Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemefr29exN Structured version   Visualization version   GIF version

Theorem cdlemefr29exN 38404
Description: Lemma for cdlemefs29bpre1N 38419. (Compare cdleme25a 38355.) TODO: FIX COMMENT. TODO: IS THIS NEEDED? (Contributed by NM, 28-Mar-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemefr29.b 𝐵 = (Base‘𝐾)
cdlemefr29.l = (le‘𝐾)
cdlemefr29.j = (join‘𝐾)
cdlemefr29.m = (meet‘𝐾)
cdlemefr29.a 𝐴 = (Atoms‘𝐾)
cdlemefr29.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
cdlemefr29exN ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ∀𝑠𝐴 𝐶𝐵) → ∃𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) ∧ (𝐶 (𝑋 𝑊)) ∈ 𝐵))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐻,𝑠   𝐾,𝑠   ,𝑠   ,𝑠   𝑃,𝑠   𝑄,𝑠   𝑊,𝑠   𝑋,𝑠
Allowed substitution hints:   𝐶(𝑠)   (𝑠)

Proof of Theorem cdlemefr29exN
StepHypRef Expression
1 simp11 1202 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ∀𝑠𝐴 𝐶𝐵) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp2r 1199 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ∀𝑠𝐴 𝐶𝐵) → (𝑋𝐵 ∧ ¬ 𝑋 𝑊))
3 cdlemefr29.b . . . 4 𝐵 = (Base‘𝐾)
4 cdlemefr29.l . . . 4 = (le‘𝐾)
5 cdlemefr29.j . . . 4 = (join‘𝐾)
6 cdlemefr29.m . . . 4 = (meet‘𝐾)
7 cdlemefr29.a . . . 4 𝐴 = (Atoms‘𝐾)
8 cdlemefr29.h . . . 4 𝐻 = (LHyp‘𝐾)
93, 4, 5, 6, 7, 8lhpmcvr2 38026 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∃𝑠𝐴𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋))
101, 2, 9syl2anc 584 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ∀𝑠𝐴 𝐶𝐵) → ∃𝑠𝐴𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋))
11 nfv 1921 . . . 4 𝑠((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
12 nfv 1921 . . . 4 𝑠(𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊))
13 nfra1 3145 . . . 4 𝑠𝑠𝐴 𝐶𝐵
1411, 12, 13nf3an 1908 . . 3 𝑠(((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ∀𝑠𝐴 𝐶𝐵)
15 simp11l 1283 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ∀𝑠𝐴 𝐶𝐵) → 𝐾 ∈ HL)
1615adantr 481 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ∀𝑠𝐴 𝐶𝐵) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → 𝐾 ∈ HL)
1716hllatd 37366 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ∀𝑠𝐴 𝐶𝐵) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → 𝐾 ∈ Lat)
18 simpl3 1192 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ∀𝑠𝐴 𝐶𝐵) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → ∀𝑠𝐴 𝐶𝐵)
19 simprl 768 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ∀𝑠𝐴 𝐶𝐵) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → 𝑠𝐴)
20 rsp 3132 . . . . . . . . 9 (∀𝑠𝐴 𝐶𝐵 → (𝑠𝐴𝐶𝐵))
2118, 19, 20sylc 65 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ∀𝑠𝐴 𝐶𝐵) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → 𝐶𝐵)
2215hllatd 37366 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ∀𝑠𝐴 𝐶𝐵) → 𝐾 ∈ Lat)
23 simp2rl 1241 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ∀𝑠𝐴 𝐶𝐵) → 𝑋𝐵)
24 simp11r 1284 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ∀𝑠𝐴 𝐶𝐵) → 𝑊𝐻)
253, 8lhpbase 38000 . . . . . . . . . . 11 (𝑊𝐻𝑊𝐵)
2624, 25syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ∀𝑠𝐴 𝐶𝐵) → 𝑊𝐵)
273, 6latmcl 18148 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
2822, 23, 26, 27syl3anc 1370 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ∀𝑠𝐴 𝐶𝐵) → (𝑋 𝑊) ∈ 𝐵)
2928adantr 481 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ∀𝑠𝐴 𝐶𝐵) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → (𝑋 𝑊) ∈ 𝐵)
303, 5latjcl 18147 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝐶𝐵 ∧ (𝑋 𝑊) ∈ 𝐵) → (𝐶 (𝑋 𝑊)) ∈ 𝐵)
3117, 21, 29, 30syl3anc 1370 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ∀𝑠𝐴 𝐶𝐵) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) → (𝐶 (𝑋 𝑊)) ∈ 𝐵)
3231expr 457 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ∀𝑠𝐴 𝐶𝐵) ∧ 𝑠𝐴) → (¬ 𝑠 𝑊 → (𝐶 (𝑋 𝑊)) ∈ 𝐵))
3332adantrd 492 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ∀𝑠𝐴 𝐶𝐵) ∧ 𝑠𝐴) → ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → (𝐶 (𝑋 𝑊)) ∈ 𝐵))
3433ancld 551 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ∀𝑠𝐴 𝐶𝐵) ∧ 𝑠𝐴) → ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) ∧ (𝐶 (𝑋 𝑊)) ∈ 𝐵)))
3534ex 413 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ∀𝑠𝐴 𝐶𝐵) → (𝑠𝐴 → ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) ∧ (𝐶 (𝑋 𝑊)) ∈ 𝐵))))
3614, 35reximdai 3242 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ∀𝑠𝐴 𝐶𝐵) → (∃𝑠𝐴𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → ∃𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) ∧ (𝐶 (𝑋 𝑊)) ∈ 𝐵)))
3710, 36mpd 15 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ∀𝑠𝐴 𝐶𝐵) → ∃𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) ∧ (𝐶 (𝑋 𝑊)) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1542  wcel 2110  wne 2945  wral 3066  wrex 3067   class class class wbr 5079  cfv 6431  (class class class)co 7269  Basecbs 16902  lecple 16959  joincjn 18019  meetcmee 18020  Latclat 18139  Atomscatm 37265  HLchlt 37352  LHypclh 37986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-riota 7226  df-ov 7272  df-oprab 7273  df-proset 18003  df-poset 18021  df-plt 18038  df-lub 18054  df-glb 18055  df-join 18056  df-meet 18057  df-p0 18133  df-p1 18134  df-lat 18140  df-clat 18207  df-oposet 37178  df-ol 37180  df-oml 37181  df-covers 37268  df-ats 37269  df-atl 37300  df-cvlat 37324  df-hlat 37353  df-lhyp 37990
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator