Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supxrunb3 Structured version   Visualization version   GIF version

Theorem supxrunb3 42939
Description: The supremum of an unbounded-above set of extended reals is plus infinity. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
supxrunb3 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 ↔ sup(𝐴, ℝ*, < ) = +∞))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem supxrunb3
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 peano2re 11148 . . . . . . . . 9 (𝑤 ∈ ℝ → (𝑤 + 1) ∈ ℝ)
21adantl 482 . . . . . . . 8 ((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦𝑤 ∈ ℝ) → (𝑤 + 1) ∈ ℝ)
3 simpl 483 . . . . . . . 8 ((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦𝑤 ∈ ℝ) → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦)
4 breq1 5077 . . . . . . . . . 10 (𝑥 = (𝑤 + 1) → (𝑥𝑦 ↔ (𝑤 + 1) ≤ 𝑦))
54rexbidv 3226 . . . . . . . . 9 (𝑥 = (𝑤 + 1) → (∃𝑦𝐴 𝑥𝑦 ↔ ∃𝑦𝐴 (𝑤 + 1) ≤ 𝑦))
65rspcva 3559 . . . . . . . 8 (((𝑤 + 1) ∈ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) → ∃𝑦𝐴 (𝑤 + 1) ≤ 𝑦)
72, 3, 6syl2anc 584 . . . . . . 7 ((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦𝑤 ∈ ℝ) → ∃𝑦𝐴 (𝑤 + 1) ≤ 𝑦)
87adantll 711 . . . . . 6 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) ∧ 𝑤 ∈ ℝ) → ∃𝑦𝐴 (𝑤 + 1) ≤ 𝑦)
9 nfv 1917 . . . . . . . . 9 𝑦 𝐴 ⊆ ℝ*
10 nfcv 2907 . . . . . . . . . 10 𝑦
11 nfre1 3239 . . . . . . . . . 10 𝑦𝑦𝐴 𝑥𝑦
1210, 11nfralw 3151 . . . . . . . . 9 𝑦𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦
139, 12nfan 1902 . . . . . . . 8 𝑦(𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦)
14 nfv 1917 . . . . . . . 8 𝑦 𝑤 ∈ ℝ
1513, 14nfan 1902 . . . . . . 7 𝑦((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) ∧ 𝑤 ∈ ℝ)
16 simp1r 1197 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴 ∧ (𝑤 + 1) ≤ 𝑦) → 𝑤 ∈ ℝ)
17 rexr 11021 . . . . . . . . . . 11 (𝑤 ∈ ℝ → 𝑤 ∈ ℝ*)
1816, 17syl 17 . . . . . . . . . 10 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴 ∧ (𝑤 + 1) ≤ 𝑦) → 𝑤 ∈ ℝ*)
191rexrd 11025 . . . . . . . . . . 11 (𝑤 ∈ ℝ → (𝑤 + 1) ∈ ℝ*)
2016, 19syl 17 . . . . . . . . . 10 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴 ∧ (𝑤 + 1) ≤ 𝑦) → (𝑤 + 1) ∈ ℝ*)
21 simp1l 1196 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴 ∧ (𝑤 + 1) ≤ 𝑦) → 𝐴 ⊆ ℝ*)
22 simp2 1136 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴 ∧ (𝑤 + 1) ≤ 𝑦) → 𝑦𝐴)
23 ssel2 3916 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ*𝑦𝐴) → 𝑦 ∈ ℝ*)
2421, 22, 23syl2anc 584 . . . . . . . . . 10 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴 ∧ (𝑤 + 1) ≤ 𝑦) → 𝑦 ∈ ℝ*)
2516ltp1d 11905 . . . . . . . . . 10 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴 ∧ (𝑤 + 1) ≤ 𝑦) → 𝑤 < (𝑤 + 1))
26 simp3 1137 . . . . . . . . . 10 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴 ∧ (𝑤 + 1) ≤ 𝑦) → (𝑤 + 1) ≤ 𝑦)
2718, 20, 24, 25, 26xrltletrd 12895 . . . . . . . . 9 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴 ∧ (𝑤 + 1) ≤ 𝑦) → 𝑤 < 𝑦)
28273exp 1118 . . . . . . . 8 ((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) → (𝑦𝐴 → ((𝑤 + 1) ≤ 𝑦𝑤 < 𝑦)))
2928adantlr 712 . . . . . . 7 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) ∧ 𝑤 ∈ ℝ) → (𝑦𝐴 → ((𝑤 + 1) ≤ 𝑦𝑤 < 𝑦)))
3015, 29reximdai 3244 . . . . . 6 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) ∧ 𝑤 ∈ ℝ) → (∃𝑦𝐴 (𝑤 + 1) ≤ 𝑦 → ∃𝑦𝐴 𝑤 < 𝑦))
318, 30mpd 15 . . . . 5 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) ∧ 𝑤 ∈ ℝ) → ∃𝑦𝐴 𝑤 < 𝑦)
3231ralrimiva 3103 . . . 4 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) → ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑤 < 𝑦)
