Proof of Theorem cdlemefr29exN
| Step | Hyp | Ref
| Expression |
| 1 | | simp11 1204 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ ∀𝑠 ∈ 𝐴 𝐶 ∈ 𝐵) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 2 | | simp2r 1201 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ ∀𝑠 ∈ 𝐴 𝐶 ∈ 𝐵) → (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) |
| 3 | | cdlemefr29.b |
. . . 4
⊢ 𝐵 = (Base‘𝐾) |
| 4 | | cdlemefr29.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
| 5 | | cdlemefr29.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
| 6 | | cdlemefr29.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
| 7 | | cdlemefr29.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
| 8 | | cdlemefr29.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
| 9 | 3, 4, 5, 6, 7, 8 | lhpmcvr2 40026 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → ∃𝑠 ∈ 𝐴 (¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) |
| 10 | 1, 2, 9 | syl2anc 584 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ ∀𝑠 ∈ 𝐴 𝐶 ∈ 𝐵) → ∃𝑠 ∈ 𝐴 (¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) |
| 11 | | nfv 1914 |
. . . 4
⊢
Ⅎ𝑠((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
| 12 | | nfv 1914 |
. . . 4
⊢
Ⅎ𝑠(𝑃 ≠ 𝑄 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) |
| 13 | | nfra1 3284 |
. . . 4
⊢
Ⅎ𝑠∀𝑠 ∈ 𝐴 𝐶 ∈ 𝐵 |
| 14 | 11, 12, 13 | nf3an 1901 |
. . 3
⊢
Ⅎ𝑠(((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ ∀𝑠 ∈ 𝐴 𝐶 ∈ 𝐵) |
| 15 | | simp11l 1285 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ ∀𝑠 ∈ 𝐴 𝐶 ∈ 𝐵) → 𝐾 ∈ HL) |
| 16 | 15 | adantr 480 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ ∀𝑠 ∈ 𝐴 𝐶 ∈ 𝐵) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) → 𝐾 ∈ HL) |
| 17 | 16 | hllatd 39365 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ ∀𝑠 ∈ 𝐴 𝐶 ∈ 𝐵) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) → 𝐾 ∈ Lat) |
| 18 | | simpl3 1194 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ ∀𝑠 ∈ 𝐴 𝐶 ∈ 𝐵) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) → ∀𝑠 ∈ 𝐴 𝐶 ∈ 𝐵) |
| 19 | | simprl 771 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ ∀𝑠 ∈ 𝐴 𝐶 ∈ 𝐵) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) → 𝑠 ∈ 𝐴) |
| 20 | | rsp 3247 |
. . . . . . . . 9
⊢
(∀𝑠 ∈
𝐴 𝐶 ∈ 𝐵 → (𝑠 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
| 21 | 18, 19, 20 | sylc 65 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ ∀𝑠 ∈ 𝐴 𝐶 ∈ 𝐵) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) → 𝐶 ∈ 𝐵) |
| 22 | 15 | hllatd 39365 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ ∀𝑠 ∈ 𝐴 𝐶 ∈ 𝐵) → 𝐾 ∈ Lat) |
| 23 | | simp2rl 1243 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ ∀𝑠 ∈ 𝐴 𝐶 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
| 24 | | simp11r 1286 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ ∀𝑠 ∈ 𝐴 𝐶 ∈ 𝐵) → 𝑊 ∈ 𝐻) |
| 25 | 3, 8 | lhpbase 40000 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
| 26 | 24, 25 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ ∀𝑠 ∈ 𝐴 𝐶 ∈ 𝐵) → 𝑊 ∈ 𝐵) |
| 27 | 3, 6 | latmcl 18485 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
| 28 | 22, 23, 26, 27 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ ∀𝑠 ∈ 𝐴 𝐶 ∈ 𝐵) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
| 29 | 28 | adantr 480 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ ∀𝑠 ∈ 𝐴 𝐶 ∈ 𝐵) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
| 30 | 3, 5 | latjcl 18484 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ 𝐶 ∈ 𝐵 ∧ (𝑋 ∧ 𝑊) ∈ 𝐵) → (𝐶 ∨ (𝑋 ∧ 𝑊)) ∈ 𝐵) |
| 31 | 17, 21, 29, 30 | syl3anc 1373 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ ∀𝑠 ∈ 𝐴 𝐶 ∈ 𝐵) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) → (𝐶 ∨ (𝑋 ∧ 𝑊)) ∈ 𝐵) |
| 32 | 31 | expr 456 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ ∀𝑠 ∈ 𝐴 𝐶 ∈ 𝐵) ∧ 𝑠 ∈ 𝐴) → (¬ 𝑠 ≤ 𝑊 → (𝐶 ∨ (𝑋 ∧ 𝑊)) ∈ 𝐵)) |
| 33 | 32 | adantrd 491 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ ∀𝑠 ∈ 𝐴 𝐶 ∈ 𝐵) ∧ 𝑠 ∈ 𝐴) → ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → (𝐶 ∨ (𝑋 ∧ 𝑊)) ∈ 𝐵)) |
| 34 | 33 | ancld 550 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ ∀𝑠 ∈ 𝐴 𝐶 ∈ 𝐵) ∧ 𝑠 ∈ 𝐴) → ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝐶 ∨ (𝑋 ∧ 𝑊)) ∈ 𝐵))) |
| 35 | 34 | ex 412 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ ∀𝑠 ∈ 𝐴 𝐶 ∈ 𝐵) → (𝑠 ∈ 𝐴 → ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝐶 ∨ (𝑋 ∧ 𝑊)) ∈ 𝐵)))) |
| 36 | 14, 35 | reximdai 3261 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ ∀𝑠 ∈ 𝐴 𝐶 ∈ 𝐵) → (∃𝑠 ∈ 𝐴 (¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → ∃𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝐶 ∨ (𝑋 ∧ 𝑊)) ∈ 𝐵))) |
| 37 | 10, 36 | mpd 15 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) ∧ ∀𝑠 ∈ 𝐴 𝐶 ∈ 𝐵) → ∃𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝐶 ∨ (𝑋 ∧ 𝑊)) ∈ 𝐵)) |