 |
. . . . . . . 8
⊢ (ℎ = 𝑘 → (∀𝑗 ∈ 𝐵 (ℎ ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑏) ↔ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑏))) |
82 | 79, 81 | syl5bb 282 |
. . . . . . 7
⊢ (ℎ = 𝑘 → (∀𝑖 ∈ 𝐵 (ℎ ≤ 𝑖 → (𝐹‘𝑖) ≤ 𝑏) ↔ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑏))) |
83 | 82 | cbvrexvw 3373 |
. . . . . 6
⊢
(∃ℎ ∈
ℝ ∀𝑖 ∈
𝐵 (ℎ ≤ 𝑖 → (𝐹‘𝑖) ≤ 𝑏) ↔ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑏)) |
84 | 76, 83 | sylibr 233 |
. . . . 5
⊢ (((𝜑 ∧ 𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) → ∃ℎ ∈ ℝ ∀𝑖 ∈ 𝐵 (ℎ ≤ 𝑖 → (𝐹‘𝑖) ≤ 𝑏)) |
85 | 17, 21, 67, 84 | limsupbnd1 15119 |
. . . 4
⊢ (((𝜑 ∧ 𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) → (lim sup‘𝐹) ≤ 𝑏) |
86 | | ltpnf 12785 |
. . . . 5
⊢ (𝑏 ∈ ℝ → 𝑏 < +∞) |
87 | 86 | ad2antlr 723 |
. . . 4
⊢ (((𝜑 ∧ 𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) → 𝑏 < +∞) |
88 | 14, 67, 69, 85, 87 | xrlelttrd 12823 |
. . 3
⊢ (((𝜑 ∧ 𝑏 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐵 (𝑘 ≤ 𝑗 → (abs‘(𝐹‘𝑗)) ≤ 𝑏)) → (lim sup‘𝐹) < +∞) |
89 | 88, 64 | r19.29a 3217 |
. 2
⊢ (𝜑 → (lim sup‘𝐹) <
+∞) |
90 | | xrrebnd 12831 |
. . 3
⊢ ((lim
sup‘𝐹) ∈
ℝ* → ((lim sup‘𝐹) ∈ ℝ ↔ (-∞ < (lim
sup‘𝐹) ∧ (lim
sup‘𝐹) <
+∞))) |
91 | 13, 90 | syl 17 |
. 2
⊢ (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔
(-∞ < (lim sup‘𝐹) ∧ (lim sup‘𝐹) < +∞))) |
92 | 65, 89, 91 | mpbir2and 709 |
1
⊢ (𝜑 → (lim sup‘𝐹) ∈
ℝ) |