Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunmapsn Structured version   Visualization version   GIF version

Theorem iunmapsn 41470
Description: The indexed union of set exponentiations to a singleton is equal to the set exponentiation of the indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
iunmapsn.x 𝑥𝜑
iunmapsn.a (𝜑𝐴𝑉)
iunmapsn.b ((𝜑𝑥𝐴) → 𝐵𝑊)
iunmapsn.c (𝜑𝐶𝑍)
Assertion
Ref Expression
iunmapsn (𝜑 𝑥𝐴 (𝐵m {𝐶}) = ( 𝑥𝐴 𝐵m {𝐶}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑍(𝑥)

Proof of Theorem iunmapsn
Dummy variables 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iunmapsn.x . . 3 𝑥𝜑
2 iunmapsn.a . . 3 (𝜑𝐴𝑉)
3 iunmapsn.b . . 3 ((𝜑𝑥𝐴) → 𝐵𝑊)
41, 2, 3iunmapss 41468 . 2 (𝜑 𝑥𝐴 (𝐵m {𝐶}) ⊆ ( 𝑥𝐴 𝐵m {𝐶}))
5 simpr 487 . . . . . 6 ((𝜑𝑓 ∈ ( 𝑥𝐴 𝐵m {𝐶})) → 𝑓 ∈ ( 𝑥𝐴 𝐵m {𝐶}))
63ex 415 . . . . . . . . . 10 (𝜑 → (𝑥𝐴𝐵𝑊))
71, 6ralrimi 3214 . . . . . . . . 9 (𝜑 → ∀𝑥𝐴 𝐵𝑊)
8 iunexg 7656 . . . . . . . . 9 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵𝑊) → 𝑥𝐴 𝐵 ∈ V)
92, 7, 8syl2anc 586 . . . . . . . 8 (𝜑 𝑥𝐴 𝐵 ∈ V)
10 iunmapsn.c . . . . . . . 8 (𝜑𝐶𝑍)
119, 10mapsnd 8442 . . . . . . 7 (𝜑 → ( 𝑥𝐴 𝐵m {𝐶}) = {𝑓 ∣ ∃𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩}})
1211adantr 483 . . . . . 6 ((𝜑𝑓 ∈ ( 𝑥𝐴 𝐵m {𝐶})) → ( 𝑥𝐴 𝐵m {𝐶}) = {𝑓 ∣ ∃𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩}})
135, 12eleqtrd 2913 . . . . 5 ((𝜑𝑓 ∈ ( 𝑥𝐴 𝐵m {𝐶})) → 𝑓 ∈ {𝑓 ∣ ∃𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩}})
14 abid 2801 . . . . 5 (𝑓 ∈ {𝑓 ∣ ∃𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩}} ↔ ∃𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩})
1513, 14sylib 220 . . . 4 ((𝜑𝑓 ∈ ( 𝑥𝐴 𝐵m {𝐶})) → ∃𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩})
16 eliun 4914 . . . . . . . . . 10 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦𝐵)
1716biimpi 218 . . . . . . . . 9 (𝑦 𝑥𝐴 𝐵 → ∃𝑥𝐴 𝑦𝐵)
18173ad2ant2 1129 . . . . . . . 8 ((𝜑𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩}) → ∃𝑥𝐴 𝑦𝐵)
19 nfcv 2975 . . . . . . . . . . 11 𝑥𝑦
20 nfiu1 4944 . . . . . . . . . . 11 𝑥 𝑥𝐴 𝐵
2119, 20nfel 2990 . . . . . . . . . 10 𝑥 𝑦 𝑥𝐴 𝐵
22 nfv 1909 . . . . . . . . . 10 𝑥 𝑓 = {⟨𝐶, 𝑦⟩}
231, 21, 22nf3an 1896 . . . . . . . . 9 𝑥(𝜑𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩})
24 rspe 3302 . . . . . . . . . . . . . . . 16 ((𝑦𝐵𝑓 = {⟨𝐶, 𝑦⟩}) → ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩})
2524ancoms 461 . . . . . . . . . . . . . . 15 ((𝑓 = {⟨𝐶, 𝑦⟩} ∧ 𝑦𝐵) → ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩})
26 abid 2801 . . . . . . . . . . . . . . 15 (𝑓 ∈ {𝑓 ∣ ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩}} ↔ ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩})
2725, 26sylibr 236 . . . . . . . . . . . . . 14 ((𝑓 = {⟨𝐶, 𝑦⟩} ∧ 𝑦𝐵) → 𝑓 ∈ {𝑓 ∣ ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩}})
2827adantll 712 . . . . . . . . . . . . 13 (((𝜑𝑓 = {⟨𝐶, 𝑦⟩}) ∧ 𝑦𝐵) → 𝑓 ∈ {𝑓 ∣ ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩}})
29283adant2 1126 . . . . . . . . . . . 12 (((𝜑𝑓 = {⟨𝐶, 𝑦⟩}) ∧ 𝑥𝐴𝑦𝐵) → 𝑓 ∈ {𝑓 ∣ ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩}})
3010adantr 483 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → 𝐶𝑍)
313, 30mapsnd 8442 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (𝐵m {𝐶}) = {𝑓 ∣ ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩}})
3231eqcomd 2825 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → {𝑓 ∣ ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩}} = (𝐵m {𝐶}))
33323adant3 1127 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴𝑦𝐵) → {𝑓 ∣ ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩}} = (𝐵m {𝐶}))
34333adant1r 1172 . . . . . . . . . . . 12 (((𝜑𝑓 = {⟨𝐶, 𝑦⟩}) ∧ 𝑥𝐴𝑦𝐵) → {𝑓 ∣ ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩}} = (𝐵m {𝐶}))
3529, 34eleqtrd 2913 . . . . . . . . . . 11 (((𝜑𝑓 = {⟨𝐶, 𝑦⟩}) ∧ 𝑥𝐴𝑦𝐵) → 𝑓 ∈ (𝐵m {𝐶}))
36353exp 1114 . . . . . . . . . 10 ((𝜑𝑓 = {⟨𝐶, 𝑦⟩}) → (𝑥𝐴 → (𝑦𝐵𝑓 ∈ (𝐵m {𝐶}))))
37363adant2 1126 . . . . . . . . 9 ((𝜑𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩}) → (𝑥𝐴 → (𝑦𝐵𝑓 ∈ (𝐵m {𝐶}))))
3823, 37reximdai 3309 . . . . . . . 8 ((𝜑𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩}) → (∃𝑥𝐴 𝑦𝐵 → ∃𝑥𝐴 𝑓 ∈ (𝐵m {𝐶})))
3918, 38mpd 15 . . . . . . 7 ((𝜑𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩}) → ∃𝑥𝐴 𝑓 ∈ (𝐵m {𝐶}))
40393exp 1114 . . . . . 6 (𝜑 → (𝑦 𝑥𝐴 𝐵 → (𝑓 = {⟨𝐶, 𝑦⟩} → ∃𝑥𝐴 𝑓 ∈ (𝐵m {𝐶}))))
4140rexlimdv 3281 . . . . 5 (𝜑 → (∃𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩} → ∃𝑥𝐴 𝑓 ∈ (𝐵m {𝐶})))
4241adantr 483 . . . 4 ((𝜑𝑓 ∈ ( 𝑥𝐴 𝐵m {𝐶})) → (∃𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩} → ∃𝑥𝐴 𝑓 ∈ (𝐵m {𝐶})))
4315, 42mpd 15 . . 3 ((𝜑𝑓 ∈ ( 𝑥𝐴 𝐵m {𝐶})) → ∃𝑥𝐴 𝑓 ∈ (𝐵m {𝐶}))
44 eliun 4914 . . 3 (𝑓 𝑥𝐴 (𝐵m {𝐶}) ↔ ∃𝑥𝐴 𝑓 ∈ (𝐵m {𝐶}))
4543, 44sylibr 236 . 2 ((𝜑𝑓 ∈ ( 𝑥𝐴 𝐵m {𝐶})) → 𝑓 𝑥𝐴 (𝐵m {𝐶}))
464, 45eqelssd 3986 1 (𝜑 𝑥𝐴 (𝐵m {𝐶}) = ( 𝑥𝐴 𝐵m {𝐶}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1082   = wceq 1531  wnf 1778  wcel 2108  {cab 2797  wral 3136  wrex 3137  Vcvv 3493  {csn 4559  cop 4565   ciun 4910  (class class class)co 7148  m cmap 8398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7151  df-oprab 7152  df-mpo 7153  df-1st 7681  df-2nd 7682  df-map 8400
This theorem is referenced by:  ovnovollem1  42929  ovnovollem2  42930
  Copyright terms: Public domain W3C validator