| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpinvfvalALT | Structured version Visualization version GIF version | ||
| Description: Shorter proof of grpinvfval 18893 using ax-rep 5219. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 7-Aug-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| grpinvval.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpinvval.p | ⊢ + = (+g‘𝐺) |
| grpinvval.o | ⊢ 0 = (0g‘𝐺) |
| grpinvval.n | ⊢ 𝑁 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| grpinvfvalALT | ⊢ 𝑁 = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvval.n | . 2 ⊢ 𝑁 = (invg‘𝐺) | |
| 2 | fveq2 6828 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) | |
| 3 | grpinvval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | 2, 3 | eqtr4di 2786 | . . . . 5 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵) |
| 5 | fveq2 6828 | . . . . . . . . 9 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = (+g‘𝐺)) | |
| 6 | grpinvval.p | . . . . . . . . 9 ⊢ + = (+g‘𝐺) | |
| 7 | 5, 6 | eqtr4di 2786 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = + ) |
| 8 | 7 | oveqd 7369 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (𝑦(+g‘𝑔)𝑥) = (𝑦 + 𝑥)) |
| 9 | fveq2 6828 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → (0g‘𝑔) = (0g‘𝐺)) | |
| 10 | grpinvval.o | . . . . . . . 8 ⊢ 0 = (0g‘𝐺) | |
| 11 | 9, 10 | eqtr4di 2786 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (0g‘𝑔) = 0 ) |
| 12 | 8, 11 | eqeq12d 2749 | . . . . . 6 ⊢ (𝑔 = 𝐺 → ((𝑦(+g‘𝑔)𝑥) = (0g‘𝑔) ↔ (𝑦 + 𝑥) = 0 )) |
| 13 | 4, 12 | riotaeqbidv 7312 | . . . . 5 ⊢ (𝑔 = 𝐺 → (℩𝑦 ∈ (Base‘𝑔)(𝑦(+g‘𝑔)𝑥) = (0g‘𝑔)) = (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 )) |
| 14 | 4, 13 | mpteq12dv 5180 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔) ↦ (℩𝑦 ∈ (Base‘𝑔)(𝑦(+g‘𝑔)𝑥) = (0g‘𝑔))) = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ))) |
| 15 | df-minusg 18852 | . . . 4 ⊢ invg = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔) ↦ (℩𝑦 ∈ (Base‘𝑔)(𝑦(+g‘𝑔)𝑥) = (0g‘𝑔)))) | |
| 16 | 14, 15, 3 | mptfvmpt 7168 | . . 3 ⊢ (𝐺 ∈ V → (invg‘𝐺) = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ))) |
| 17 | fvprc 6820 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → (invg‘𝐺) = ∅) | |
| 18 | mpt0 6628 | . . . . 5 ⊢ (𝑥 ∈ ∅ ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 )) = ∅ | |
| 19 | 17, 18 | eqtr4di 2786 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (invg‘𝐺) = (𝑥 ∈ ∅ ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ))) |
| 20 | fvprc 6820 | . . . . . 6 ⊢ (¬ 𝐺 ∈ V → (Base‘𝐺) = ∅) | |
| 21 | 3, 20 | eqtrid 2780 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → 𝐵 = ∅) |
| 22 | 21 | mpteq1d 5183 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 )) = (𝑥 ∈ ∅ ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ))) |
| 23 | 19, 22 | eqtr4d 2771 | . . 3 ⊢ (¬ 𝐺 ∈ V → (invg‘𝐺) = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ))) |
| 24 | 16, 23 | pm2.61i 182 | . 2 ⊢ (invg‘𝐺) = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 )) |
| 25 | 1, 24 | eqtri 2756 | 1 ⊢ 𝑁 = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∅c0 4282 ↦ cmpt 5174 ‘cfv 6486 ℩crio 7308 (class class class)co 7352 Basecbs 17122 +gcplusg 17163 0gc0g 17345 invgcminusg 18849 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-minusg 18852 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |