![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpinvfvalALT | Structured version Visualization version GIF version |
Description: Shorter proof of grpinvfval 18934 using ax-rep 5281. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 7-Aug-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grpinvval.b | ⊢ 𝐵 = (Base‘𝐺) |
grpinvval.p | ⊢ + = (+g‘𝐺) |
grpinvval.o | ⊢ 0 = (0g‘𝐺) |
grpinvval.n | ⊢ 𝑁 = (invg‘𝐺) |
Ref | Expression |
---|---|
grpinvfvalALT | ⊢ 𝑁 = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinvval.n | . 2 ⊢ 𝑁 = (invg‘𝐺) | |
2 | fveq2 6890 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) | |
3 | grpinvval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
4 | 2, 3 | eqtr4di 2783 | . . . . 5 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵) |
5 | fveq2 6890 | . . . . . . . . 9 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = (+g‘𝐺)) | |
6 | grpinvval.p | . . . . . . . . 9 ⊢ + = (+g‘𝐺) | |
7 | 5, 6 | eqtr4di 2783 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = + ) |
8 | 7 | oveqd 7430 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (𝑦(+g‘𝑔)𝑥) = (𝑦 + 𝑥)) |
9 | fveq2 6890 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → (0g‘𝑔) = (0g‘𝐺)) | |
10 | grpinvval.o | . . . . . . . 8 ⊢ 0 = (0g‘𝐺) | |
11 | 9, 10 | eqtr4di 2783 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (0g‘𝑔) = 0 ) |
12 | 8, 11 | eqeq12d 2741 | . . . . . 6 ⊢ (𝑔 = 𝐺 → ((𝑦(+g‘𝑔)𝑥) = (0g‘𝑔) ↔ (𝑦 + 𝑥) = 0 )) |
13 | 4, 12 | riotaeqbidv 7372 | . . . . 5 ⊢ (𝑔 = 𝐺 → (℩𝑦 ∈ (Base‘𝑔)(𝑦(+g‘𝑔)𝑥) = (0g‘𝑔)) = (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 )) |
14 | 4, 13 | mpteq12dv 5235 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔) ↦ (℩𝑦 ∈ (Base‘𝑔)(𝑦(+g‘𝑔)𝑥) = (0g‘𝑔))) = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ))) |
15 | df-minusg 18893 | . . . 4 ⊢ invg = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔) ↦ (℩𝑦 ∈ (Base‘𝑔)(𝑦(+g‘𝑔)𝑥) = (0g‘𝑔)))) | |
16 | 14, 15, 3 | mptfvmpt 7234 | . . 3 ⊢ (𝐺 ∈ V → (invg‘𝐺) = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ))) |
17 | fvprc 6882 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → (invg‘𝐺) = ∅) | |
18 | mpt0 6692 | . . . . 5 ⊢ (𝑥 ∈ ∅ ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 )) = ∅ | |
19 | 17, 18 | eqtr4di 2783 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (invg‘𝐺) = (𝑥 ∈ ∅ ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ))) |
20 | fvprc 6882 | . . . . . 6 ⊢ (¬ 𝐺 ∈ V → (Base‘𝐺) = ∅) | |
21 | 3, 20 | eqtrid 2777 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → 𝐵 = ∅) |
22 | 21 | mpteq1d 5239 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 )) = (𝑥 ∈ ∅ ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ))) |
23 | 19, 22 | eqtr4d 2768 | . . 3 ⊢ (¬ 𝐺 ∈ V → (invg‘𝐺) = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ))) |
24 | 16, 23 | pm2.61i 182 | . 2 ⊢ (invg‘𝐺) = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 )) |
25 | 1, 24 | eqtri 2753 | 1 ⊢ 𝑁 = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1533 ∈ wcel 2098 Vcvv 3463 ∅c0 4319 ↦ cmpt 5227 ‘cfv 6543 ℩crio 7368 (class class class)co 7413 Basecbs 17174 +gcplusg 17227 0gc0g 17415 invgcminusg 18890 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-minusg 18893 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |