![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpinvfvalALT | Structured version Visualization version GIF version |
Description: Shorter proof of grpinvfval 18903 using ax-rep 5285. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 7-Aug-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grpinvval.b | ⊢ 𝐵 = (Base‘𝐺) |
grpinvval.p | ⊢ + = (+g‘𝐺) |
grpinvval.o | ⊢ 0 = (0g‘𝐺) |
grpinvval.n | ⊢ 𝑁 = (invg‘𝐺) |
Ref | Expression |
---|---|
grpinvfvalALT | ⊢ 𝑁 = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinvval.n | . 2 ⊢ 𝑁 = (invg‘𝐺) | |
2 | fveq2 6891 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) | |
3 | grpinvval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
4 | 2, 3 | eqtr4di 2789 | . . . . 5 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵) |
5 | fveq2 6891 | . . . . . . . . 9 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = (+g‘𝐺)) | |
6 | grpinvval.p | . . . . . . . . 9 ⊢ + = (+g‘𝐺) | |
7 | 5, 6 | eqtr4di 2789 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = + ) |
8 | 7 | oveqd 7429 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (𝑦(+g‘𝑔)𝑥) = (𝑦 + 𝑥)) |
9 | fveq2 6891 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → (0g‘𝑔) = (0g‘𝐺)) | |
10 | grpinvval.o | . . . . . . . 8 ⊢ 0 = (0g‘𝐺) | |
11 | 9, 10 | eqtr4di 2789 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (0g‘𝑔) = 0 ) |
12 | 8, 11 | eqeq12d 2747 | . . . . . 6 ⊢ (𝑔 = 𝐺 → ((𝑦(+g‘𝑔)𝑥) = (0g‘𝑔) ↔ (𝑦 + 𝑥) = 0 )) |
13 | 4, 12 | riotaeqbidv 7371 | . . . . 5 ⊢ (𝑔 = 𝐺 → (℩𝑦 ∈ (Base‘𝑔)(𝑦(+g‘𝑔)𝑥) = (0g‘𝑔)) = (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 )) |
14 | 4, 13 | mpteq12dv 5239 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔) ↦ (℩𝑦 ∈ (Base‘𝑔)(𝑦(+g‘𝑔)𝑥) = (0g‘𝑔))) = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ))) |
15 | df-minusg 18862 | . . . 4 ⊢ invg = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔) ↦ (℩𝑦 ∈ (Base‘𝑔)(𝑦(+g‘𝑔)𝑥) = (0g‘𝑔)))) | |
16 | 14, 15, 3 | mptfvmpt 7232 | . . 3 ⊢ (𝐺 ∈ V → (invg‘𝐺) = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ))) |
17 | fvprc 6883 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → (invg‘𝐺) = ∅) | |
18 | mpt0 6692 | . . . . 5 ⊢ (𝑥 ∈ ∅ ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 )) = ∅ | |
19 | 17, 18 | eqtr4di 2789 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (invg‘𝐺) = (𝑥 ∈ ∅ ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ))) |
20 | fvprc 6883 | . . . . . 6 ⊢ (¬ 𝐺 ∈ V → (Base‘𝐺) = ∅) | |
21 | 3, 20 | eqtrid 2783 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → 𝐵 = ∅) |
22 | 21 | mpteq1d 5243 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 )) = (𝑥 ∈ ∅ ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ))) |
23 | 19, 22 | eqtr4d 2774 | . . 3 ⊢ (¬ 𝐺 ∈ V → (invg‘𝐺) = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ))) |
24 | 16, 23 | pm2.61i 182 | . 2 ⊢ (invg‘𝐺) = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 )) |
25 | 1, 24 | eqtri 2759 | 1 ⊢ 𝑁 = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ∅c0 4322 ↦ cmpt 5231 ‘cfv 6543 ℩crio 7367 (class class class)co 7412 Basecbs 17151 +gcplusg 17204 0gc0g 17392 invgcminusg 18859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-minusg 18862 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |