Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemefr29exN Structured version   Visualization version   GIF version

Theorem cdlemefr29exN 39261
Description: Lemma for cdlemefs29bpre1N 39276. (Compare cdleme25a 39212.) TODO: FIX COMMENT. TODO: IS THIS NEEDED? (Contributed by NM, 28-Mar-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemefr29.b 𝐡 = (Baseβ€˜πΎ)
cdlemefr29.l ≀ = (leβ€˜πΎ)
cdlemefr29.j ∨ = (joinβ€˜πΎ)
cdlemefr29.m ∧ = (meetβ€˜πΎ)
cdlemefr29.a 𝐴 = (Atomsβ€˜πΎ)
cdlemefr29.h 𝐻 = (LHypβ€˜πΎ)
Assertion
Ref Expression
cdlemefr29exN ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ βˆ€π‘  ∈ 𝐴 𝐢 ∈ 𝐡) β†’ βˆƒπ‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋) ∧ (𝐢 ∨ (𝑋 ∧ π‘Š)) ∈ 𝐡))
Distinct variable groups:   𝐴,𝑠   𝐡,𝑠   𝐻,𝑠   𝐾,𝑠   ≀ ,𝑠   ∧ ,𝑠   𝑃,𝑠   𝑄,𝑠   π‘Š,𝑠   𝑋,𝑠
Allowed substitution hints:   𝐢(𝑠)   ∨ (𝑠)

Proof of Theorem cdlemefr29exN
StepHypRef Expression
1 simp11 1203 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ βˆ€π‘  ∈ 𝐴 𝐢 ∈ 𝐡) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
2 simp2r 1200 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ βˆ€π‘  ∈ 𝐴 𝐢 ∈ 𝐡) β†’ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š))
3 cdlemefr29.b . . . 4 𝐡 = (Baseβ€˜πΎ)
4 cdlemefr29.l . . . 4 ≀ = (leβ€˜πΎ)
5 cdlemefr29.j . . . 4 ∨ = (joinβ€˜πΎ)
6 cdlemefr29.m . . . 4 ∧ = (meetβ€˜πΎ)
7 cdlemefr29.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
8 cdlemefr29.h . . . 4 𝐻 = (LHypβ€˜πΎ)
93, 4, 5, 6, 7, 8lhpmcvr2 38883 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) β†’ βˆƒπ‘  ∈ 𝐴 (Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋))
101, 2, 9syl2anc 584 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ βˆ€π‘  ∈ 𝐴 𝐢 ∈ 𝐡) β†’ βˆƒπ‘  ∈ 𝐴 (Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋))
11 nfv 1917 . . . 4 Ⅎ𝑠((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))
12 nfv 1917 . . . 4 Ⅎ𝑠(𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š))
13 nfra1 3281 . . . 4 β„²π‘ βˆ€π‘  ∈ 𝐴 𝐢 ∈ 𝐡
1411, 12, 13nf3an 1904 . . 3 Ⅎ𝑠(((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ βˆ€π‘  ∈ 𝐴 𝐢 ∈ 𝐡)
15 simp11l 1284 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ βˆ€π‘  ∈ 𝐴 𝐢 ∈ 𝐡) β†’ 𝐾 ∈ HL)
1615adantr 481 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ βˆ€π‘  ∈ 𝐴 𝐢 ∈ 𝐡) ∧ (𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š)) β†’ 𝐾 ∈ HL)
1716hllatd 38222 . . . . . . . 8 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ βˆ€π‘  ∈ 𝐴 𝐢 ∈ 𝐡) ∧ (𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š)) β†’ 𝐾 ∈ Lat)
18 simpl3 1193 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ βˆ€π‘  ∈ 𝐴 𝐢 ∈ 𝐡) ∧ (𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š)) β†’ βˆ€π‘  ∈ 𝐴 𝐢 ∈ 𝐡)
19 simprl 769 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ βˆ€π‘  ∈ 𝐴 𝐢 ∈ 𝐡) ∧ (𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š)) β†’ 𝑠 ∈ 𝐴)
20 rsp 3244 . . . . . . . . 9 (βˆ€π‘  ∈ 𝐴 𝐢 ∈ 𝐡 β†’ (𝑠 ∈ 𝐴 β†’ 𝐢 ∈ 𝐡))
2118, 19, 20sylc 65 . . . . . . . 8 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ βˆ€π‘  ∈ 𝐴 𝐢 ∈ 𝐡) ∧ (𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š)) β†’ 𝐢 ∈ 𝐡)
2215hllatd 38222 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ βˆ€π‘  ∈ 𝐴 𝐢 ∈ 𝐡) β†’ 𝐾 ∈ Lat)
23 simp2rl 1242 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ βˆ€π‘  ∈ 𝐴 𝐢 ∈ 𝐡) β†’ 𝑋 ∈ 𝐡)
24 simp11r 1285 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ βˆ€π‘  ∈ 𝐴 𝐢 ∈ 𝐡) β†’ π‘Š ∈ 𝐻)
253, 8lhpbase 38857 . . . . . . . . . . 11 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ 𝐡)
2624, 25syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ βˆ€π‘  ∈ 𝐴 𝐢 ∈ 𝐡) β†’ π‘Š ∈ 𝐡)
273, 6latmcl 18389 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡 ∧ π‘Š ∈ 𝐡) β†’ (𝑋 ∧ π‘Š) ∈ 𝐡)
2822, 23, 26, 27syl3anc 1371 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ βˆ€π‘  ∈ 𝐴 𝐢 ∈ 𝐡) β†’ (𝑋 ∧ π‘Š) ∈ 𝐡)
2928adantr 481 . . . . . . . 8 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ βˆ€π‘  ∈ 𝐴 𝐢 ∈ 𝐡) ∧ (𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š)) β†’ (𝑋 ∧ π‘Š) ∈ 𝐡)
303, 5latjcl 18388 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝐢 ∈ 𝐡 ∧ (𝑋 ∧ π‘Š) ∈ 𝐡) β†’ (𝐢 ∨ (𝑋 ∧ π‘Š)) ∈ 𝐡)
3117, 21, 29, 30syl3anc 1371 . . . . . . 7 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ βˆ€π‘  ∈ 𝐴 𝐢 ∈ 𝐡) ∧ (𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š)) β†’ (𝐢 ∨ (𝑋 ∧ π‘Š)) ∈ 𝐡)
3231expr 457 . . . . . 6 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ βˆ€π‘  ∈ 𝐴 𝐢 ∈ 𝐡) ∧ 𝑠 ∈ 𝐴) β†’ (Β¬ 𝑠 ≀ π‘Š β†’ (𝐢 ∨ (𝑋 ∧ π‘Š)) ∈ 𝐡))
3332adantrd 492 . . . . 5 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ βˆ€π‘  ∈ 𝐴 𝐢 ∈ 𝐡) ∧ 𝑠 ∈ 𝐴) β†’ ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋) β†’ (𝐢 ∨ (𝑋 ∧ π‘Š)) ∈ 𝐡))
3433ancld 551 . . . 4 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ βˆ€π‘  ∈ 𝐴 𝐢 ∈ 𝐡) ∧ 𝑠 ∈ 𝐴) β†’ ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋) β†’ ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋) ∧ (𝐢 ∨ (𝑋 ∧ π‘Š)) ∈ 𝐡)))
3534ex 413 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ βˆ€π‘  ∈ 𝐴 𝐢 ∈ 𝐡) β†’ (𝑠 ∈ 𝐴 β†’ ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋) β†’ ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋) ∧ (𝐢 ∨ (𝑋 ∧ π‘Š)) ∈ 𝐡))))
3614, 35reximdai 3258 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ βˆ€π‘  ∈ 𝐴 𝐢 ∈ 𝐡) β†’ (βˆƒπ‘  ∈ 𝐴 (Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋) β†’ βˆƒπ‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋) ∧ (𝐢 ∨ (𝑋 ∧ π‘Š)) ∈ 𝐡)))
3710, 36mpd 15 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ βˆ€π‘  ∈ 𝐴 𝐢 ∈ 𝐡) β†’ βˆƒπ‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋) ∧ (𝐢 ∨ (𝑋 ∧ π‘Š)) ∈ 𝐡))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  βˆƒwrex 3070   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  lecple 17200  joincjn 18260  meetcmee 18261  Latclat 18380  Atomscatm 38121  HLchlt 38208  LHypclh 38843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-p1 18375  df-lat 18381  df-clat 18448  df-oposet 38034  df-ol 38036  df-oml 38037  df-covers 38124  df-ats 38125  df-atl 38156  df-cvlat 38180  df-hlat 38209  df-lhyp 38847
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator