Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hvmapfval Structured version   Visualization version   GIF version

Theorem hvmapfval 41753
Description: Map from nonzero vectors to nonzero functionals in the closed kernel dual space. (Contributed by NM, 23-Mar-2015.)
Hypotheses
Ref Expression
hvmapval.h 𝐻 = (LHyp‘𝐾)
hvmapval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hvmapval.o 𝑂 = ((ocH‘𝐾)‘𝑊)
hvmapval.v 𝑉 = (Base‘𝑈)
hvmapval.p + = (+g𝑈)
hvmapval.t · = ( ·𝑠𝑈)
hvmapval.z 0 = (0g𝑈)
hvmapval.s 𝑆 = (Scalar‘𝑈)
hvmapval.r 𝑅 = (Base‘𝑆)
hvmapval.m 𝑀 = ((HVMap‘𝐾)‘𝑊)
hvmapval.k (𝜑 → (𝐾𝐴𝑊𝐻))
Assertion
Ref Expression
hvmapfval (𝜑𝑀 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥))))))
Distinct variable groups:   𝑡,𝑗,𝑣,𝑥,𝐾   𝑡,𝑊   𝑡,𝑂   𝑅,𝑗   𝑥,𝑉   𝑗,𝑊,𝑣,𝑥   𝑥, 0
Allowed substitution hints:   𝜑(𝑥,𝑣,𝑡,𝑗)   𝐴(𝑥,𝑣,𝑡,𝑗)   + (𝑥,𝑣,𝑡,𝑗)   𝑅(𝑥,𝑣,𝑡)   𝑆(𝑥,𝑣,𝑡,𝑗)   · (𝑥,𝑣,𝑡,𝑗)   𝑈(𝑥,𝑣,𝑡,𝑗)   𝐻(𝑥,𝑣,𝑡,𝑗)   𝑀(𝑥,𝑣,𝑡,𝑗)   𝑂(𝑥,𝑣,𝑗)   𝑉(𝑣,𝑡,𝑗)   0 (𝑣,𝑡,𝑗)

Proof of Theorem hvmapfval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 hvmapval.k . 2 (𝜑 → (𝐾𝐴𝑊𝐻))
2 hvmapval.m . . . 4 𝑀 = ((HVMap‘𝐾)‘𝑊)
3 hvmapval.h . . . . . 6 𝐻 = (LHyp‘𝐾)
43hvmapffval 41752 . . . . 5 (𝐾𝐴 → (HVMap‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ ((Base‘((DVecH‘𝐾)‘𝑤)) ∖ {(0g‘((DVecH‘𝐾)‘𝑤))}) ↦ (𝑣 ∈ (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (𝑗 ∈ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑤)))∃𝑡 ∈ (((ocH‘𝐾)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝐾)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝐾)‘𝑤))𝑥)))))))
54fveq1d 6860 . . . 4 (𝐾𝐴 → ((HVMap‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ (𝑥 ∈ ((Base‘((DVecH‘𝐾)‘𝑤)) ∖ {(0g‘((DVecH‘𝐾)‘𝑤))}) ↦ (𝑣 ∈ (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (𝑗 ∈ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑤)))∃𝑡 ∈ (((ocH‘𝐾)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝐾)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝐾)‘𝑤))𝑥))))))‘𝑊))
62, 5eqtrid 2776 . . 3 (𝐾𝐴𝑀 = ((𝑤𝐻 ↦ (𝑥 ∈ ((Base‘((DVecH‘𝐾)‘𝑤)) ∖ {(0g‘((DVecH‘𝐾)‘𝑤))}) ↦ (𝑣 ∈ (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (𝑗 ∈ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑤)))∃𝑡 ∈ (((ocH‘𝐾)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝐾)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝐾)‘𝑤))𝑥))))))‘𝑊))
7 fveq2 6858 . . . . . . . . 9 (𝑤 = 𝑊 → ((DVecH‘𝐾)‘𝑤) = ((DVecH‘𝐾)‘𝑊))
8 hvmapval.u . . . . . . . . 9 𝑈 = ((DVecH‘𝐾)‘𝑊)
97, 8eqtr4di 2782 . . . . . . . 8 (𝑤 = 𝑊 → ((DVecH‘𝐾)‘𝑤) = 𝑈)
109fveq2d 6862 . . . . . . 7 (𝑤 = 𝑊 → (Base‘((DVecH‘𝐾)‘𝑤)) = (Base‘𝑈))
11 hvmapval.v . . . . . . 7 𝑉 = (Base‘𝑈)
1210, 11eqtr4di 2782 . . . . . 6 (𝑤 = 𝑊 → (Base‘((DVecH‘𝐾)‘𝑤)) = 𝑉)
139fveq2d 6862 . . . . . . . 8 (𝑤 = 𝑊 → (0g‘((DVecH‘𝐾)‘𝑤)) = (0g𝑈))
14 hvmapval.z . . . . . . . 8 0 = (0g𝑈)
1513, 14eqtr4di 2782 . . . . . . 7 (𝑤 = 𝑊 → (0g‘((DVecH‘𝐾)‘𝑤)) = 0 )
1615sneqd 4601 . . . . . 6 (𝑤 = 𝑊 → {(0g‘((DVecH‘𝐾)‘𝑤))} = { 0 })
1712, 16difeq12d 4090 . . . . 5 (𝑤 = 𝑊 → ((Base‘((DVecH‘𝐾)‘𝑤)) ∖ {(0g‘((DVecH‘𝐾)‘𝑤))}) = (𝑉 ∖ { 0 }))
189fveq2d 6862 . . . . . . . . . 10 (𝑤 = 𝑊 → (Scalar‘((DVecH‘𝐾)‘𝑤)) = (Scalar‘𝑈))
19 hvmapval.s . . . . . . . . . 10 𝑆 = (Scalar‘𝑈)
2018, 19eqtr4di 2782 . . . . . . . . 9 (𝑤 = 𝑊 → (Scalar‘((DVecH‘𝐾)‘𝑤)) = 𝑆)
2120fveq2d 6862 . . . . . . . 8 (𝑤 = 𝑊 → (Base‘(Scalar‘((DVecH‘𝐾)‘𝑤))) = (Base‘𝑆))
22 hvmapval.r . . . . . . . 8 𝑅 = (Base‘𝑆)
2321, 22eqtr4di 2782 . . . . . . 7 (𝑤 = 𝑊 → (Base‘(Scalar‘((DVecH‘𝐾)‘𝑤))) = 𝑅)
24 fveq2 6858 . . . . . . . . . 10 (𝑤 = 𝑊 → ((ocH‘𝐾)‘𝑤) = ((ocH‘𝐾)‘𝑊))
25 hvmapval.o . . . . . . . . . 10 𝑂 = ((ocH‘𝐾)‘𝑊)
2624, 25eqtr4di 2782 . . . . . . . . 9 (𝑤 = 𝑊 → ((ocH‘𝐾)‘𝑤) = 𝑂)
2726fveq1d 6860 . . . . . . . 8 (𝑤 = 𝑊 → (((ocH‘𝐾)‘𝑤)‘{𝑥}) = (𝑂‘{𝑥}))
289fveq2d 6862 . . . . . . . . . . 11 (𝑤 = 𝑊 → (+g‘((DVecH‘𝐾)‘𝑤)) = (+g𝑈))
29 hvmapval.p . . . . . . . . . . 11 + = (+g𝑈)
3028, 29eqtr4di 2782 . . . . . . . . . 10 (𝑤 = 𝑊 → (+g‘((DVecH‘𝐾)‘𝑤)) = + )
31 eqidd 2730 . . . . . . . . . 10 (𝑤 = 𝑊𝑡 = 𝑡)
329fveq2d 6862 . . . . . . . . . . . 12 (𝑤 = 𝑊 → ( ·𝑠 ‘((DVecH‘𝐾)‘𝑤)) = ( ·𝑠𝑈))
33 hvmapval.t . . . . . . . . . . . 12 · = ( ·𝑠𝑈)
3432, 33eqtr4di 2782 . . . . . . . . . . 11 (𝑤 = 𝑊 → ( ·𝑠 ‘((DVecH‘𝐾)‘𝑤)) = · )
3534oveqd 7404 . . . . . . . . . 10 (𝑤 = 𝑊 → (𝑗( ·𝑠 ‘((DVecH‘𝐾)‘𝑤))𝑥) = (𝑗 · 𝑥))
3630, 31, 35oveq123d 7408 . . . . . . . . 9 (𝑤 = 𝑊 → (𝑡(+g‘((DVecH‘𝐾)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝐾)‘𝑤))𝑥)) = (𝑡 + (𝑗 · 𝑥)))
3736eqeq2d 2740 . . . . . . . 8 (𝑤 = 𝑊 → (𝑣 = (𝑡(+g‘((DVecH‘𝐾)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝐾)‘𝑤))𝑥)) ↔ 𝑣 = (𝑡 + (𝑗 · 𝑥))))
3827, 37rexeqbidv 3320 . . . . . . 7 (𝑤 = 𝑊 → (∃𝑡 ∈ (((ocH‘𝐾)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝐾)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝐾)‘𝑤))𝑥)) ↔ ∃𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥))))
3923, 38riotaeqbidv 7347 . . . . . 6 (𝑤 = 𝑊 → (𝑗 ∈ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑤)))∃𝑡 ∈ (((ocH‘𝐾)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝐾)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝐾)‘𝑤))𝑥))) = (𝑗𝑅𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥))))
4012, 39mpteq12dv 5194 . . . . 5 (𝑤 = 𝑊 → (𝑣 ∈ (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (𝑗 ∈ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑤)))∃𝑡 ∈ (((ocH‘𝐾)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝐾)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝐾)‘𝑤))𝑥)))) = (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥)))))
4117, 40mpteq12dv 5194 . . . 4 (𝑤 = 𝑊 → (𝑥 ∈ ((Base‘((DVecH‘𝐾)‘𝑤)) ∖ {(0g‘((DVecH‘𝐾)‘𝑤))}) ↦ (𝑣 ∈ (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (𝑗 ∈ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑤)))∃𝑡 ∈ (((ocH‘𝐾)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝐾)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝐾)‘𝑤))𝑥))))) = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥))))))
42 eqid 2729 . . . 4 (𝑤𝐻 ↦ (𝑥 ∈ ((Base‘((DVecH‘𝐾)‘𝑤)) ∖ {(0g‘((DVecH‘𝐾)‘𝑤))}) ↦ (𝑣 ∈ (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (𝑗 ∈ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑤)))∃𝑡 ∈ (((ocH‘𝐾)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝐾)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝐾)‘𝑤))𝑥)))))) = (𝑤𝐻 ↦ (𝑥 ∈ ((Base‘((DVecH‘𝐾)‘𝑤)) ∖ {(0g‘((DVecH‘𝐾)‘𝑤))}) ↦ (𝑣 ∈ (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (𝑗 ∈ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑤)))∃𝑡 ∈ (((ocH‘𝐾)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝐾)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝐾)‘𝑤))𝑥))))))
4311fvexi 6872 . . . . . 6 𝑉 ∈ V
4443difexi 5285 . . . . 5 (𝑉 ∖ { 0 }) ