Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunmapsn Structured version   Visualization version   GIF version

Theorem iunmapsn 45211
Description: The indexed union of set exponentiations to a singleton is equal to the set exponentiation of the indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
iunmapsn.x 𝑥𝜑
iunmapsn.a (𝜑𝐴𝑉)
iunmapsn.b ((𝜑𝑥𝐴) → 𝐵𝑊)
iunmapsn.c (𝜑𝐶𝑍)
Assertion
Ref Expression
iunmapsn (𝜑 𝑥𝐴 (𝐵m {𝐶}) = ( 𝑥𝐴 𝐵m {𝐶}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑍(𝑥)

Proof of Theorem iunmapsn
Dummy variables 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iunmapsn.x . . 3 𝑥𝜑
2 iunmapsn.a . . 3 (𝜑𝐴𝑉)
3 iunmapsn.b . . 3 ((𝜑𝑥𝐴) → 𝐵𝑊)
41, 2, 3iunmapss 45209 . 2 (𝜑 𝑥𝐴 (𝐵m {𝐶}) ⊆ ( 𝑥𝐴 𝐵m {𝐶}))
5 simpr 484 . . . . . 6 ((𝜑𝑓 ∈ ( 𝑥𝐴 𝐵m {𝐶})) → 𝑓 ∈ ( 𝑥𝐴 𝐵m {𝐶}))
63ex 412 . . . . . . . . . 10 (𝜑 → (𝑥𝐴𝐵𝑊))
71, 6ralrimi 3235 . . . . . . . . 9 (𝜑 → ∀𝑥𝐴 𝐵𝑊)
8 iunexg 7942 . . . . . . . . 9 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵𝑊) → 𝑥𝐴 𝐵 ∈ V)
92, 7, 8syl2anc 584 . . . . . . . 8 (𝜑 𝑥𝐴 𝐵 ∈ V)
10 iunmapsn.c . . . . . . . 8 (𝜑𝐶𝑍)
119, 10mapsnd 8859 . . . . . . 7 (𝜑 → ( 𝑥𝐴 𝐵m {𝐶}) = {𝑓 ∣ ∃𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩}})
1211adantr 480 . . . . . 6 ((𝜑𝑓 ∈ ( 𝑥𝐴 𝐵m {𝐶})) → ( 𝑥𝐴 𝐵m {𝐶}) = {𝑓 ∣ ∃𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩}})
135, 12eleqtrd 2830 . . . . 5 ((𝜑𝑓 ∈ ( 𝑥𝐴 𝐵m {𝐶})) → 𝑓 ∈ {𝑓 ∣ ∃𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩}})
14 abid 2711 . . . . 5 (𝑓 ∈ {𝑓 ∣ ∃𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩}} ↔ ∃𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩})
1513, 14sylib 218 . . . 4 ((𝜑𝑓 ∈ ( 𝑥𝐴 𝐵m {𝐶})) → ∃𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩})
16 eliun 4959 . . . . . . . . . 10 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦𝐵)
1716biimpi 216 . . . . . . . . 9 (𝑦 𝑥𝐴 𝐵 → ∃𝑥𝐴 𝑦𝐵)
18173ad2ant2 1134 . . . . . . . 8 ((𝜑𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩}) → ∃𝑥𝐴 𝑦𝐵)
19 nfcv 2891 . . . . . . . . . . 11 𝑥𝑦
20 nfiu1 4991 . . . . . . . . . . 11 𝑥 𝑥𝐴 𝐵
2119, 20nfel 2906 . . . . . . . . . 10 𝑥 𝑦 𝑥𝐴 𝐵
22 nfv 1914 . . . . . . . . . 10 𝑥 𝑓 = {⟨𝐶, 𝑦⟩}
231, 21, 22nf3an 1901 . . . . . . . . 9 𝑥(𝜑𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩})
24 rspe 3227 . . . . . . . . . . . . . . . 16 ((𝑦𝐵𝑓 = {⟨𝐶, 𝑦⟩}) → ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩})
2524ancoms 458 . . . . . . . . . . . . . . 15 ((𝑓 = {⟨𝐶, 𝑦⟩} ∧ 𝑦𝐵) → ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩})
26 abid 2711 . . . . . . . . . . . . . . 15 (𝑓 ∈ {𝑓 ∣ ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩}} ↔ ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩})
