Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunmapsn Structured version   Visualization version   GIF version

Theorem iunmapsn 40214
 Description: The indexed union of set exponentiations to a singleton is equal to the set exponentiation of the indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
iunmapsn.x 𝑥𝜑
iunmapsn.a (𝜑𝐴𝑉)
iunmapsn.b ((𝜑𝑥𝐴) → 𝐵𝑊)
iunmapsn.c (𝜑𝐶𝑍)
Assertion
Ref Expression
iunmapsn (𝜑 𝑥𝐴 (𝐵𝑚 {𝐶}) = ( 𝑥𝐴 𝐵𝑚 {𝐶}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑍(𝑥)

Proof of Theorem iunmapsn
Dummy variables 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iunmapsn.x . . 3 𝑥𝜑
2 iunmapsn.a . . 3 (𝜑𝐴𝑉)
3 iunmapsn.b . . 3 ((𝜑𝑥𝐴) → 𝐵𝑊)
41, 2, 3iunmapss 40212 . 2 (𝜑 𝑥𝐴 (𝐵𝑚 {𝐶}) ⊆ ( 𝑥𝐴 𝐵𝑚 {𝐶}))
5 simpr 479 . . . . . 6 ((𝜑𝑓 ∈ ( 𝑥𝐴 𝐵𝑚 {𝐶})) → 𝑓 ∈ ( 𝑥𝐴 𝐵𝑚 {𝐶}))
63ex 403 . . . . . . . . . 10 (𝜑 → (𝑥𝐴𝐵𝑊))
71, 6ralrimi 3165 . . . . . . . . 9 (𝜑 → ∀𝑥𝐴 𝐵𝑊)
8 iunexg 7403 . . . . . . . . 9 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵𝑊) → 𝑥𝐴 𝐵 ∈ V)
92, 7, 8syl2anc 581 . . . . . . . 8 (𝜑 𝑥𝐴 𝐵 ∈ V)
10 iunmapsn.c . . . . . . . 8 (𝜑𝐶𝑍)
119, 10mapsnd 8163 . . . . . . 7 (𝜑 → ( 𝑥𝐴 𝐵𝑚 {𝐶}) = {𝑓 ∣ ∃𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩}})
1211adantr 474 . . . . . 6 ((𝜑𝑓 ∈ ( 𝑥𝐴 𝐵𝑚 {𝐶})) → ( 𝑥𝐴 𝐵𝑚 {𝐶}) = {𝑓 ∣ ∃𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩}})
135, 12eleqtrd 2907 . . . . 5 ((𝜑𝑓 ∈ ( 𝑥𝐴 𝐵𝑚 {𝐶})) → 𝑓 ∈ {𝑓 ∣ ∃𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩}})
14 abid 2812 . . . . 5 (𝑓 ∈ {𝑓 ∣ ∃𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩}} ↔ ∃𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩})
1513, 14sylib 210 . . . 4 ((𝜑𝑓 ∈ ( 𝑥𝐴 𝐵𝑚 {𝐶})) → ∃𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩})
16 eliun 4743 . . . . . . . . . 10 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦𝐵)
1716biimpi 208 . . . . . . . . 9 (𝑦 𝑥𝐴 𝐵 → ∃𝑥𝐴 𝑦𝐵)
18173ad2ant2 1170 . . . . . . . 8 ((𝜑𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩}) → ∃𝑥𝐴 𝑦𝐵)
19 nfcv 2968 . . . . . . . . . . 11 𝑥𝑦
20 nfiu1 4769 . . . . . . . . . . 11 𝑥 𝑥𝐴 𝐵
2119, 20nfel 2981 . . . . . . . . . 10 𝑥 𝑦 𝑥𝐴 𝐵
22 nfv 2015 . . . . . . . . . 10 𝑥 𝑓 = {⟨𝐶, 𝑦⟩}
231, 21, 22nf3an 2006 . . . . . . . . 9 𝑥(𝜑𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩})
24 rspe 3210 . . . . . . . . . . . . . . . 16 ((𝑦𝐵𝑓 = {⟨𝐶, 𝑦⟩}) → ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩})
2524ancoms 452 . . . . . . . . . . . . . . 15 ((𝑓 = {⟨𝐶, 𝑦⟩} ∧ 𝑦𝐵) → ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩})
26 abid 2812 . . . . . . . . . . . . . . 15 (𝑓 ∈ {𝑓 ∣ ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩}} ↔ ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩})
2725, 26sylibr 226 . . . . . . . . . . . . . 14 ((𝑓 = {⟨𝐶, 𝑦⟩} ∧ 𝑦𝐵) → 𝑓 ∈ {𝑓 ∣ ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩}})
2827adantll 707 . . . . . . . . . . . . 13 (((𝜑𝑓 = {⟨𝐶, 𝑦⟩}) ∧ 𝑦𝐵) → 𝑓 ∈ {𝑓 ∣ ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩}})