3332ex 413 . . 3 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 → ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑤 < 𝑦))
34 breq1 5077 . . . . . . . 8 (𝑤 = 𝑥 → (𝑤 < 𝑦𝑥 < 𝑦))
3534rexbidv 3226 . . . . . . 7 (𝑤 = 𝑥 → (∃𝑦𝐴 𝑤 < 𝑦 ↔ ∃𝑦𝐴 𝑥 < 𝑦))
3635cbvralvw 3383 . . . . . 6 (∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑤 < 𝑦 ↔ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦)
3736biimpi 215 . . . . 5 (∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑤 < 𝑦 → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦)
38 nfv 1917 . . . . . . 7 𝑥 𝐴 ⊆ ℝ*
39 nfra1 3144 . . . . . . 7 𝑥𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦
4038, 39nfan 1902 . . . . . 6 𝑥(𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦)
41 simpll 764 . . . . . . . 8 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦) ∧ 𝑥 ∈ ℝ) → 𝐴 ⊆ ℝ*)
42 simpr 485 . . . . . . . 8 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
43 rspa 3132 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦𝑥 ∈ ℝ) → ∃𝑦𝐴 𝑥 < 𝑦)
4443adantll 711 . . . . . . . . 9 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦) ∧ 𝑥 ∈ ℝ) → ∃𝑦𝐴 𝑥 < 𝑦)
45 rexr 11021 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
4645ad3antlr 728 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ*)
4723adantr 481 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ*𝑦𝐴) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ*)
4847adantllr 716 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ*)
49 simpr 485 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑥 < 𝑦) → 𝑥 < 𝑦)
5046, 48, 49xrltled 12884 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑥 < 𝑦) → 𝑥𝑦)
5150ex 413 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) → (𝑥 < 𝑦𝑥𝑦))
5251reximdva 3203 . . . . . . . . . 10 ((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) → (∃𝑦𝐴 𝑥 < 𝑦 → ∃𝑦𝐴 𝑥𝑦))
5352adantlr 712 . . . . . . . . 9 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦) ∧ 𝑥 ∈ ℝ) → (∃𝑦𝐴 𝑥 < 𝑦 → ∃𝑦𝐴 𝑥𝑦))
5444, 53mpd 15 . . . . . . . 8 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦) ∧ 𝑥 ∈ ℝ) → ∃𝑦𝐴 𝑥𝑦)
55 simpr 485 . . . . . . . 8 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ ∃𝑦𝐴 𝑥𝑦) → ∃𝑦𝐴 𝑥𝑦)
5641, 42, 54, 55syl21anc 835 . . . . . . 7 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦) ∧ 𝑥 ∈ ℝ) → ∃𝑦𝐴 𝑥𝑦)
5756ex 413 . . . . . 6 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦) → (𝑥 ∈ ℝ → ∃𝑦𝐴 𝑥𝑦))
5840, 57ralrimi 3141 . . . . 5 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦) → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦)
5937, 58sylan2 593 . . . 4 ((𝐴 ⊆ ℝ* ∧ ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑤 < 𝑦) → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦)
6059ex 413 . . 3 (𝐴 ⊆ ℝ* → (∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑤 < 𝑦 → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦))
6133, 60impbid 211 . 2 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 ↔ ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑤 < 𝑦))
62 supxrunb2 13054 . 2 (𝐴 ⊆ ℝ* → (∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑤 < 𝑦 ↔ sup(𝐴, ℝ*, < ) = +∞))
6361, 62bitrd 278 1 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 ↔ sup(𝐴, ℝ*, < ) = +∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  wss 3887   class class class wbr 5074  (class class class)co 7275  supcsup 9199  cr 10870  1c1 10872   + caddc 10874  +∞cpnf 11006  *cxr 11008   < clt 11009  cle 11010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208
This theorem is referenced by:  limsuppnfdlem  43242
  Copyright terms: Public domain W3C validator