Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supxrunb3 Structured version   Visualization version   GIF version

Theorem supxrunb3 44844
Description: The supremum of an unbounded-above set of extended reals is plus infinity. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
supxrunb3 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 ↔ sup(𝐴, ℝ*, < ) = +∞))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem supxrunb3
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 peano2re 11417 . . . . . . . . 9 (𝑤 ∈ ℝ → (𝑤 + 1) ∈ ℝ)
21adantl 480 . . . . . . . 8 ((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦𝑤 ∈ ℝ) → (𝑤 + 1) ∈ ℝ)
3 simpl 481 . . . . . . . 8 ((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦𝑤 ∈ ℝ) → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦)
4 breq1 5146 . . . . . . . . . 10 (𝑥 = (𝑤 + 1) → (𝑥𝑦 ↔ (𝑤 + 1) ≤ 𝑦))
54rexbidv 3169 . . . . . . . . 9 (𝑥 = (𝑤 + 1) → (∃𝑦𝐴 𝑥𝑦 ↔ ∃𝑦𝐴 (𝑤 + 1) ≤ 𝑦))
65rspcva 3599 . . . . . . . 8 (((𝑤 + 1) ∈ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) → ∃𝑦𝐴 (𝑤 + 1) ≤ 𝑦)
72, 3, 6syl2anc 582 . . . . . . 7 ((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦𝑤 ∈ ℝ) → ∃𝑦𝐴 (𝑤 + 1) ≤ 𝑦)
87adantll 712 . . . . . 6 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) ∧ 𝑤 ∈ ℝ) → ∃𝑦𝐴 (𝑤 + 1) ≤ 𝑦)
9 nfv 1909 . . . . . . . . 9 𝑦 𝐴 ⊆ ℝ*
10 nfcv 2892 . . . . . . . . . 10 𝑦
11 nfre1 3273 . . . . . . . . . 10 𝑦𝑦𝐴 𝑥𝑦
1210, 11nfralw 3299 . . . . . . . . 9 𝑦𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦
139, 12nfan 1894 . . . . . . . 8 𝑦(𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦)
14 nfv 1909 . . . . . . . 8 𝑦 𝑤 ∈ ℝ
1513, 14nfan 1894 . . . . . . 7 𝑦((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) ∧ 𝑤 ∈ ℝ)
16 simp1r 1195 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴 ∧ (𝑤 + 1) ≤ 𝑦) → 𝑤 ∈ ℝ)
17 rexr 11290 . . . . . . . . . . 11 (𝑤 ∈ ℝ → 𝑤 ∈ ℝ*)
1816, 17syl 17 . . . . . . . . . 10 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴 ∧ (𝑤 + 1) ≤ 𝑦) → 𝑤 ∈ ℝ*)
191rexrd 11294 . . . . . . . . . . 11 (𝑤 ∈ ℝ → (𝑤 + 1) ∈ ℝ*)
2016, 19syl 17 . . . . . . . . . 10 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴 ∧ (𝑤 + 1) ≤ 𝑦) → (𝑤 + 1) ∈ ℝ*)
21 simp1l 1194 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴 ∧ (𝑤 + 1) ≤ 𝑦) → 𝐴 ⊆ ℝ*)
22 simp2 1134 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴 ∧ (𝑤 + 1) ≤ 𝑦) → 𝑦𝐴)
23 ssel2 3967 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ*𝑦𝐴) → 𝑦 ∈ ℝ*)
2421, 22, 23syl2anc 582 . . . . . . . . . 10 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴 ∧ (𝑤 + 1) ≤ 𝑦) → 𝑦 ∈ ℝ*)
2516ltp1d 12174 . . . . . . . . . 10 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴 ∧ (𝑤 + 1) ≤ 𝑦) → 𝑤 < (𝑤 + 1))
26 simp3 1135 . . . . . . . . . 10 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴 ∧ (𝑤 + 1) ≤ 𝑦) → (𝑤 + 1) ≤ 𝑦)
2718, 20, 24, 25, 26xrltletrd 13172 . . . . . . . . 9 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴 ∧ (𝑤 + 1) ≤ 𝑦) → 𝑤 < 𝑦)
28273exp 1116 . . . . . . . 8 ((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) → (𝑦𝐴 → ((𝑤 + 1) ≤ 𝑦𝑤 < 𝑦)))
2928adantlr 713 . . . . . . 7 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) ∧ 𝑤 ∈ ℝ) → (𝑦𝐴 → ((𝑤 + 1) ≤ 𝑦𝑤 < 𝑦)))
3015, 29reximdai 3249 . . . . . 6 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) ∧ 𝑤 ∈ ℝ) → (∃𝑦𝐴 (𝑤 + 1) ≤ 𝑦 → ∃𝑦𝐴 𝑤 < 𝑦))
318, 30mpd 15 . . . . 5 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) ∧ 𝑤 ∈ ℝ) → ∃𝑦𝐴 𝑤 < 𝑦)
3231ralrimiva 3136 . . . 4 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) → ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑤 < 𝑦)
3332ex 411 . . 3 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 → ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑤 < 𝑦))
34 breq1 5146 . . . . . . . 8 (𝑤 = 𝑥 → (𝑤 < 𝑦𝑥 < 𝑦))
3534rexbidv 3169 . . . . . . 7 (𝑤 = 𝑥 → (∃𝑦𝐴 𝑤 < 𝑦 ↔ ∃𝑦𝐴 𝑥 < 𝑦))
3635cbvralvw 3225 . . . . . 6 (∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑤 < 𝑦 ↔ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦)
3736biimpi 215 . . . . 5 (∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑤 < 𝑦 → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦)
38 nfv 1909 . . . . . . 7 𝑥 𝐴 ⊆ ℝ*
39 nfra1 3272 . . . . . . 7 𝑥𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦
4038, 39nfan 1894 . . . . . 6 𝑥(𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦)
41 simpll 765 . . . . . . . 8 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦) ∧ 𝑥 ∈ ℝ) → 𝐴 ⊆ ℝ*)
42 simpr 483 . . . . . . . 8 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
43 rspa 3236 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦𝑥 ∈ ℝ) → ∃𝑦𝐴 𝑥 < 𝑦)
4443adantll 712 . . . . . . . . 9 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦) ∧ 𝑥 ∈ ℝ) → ∃𝑦𝐴 𝑥 < 𝑦)
45 rexr 11290 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
4645ad3antlr 729 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ*)
4723adantr 479 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ*𝑦𝐴) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ*)
4847adantllr 717 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ*)
49 simpr 483 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑥 < 𝑦) → 𝑥 < 𝑦)
5046, 48, 49xrltled 13161 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑥 < 𝑦) → 𝑥𝑦)
5150ex 411 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) → (𝑥 < 𝑦𝑥𝑦))
5251reximdva 3158 . . . . . . . . . 10 ((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) → (∃𝑦𝐴 𝑥 < 𝑦 → ∃𝑦𝐴 𝑥𝑦))
5352adantlr 713 . . . . . . . . 9 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦) ∧ 𝑥 ∈ ℝ) → (∃𝑦𝐴 𝑥 < 𝑦 → ∃𝑦𝐴 𝑥𝑦))
5444, 53mpd 15 . . . . . . . 8 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦) ∧ 𝑥 ∈ ℝ) → ∃𝑦𝐴 𝑥𝑦)
55 simpr 483 . . . . . . . 8 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ ∃𝑦𝐴 𝑥𝑦) → ∃𝑦𝐴 𝑥𝑦)
5641, 42, 54, 55syl21anc 836 . . . . . . 7 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦) ∧ 𝑥 ∈ ℝ) → ∃𝑦𝐴 𝑥𝑦)
5756ex 411 . . . . . 6 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦) → (𝑥 ∈ ℝ → ∃𝑦𝐴 𝑥𝑦))
5840, 57ralrimi 3245 . . . . 5 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦) → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦)
5937, 58sylan2 591 . . . 4 ((𝐴 ⊆ ℝ* ∧ ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑤 < 𝑦) → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦)
6059ex 411 . . 3 (𝐴 ⊆ ℝ* → (∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑤 < 𝑦 → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦))
6133, 60impbid 211 . 2 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 ↔ ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑤 < 𝑦))
62 supxrunb2 13331 . 2 (𝐴 ⊆ ℝ* → (∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑤 < 𝑦 ↔ sup(𝐴, ℝ*, < ) = +∞))
6361, 62bitrd 278 1 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 ↔ sup(𝐴, ℝ*, < ) = +∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3051  wrex 3060  wss 3939   class class class wbr 5143  (class class class)co 7416  supcsup 9463  cr 11137  1c1 11139   + caddc 11141  +∞cpnf 11275  *cxr 11277   < clt 11278  cle 11279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-po 5584  df-so 5585  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-sup 9465  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477
This theorem is referenced by:  limsuppnfdlem  45152
  Copyright terms: Public domain W3C validator