29283adant2 1167 . . . . . . . . . . . 12 (((𝜑𝑓 = {⟨𝐶, 𝑦⟩}) ∧ 𝑥𝐴𝑦𝐵) → 𝑓 ∈ {𝑓 ∣ ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩}})
3010adantr 474 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → 𝐶𝑍)
313, 30mapsnd 8163 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (𝐵𝑚 {𝐶}) = {𝑓 ∣ ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩}})
3231eqcomd 2830 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → {𝑓 ∣ ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩}} = (𝐵𝑚 {𝐶}))
33323adant3 1168 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴𝑦𝐵) → {𝑓 ∣ ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩}} = (𝐵𝑚 {𝐶}))
34333adant1r 1229 . . . . . . . . . . . 12 (((𝜑𝑓 = {⟨𝐶, 𝑦⟩}) ∧ 𝑥𝐴𝑦𝐵) → {𝑓 ∣ ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩}} = (𝐵𝑚 {𝐶}))
3529, 34eleqtrd 2907 . . . . . . . . . . 11 (((𝜑𝑓 = {⟨𝐶, 𝑦⟩}) ∧ 𝑥𝐴𝑦𝐵) → 𝑓 ∈ (𝐵𝑚 {𝐶}))
36353exp 1154 . . . . . . . . . 10 ((𝜑𝑓 = {⟨𝐶, 𝑦⟩}) → (𝑥𝐴 → (𝑦𝐵𝑓 ∈ (𝐵𝑚 {𝐶}))))
37363adant2 1167 . . . . . . . . 9 ((𝜑𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩}) → (𝑥𝐴 → (𝑦𝐵𝑓 ∈ (𝐵𝑚 {𝐶}))))
3823, 37reximdai 3219 . . . . . . . 8 ((𝜑𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩}) → (∃𝑥𝐴 𝑦𝐵 → ∃𝑥𝐴 𝑓 ∈ (𝐵𝑚 {𝐶})))
3918, 38mpd 15 . . . . . . 7 ((𝜑𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩}) → ∃𝑥𝐴 𝑓 ∈ (𝐵𝑚 {𝐶}))
40393exp 1154 . . . . . 6 (𝜑 → (𝑦 𝑥𝐴 𝐵 → (𝑓 = {⟨𝐶, 𝑦⟩} → ∃𝑥𝐴 𝑓 ∈ (𝐵𝑚 {𝐶}))))
4140rexlimdv 3238 . . . . 5 (𝜑 → (∃𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩} → ∃𝑥𝐴 𝑓 ∈ (𝐵𝑚 {𝐶})))
4241adantr 474 . . . 4 ((𝜑𝑓 ∈ ( 𝑥𝐴 𝐵𝑚 {𝐶})) → (∃𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩} → ∃𝑥𝐴 𝑓 ∈ (𝐵𝑚 {𝐶})))
4315, 42mpd 15 . . 3 ((𝜑𝑓 ∈ ( 𝑥𝐴 𝐵𝑚 {𝐶})) → ∃𝑥𝐴 𝑓 ∈ (𝐵𝑚 {𝐶}))
44 eliun 4743 . . 3 (𝑓 𝑥𝐴 (𝐵𝑚 {𝐶}) ↔ ∃𝑥𝐴 𝑓 ∈ (𝐵𝑚 {𝐶}))
4543, 44sylibr 226 . 2 ((𝜑𝑓 ∈ ( 𝑥𝐴 𝐵𝑚 {𝐶})) → 𝑓 𝑥𝐴 (𝐵𝑚 {𝐶}))
464, 45eqelssd 3846 1 (𝜑 𝑥𝐴 (𝐵𝑚 {𝐶}) = ( 𝑥𝐴 𝐵𝑚 {𝐶}))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386   ∧ w3a 1113   = wceq 1658  Ⅎwnf 1884   ∈ wcel 2166  {cab 2810  ∀wral 3116  ∃wrex 3117  Vcvv 3413  {csn 4396  ⟨cop 4402  ∪ ciun 4739  (class class class)co 6904   ↑𝑚 cmap 8121 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-rep 4993  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126  ax-un 7208 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-ral 3121  df-rex 3122  df-reu 3123  df-rab 3125  df-v 3415  df-sbc 3662  df-csb 3757  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-nul 4144  df-if 4306  df-pw 4379  df-sn 4397  df-pr 4399  df-op 4403  df-uni 4658  df-iun 4741  df-br 4873  df-opab 4935  df-mpt 4952  df-id 5249  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-iota 6085  df-fun 6124  df-fn 6125  df-f 6126  df-f1 6127  df-fo 6128  df-f1o 6129  df-fv 6130  df-ov 6907  df-oprab 6908  df-mpt2 6909  df-1st 7427  df-2nd 7428  df-map 8123 This theorem is referenced by:  ovnovollem1  41663  ovnovollem2  41664
 Copyright terms: Public domain W3C validator