Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunmapsn Structured version   Visualization version   GIF version

Theorem iunmapsn 45218
Description: The indexed union of set exponentiations to a singleton is equal to the set exponentiation of the indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
iunmapsn.x 𝑥𝜑
iunmapsn.a (𝜑𝐴𝑉)
iunmapsn.b ((𝜑𝑥𝐴) → 𝐵𝑊)
iunmapsn.c (𝜑𝐶𝑍)
Assertion
Ref Expression
iunmapsn (𝜑 𝑥𝐴 (𝐵m {𝐶}) = ( 𝑥𝐴 𝐵m {𝐶}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑍(𝑥)

Proof of Theorem iunmapsn
Dummy variables 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iunmapsn.x . . 3 𝑥𝜑
2 iunmapsn.a . . 3 (𝜑𝐴𝑉)
3 iunmapsn.b . . 3 ((𝜑𝑥𝐴) → 𝐵𝑊)
41, 2, 3iunmapss 45216 . 2 (𝜑 𝑥𝐴 (𝐵m {𝐶}) ⊆ ( 𝑥𝐴 𝐵m {𝐶}))
5 simpr 484 . . . . . 6 ((𝜑𝑓 ∈ ( 𝑥𝐴 𝐵m {𝐶})) → 𝑓 ∈ ( 𝑥𝐴 𝐵m {𝐶}))
63ex 412 . . . . . . . . . 10 (𝜑 → (𝑥𝐴𝐵𝑊))
71, 6ralrimi 3236 . . . . . . . . 9 (𝜑 → ∀𝑥𝐴 𝐵𝑊)
8 iunexg 7945 . . . . . . . . 9 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵𝑊) → 𝑥𝐴 𝐵 ∈ V)
92, 7, 8syl2anc 584 . . . . . . . 8 (𝜑 𝑥𝐴 𝐵 ∈ V)
10 iunmapsn.c . . . . . . . 8 (𝜑𝐶𝑍)
119, 10mapsnd 8862 . . . . . . 7 (𝜑 → ( 𝑥𝐴 𝐵m {𝐶}) = {𝑓 ∣ ∃𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩}})
1211adantr 480 . . . . . 6 ((𝜑𝑓 ∈ ( 𝑥𝐴 𝐵m {𝐶})) → ( 𝑥𝐴 𝐵m {𝐶}) = {𝑓 ∣ ∃𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩}})
135, 12eleqtrd 2831 . . . . 5 ((𝜑𝑓 ∈ ( 𝑥𝐴 𝐵m {𝐶})) → 𝑓 ∈ {𝑓 ∣ ∃𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩}})
14 abid 2712 . . . . 5 (𝑓 ∈ {𝑓 ∣ ∃𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩}} ↔ ∃𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩})
1513, 14sylib 218 . . . 4 ((𝜑𝑓 ∈ ( 𝑥𝐴 𝐵m {𝐶})) → ∃𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩})
16 eliun 4962 . . . . . . . . . 10 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦𝐵)
1716biimpi 216 . . . . . . . . 9 (𝑦 𝑥𝐴 𝐵 → ∃𝑥𝐴 𝑦𝐵)
18173ad2ant2 1134 . . . . . . . 8 ((𝜑𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩}) → ∃𝑥𝐴 𝑦𝐵)
19 nfcv 2892 . . . . . . . . . . 11 𝑥𝑦
20 nfiu1 4994 . . . . . . . . . . 11 𝑥 𝑥𝐴 𝐵
2119, 20nfel 2907 . . . . . . . . . 10 𝑥 𝑦 𝑥𝐴 𝐵
22 nfv 1914 . . . . . . . . . 10 𝑥 𝑓 = {⟨𝐶, 𝑦⟩}
231, 21, 22nf3an 1901 . . . . . . . . 9 𝑥(𝜑𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩})
24 rspe 3228 . . . . . . . . . . . . . . . 16 ((𝑦𝐵𝑓 = {⟨𝐶, 𝑦⟩}) → ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩})
2524ancoms 458 . . . . . . . . . . . . . . 15 ((𝑓 = {⟨𝐶, 𝑦⟩} ∧ 𝑦𝐵) → ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩})
26 abid 2712 . . . . . . . . . . . . . . 15 (𝑓 ∈ {𝑓 ∣ ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩}} ↔ ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩})
2725, 26sylibr 234 . . . . . . . . . . . . . 14 ((𝑓 = {⟨𝐶, 𝑦⟩} ∧ 𝑦𝐵) → 𝑓 ∈ {𝑓 ∣ ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩}})
2827adantll 714 . . . . . . . . . . . . 13 (((𝜑𝑓 = {⟨𝐶, 𝑦⟩}) ∧ 𝑦𝐵) → 𝑓 ∈ {𝑓 ∣ ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩}})
29283adant2 1131 . . . . . . . . . . . 12 (((𝜑𝑓 = {⟨𝐶, 𝑦⟩}) ∧ 𝑥𝐴𝑦𝐵) → 𝑓 ∈ {𝑓 ∣ ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩}})
3010adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → 𝐶𝑍)
313, 30mapsnd 8862 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (𝐵m {𝐶}) = {𝑓 ∣ ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩}})
3231eqcomd 2736 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → {𝑓 ∣ ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩}} = (𝐵m {𝐶}))
33323adant3 1132 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴𝑦𝐵) → {𝑓 ∣ ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩}} = (𝐵m {𝐶}))
34333adant1r 1178 . . . . . . . . . . . 12 (((𝜑𝑓 = {⟨𝐶, 𝑦⟩}) ∧ 𝑥𝐴𝑦𝐵) → {𝑓 ∣ ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩}} = (𝐵m {𝐶}))
3529, 34eleqtrd 2831 . . . . . . . . . . 11 (((𝜑𝑓 = {⟨𝐶, 𝑦⟩}) ∧ 𝑥𝐴𝑦𝐵) → 𝑓 ∈ (𝐵m {𝐶}))
36353exp 1119 . . . . . . . . . 10 ((𝜑𝑓 = {⟨𝐶, 𝑦⟩}) → (𝑥𝐴 → (𝑦𝐵𝑓 ∈ (𝐵m {𝐶}))))
37363adant2 1131 . . . . . . . . 9 ((𝜑𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩}) → (𝑥𝐴 → (𝑦𝐵𝑓 ∈ (𝐵m {𝐶}))))
3823, 37reximdai 3240 . . . . . . . 8 ((𝜑𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩}) → (∃𝑥𝐴 𝑦𝐵 → ∃𝑥𝐴 𝑓 ∈ (𝐵m {𝐶})))
3918, 38mpd 15 . . . . . . 7 ((𝜑𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩}) → ∃𝑥𝐴 𝑓 ∈ (𝐵m {𝐶}))
40393exp 1119 . . . . . 6 (𝜑 → (𝑦 𝑥𝐴 𝐵 → (𝑓 = {⟨𝐶, 𝑦⟩} → ∃𝑥𝐴 𝑓 ∈ (𝐵m {𝐶}))))
4140rexlimdv 3133 . . . . 5 (𝜑 → (∃𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩} → ∃𝑥𝐴 𝑓 ∈ (𝐵m {𝐶})))
4241adantr 480 . . . 4 ((𝜑𝑓 ∈ ( 𝑥𝐴 𝐵m {𝐶})) → (∃𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩} → ∃𝑥𝐴 𝑓 ∈ (𝐵m {𝐶})))
4315, 42mpd 15 . . 3 ((𝜑𝑓 ∈ ( 𝑥𝐴 𝐵m {𝐶})) → ∃𝑥𝐴 𝑓 ∈ (𝐵m {𝐶}))
44 eliun 4962 . . 3 (𝑓 𝑥𝐴 (𝐵m {𝐶}) ↔ ∃𝑥𝐴 𝑓 ∈ (𝐵m {𝐶}))
4543, 44sylibr 234 . 2 ((𝜑𝑓 ∈ ( 𝑥𝐴 𝐵m {𝐶})) → 𝑓 𝑥𝐴 (𝐵m {𝐶}))
464, 45eqelssd 3971 1 (𝜑 𝑥𝐴 (𝐵m {𝐶}) = ( 𝑥𝐴 𝐵m {𝐶}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wnf 1783  wcel 2109  {cab 2708  wral 3045  wrex 3054  Vcvv 3450  {csn 4592  cop 4598   ciun 4958  (class class class)co 7390  m cmap 8802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-map 8804
This theorem is referenced by:  ovnovollem1  46661  ovnovollem2  46662
  Copyright terms: Public domain W3C validator