2725, 26sylibr 234 . . . . . . . . . . . . . 14 ((𝑓 = {⟨𝐶, 𝑦⟩} ∧ 𝑦𝐵) → 𝑓 ∈ {𝑓 ∣ ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩}})
2827adantll 714 . . . . . . . . . . . . 13 (((𝜑𝑓 = {⟨𝐶, 𝑦⟩}) ∧ 𝑦𝐵) → 𝑓 ∈ {𝑓 ∣ ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩}})
29283adant2 1131 . . . . . . . . . . . 12 (((𝜑𝑓 = {⟨𝐶, 𝑦⟩}) ∧ 𝑥𝐴𝑦𝐵) → 𝑓 ∈ {𝑓 ∣ ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩}})
3010adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → 𝐶𝑍)
313, 30mapsnd 8859 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (𝐵m {𝐶}) = {𝑓 ∣ ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩}})
3231eqcomd 2735 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → {𝑓 ∣ ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩}} = (𝐵m {𝐶}))
33323adant3 1132 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴𝑦𝐵) → {𝑓 ∣ ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩}} = (𝐵m {𝐶}))
34333adant1r 1178 . . . . . . . . . . . 12 (((𝜑𝑓 = {⟨𝐶, 𝑦⟩}) ∧ 𝑥𝐴𝑦𝐵) → {𝑓 ∣ ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩}} = (𝐵m {𝐶}))
3529, 34eleqtrd 2830 . . . . . . . . . . 11 (((𝜑𝑓 = {⟨𝐶, 𝑦⟩}) ∧ 𝑥𝐴𝑦𝐵) → 𝑓 ∈ (𝐵m {𝐶}))
36353exp 1119 . . . . . . . . . 10 ((𝜑𝑓 = {⟨𝐶, 𝑦⟩}) → (𝑥𝐴 → (𝑦𝐵𝑓 ∈ (𝐵m {𝐶}))))
37363adant2 1131 . . . . . . . . 9 ((𝜑𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩}) → (𝑥𝐴 → (𝑦𝐵𝑓 ∈ (𝐵m {𝐶}))))
3823, 37reximdai 3239 . . . . . . . 8 ((𝜑𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩}) → (∃𝑥𝐴 𝑦𝐵 → ∃𝑥𝐴 𝑓 ∈ (𝐵m {𝐶})))
3918, 38mpd 15 . . . . . . 7 ((𝜑𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩}) → ∃𝑥𝐴 𝑓 ∈ (𝐵m {𝐶}))
40393exp 1119 . . . . . 6 (𝜑 → (𝑦 𝑥𝐴 𝐵 → (𝑓 = {⟨𝐶, 𝑦⟩} → ∃𝑥𝐴 𝑓 ∈ (𝐵m {𝐶}))))
4140rexlimdv 3132 . . . . 5 (𝜑 → (∃𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩} → ∃𝑥𝐴 𝑓 ∈ (𝐵m {𝐶})))
4241adantr 480 . . . 4 ((𝜑𝑓 ∈ ( 𝑥𝐴 𝐵m {𝐶})) → (∃𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩} → ∃𝑥𝐴 𝑓 ∈ (𝐵m {𝐶})))
4315, 42mpd 15 . . 3 ((𝜑𝑓 ∈ ( 𝑥𝐴 𝐵m {𝐶})) → ∃𝑥𝐴 𝑓 ∈ (𝐵m {𝐶}))
44 eliun 4959 . . 3 (𝑓 𝑥𝐴 (𝐵m {𝐶}) ↔ ∃𝑥𝐴 𝑓 ∈ (𝐵m {𝐶}))
4543, 44sylibr 234 . 2 ((𝜑𝑓 ∈ ( 𝑥𝐴 𝐵m {𝐶})) → 𝑓 𝑥𝐴 (𝐵m {𝐶}))
464, 45eqelssd 3968 1 (𝜑 𝑥𝐴 (𝐵m {𝐶}) = ( 𝑥𝐴 𝐵m {𝐶}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wnf 1783  wcel 2109  {cab 2707  wral 3044  wrex 3053  Vcvv 3447  {csn 4589  cop 4595   ciun 4955  (class class class)co 7387  m cmap 8799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801
This theorem is referenced by:  ovnovollem1  46654  ovnovollem2  46655
  Copyright terms: Public domain W3C validator