Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supxrunb3 Structured version   Visualization version   GIF version

Theorem supxrunb3 45522
Description: The supremum of an unbounded-above set of extended reals is plus infinity. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
supxrunb3 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 ↔ sup(𝐴, ℝ*, < ) = +∞))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem supxrunb3
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 peano2re 11293 . . . . . . . . 9 (𝑤 ∈ ℝ → (𝑤 + 1) ∈ ℝ)
21adantl 481 . . . . . . . 8 ((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦𝑤 ∈ ℝ) → (𝑤 + 1) ∈ ℝ)
3 simpl 482 . . . . . . . 8 ((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦𝑤 ∈ ℝ) → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦)
4 breq1 5096 . . . . . . . . . 10 (𝑥 = (𝑤 + 1) → (𝑥𝑦 ↔ (𝑤 + 1) ≤ 𝑦))
54rexbidv 3157 . . . . . . . . 9 (𝑥 = (𝑤 + 1) → (∃𝑦𝐴 𝑥𝑦 ↔ ∃𝑦𝐴 (𝑤 + 1) ≤ 𝑦))
65rspcva 3571 . . . . . . . 8 (((𝑤 + 1) ∈ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) → ∃𝑦𝐴 (𝑤 + 1) ≤ 𝑦)
72, 3, 6syl2anc 584 . . . . . . 7 ((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦𝑤 ∈ ℝ) → ∃𝑦𝐴 (𝑤 + 1) ≤ 𝑦)
87adantll 714 . . . . . 6 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) ∧ 𝑤 ∈ ℝ) → ∃𝑦𝐴 (𝑤 + 1) ≤ 𝑦)
9 nfv 1915 . . . . . . . . 9 𝑦 𝐴 ⊆ ℝ*
10 nfcv 2895 . . . . . . . . . 10 𝑦
11 nfre1 3258 . . . . . . . . . 10 𝑦𝑦𝐴 𝑥𝑦
1210, 11nfralw 3280 . . . . . . . . 9 𝑦𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦
139, 12nfan 1900 . . . . . . . 8 𝑦(𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦)
14 nfv 1915 . . . . . . . 8 𝑦 𝑤 ∈ ℝ
1513, 14nfan 1900 . . . . . . 7 𝑦((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) ∧ 𝑤 ∈ ℝ)
16 simp1r 1199 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴 ∧ (𝑤 + 1) ≤ 𝑦) → 𝑤 ∈ ℝ)
17 rexr 11165 . . . . . . . . . . 11 (𝑤 ∈ ℝ → 𝑤 ∈ ℝ*)
1816, 17syl 17 . . . . . . . . . 10 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴 ∧ (𝑤 + 1) ≤ 𝑦) → 𝑤 ∈ ℝ*)
191rexrd 11169 . . . . . . . . . . 11 (𝑤 ∈ ℝ → (𝑤 + 1) ∈ ℝ*)
2016, 19syl 17 . . . . . . . . . 10 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴 ∧ (𝑤 + 1) ≤ 𝑦) → (𝑤 + 1) ∈ ℝ*)
21 simp1l 1198 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴 ∧ (𝑤 + 1) ≤ 𝑦) → 𝐴 ⊆ ℝ*)
22 simp2 1137 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴 ∧ (𝑤 + 1) ≤ 𝑦) → 𝑦𝐴)
23 ssel2 3925 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ*𝑦𝐴) → 𝑦 ∈ ℝ*)
2421, 22, 23syl2anc 584 . . . . . . . . . 10 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴 ∧ (𝑤 + 1) ≤ 𝑦) → 𝑦 ∈ ℝ*)
2516ltp1d 12059 . . . . . . . . . 10 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴 ∧ (𝑤 + 1) ≤ 𝑦) → 𝑤 < (𝑤 + 1))
26 simp3 1138 . . . . . . . . . 10 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴 ∧ (𝑤 + 1) ≤ 𝑦) → (𝑤 + 1) ≤ 𝑦)
2718, 20, 24, 25, 26xrltletrd 13062 . . . . . . . . 9 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴 ∧ (𝑤 + 1) ≤ 𝑦) → 𝑤 < 𝑦)
28273exp 1119 . . . . . . . 8 ((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) → (𝑦𝐴 → ((𝑤 + 1) ≤ 𝑦𝑤 < 𝑦)))
2928adantlr 715 . . . . . . 7 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) ∧ 𝑤 ∈ ℝ) → (𝑦𝐴 → ((𝑤 + 1) ≤ 𝑦𝑤 < 𝑦)))
3015, 29reximdai 3235 . . . . . 6 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) ∧ 𝑤 ∈ ℝ) → (∃𝑦𝐴 (𝑤 + 1) ≤ 𝑦 → ∃𝑦𝐴 𝑤 < 𝑦))
318, 30mpd 15 . . . . 5 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) ∧ 𝑤 ∈ ℝ) → ∃𝑦𝐴 𝑤 < 𝑦)
3231ralrimiva 3125 . . . 4 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) → ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑤 < 𝑦)
3332ex 412 . . 3 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 → ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑤 < 𝑦))
34 breq1 5096 . . . . . . . 8 (𝑤 = 𝑥 → (𝑤 < 𝑦𝑥 < 𝑦))
3534rexbidv 3157 . . . . . . 7 (𝑤 = 𝑥 → (∃𝑦𝐴 𝑤 < 𝑦 ↔ ∃𝑦𝐴 𝑥 < 𝑦))
3635cbvralvw 3211 . . . . . 6 (∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑤 < 𝑦 ↔ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦)
3736biimpi 216 . . . . 5 (∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑤 < 𝑦 → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦)
38 nfv 1915 . . . . . . 7 𝑥 𝐴 ⊆ ℝ*
39 nfra1 3257 . . . . . . 7 𝑥𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦
4038, 39nfan 1900 . . . . . 6 𝑥(𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦)
41 simpll 766 . . . . . . . 8 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦) ∧ 𝑥 ∈ ℝ) → 𝐴 ⊆ ℝ*)
42 simpr 484 . . . . . . . 8 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
43 rspa 3222 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦𝑥 ∈ ℝ) → ∃𝑦𝐴 𝑥 < 𝑦)
4443adantll 714 . . . . . . . . 9 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦) ∧ 𝑥 ∈ ℝ) → ∃𝑦𝐴 𝑥 < 𝑦)
45 rexr 11165 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
4645ad3antlr 731 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ*)
4723adantr 480 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ*𝑦𝐴) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ*)
4847adantllr 719 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ*)
49 simpr 484 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑥 < 𝑦) → 𝑥 < 𝑦)
5046, 48, 49xrltled 13051 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑥 < 𝑦) → 𝑥𝑦)
5150ex 412 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) → (𝑥 < 𝑦𝑥𝑦))
5251reximdva 3146 . . . . . . . . . 10 ((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) → (∃𝑦𝐴 𝑥 < 𝑦 → ∃𝑦𝐴 𝑥𝑦))
5352adantlr 715 . . . . . . . . 9 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦) ∧ 𝑥 ∈ ℝ) → (∃𝑦𝐴 𝑥 < 𝑦 → ∃𝑦𝐴 𝑥𝑦))
5444, 53mpd 15 . . . . . . . 8 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦) ∧ 𝑥 ∈ ℝ) → ∃𝑦𝐴 𝑥𝑦)
55 simpr 484 . . . . . . . 8 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ ∃𝑦𝐴 𝑥𝑦) → ∃𝑦𝐴 𝑥𝑦)
5641, 42, 54, 55syl21anc 837 . . . . . . 7 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦) ∧ 𝑥 ∈ ℝ) → ∃𝑦𝐴 𝑥𝑦)
5756ex 412 . . . . . 6 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦) → (𝑥 ∈ ℝ → ∃𝑦𝐴 𝑥𝑦))
5840, 57ralrimi 3231 . . . . 5 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦) → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦)
5937, 58sylan2 593 . . . 4 ((𝐴 ⊆ ℝ* ∧ ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑤 < 𝑦) → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦)
6059ex 412 . . 3 (𝐴 ⊆ ℝ* → (∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑤 < 𝑦 → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦))
6133, 60impbid 212 . 2 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 ↔ ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑤 < 𝑦))
62 supxrunb2 13221 . 2 (𝐴 ⊆ ℝ* → (∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑤 < 𝑦 ↔ sup(𝐴, ℝ*, < ) = +∞))
6361, 62bitrd 279 1 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 ↔ sup(𝐴, ℝ*, < ) = +∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  wrex 3057  wss 3898   class class class wbr 5093  (class class class)co 7352  supcsup 9331  cr 11012  1c1 11014   + caddc 11016  +∞cpnf 11150  *cxr 11152   < clt 11153  cle 11154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9333  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354
This theorem is referenced by:  limsuppnfdlem  45824
  Copyright terms: Public domain W3C validator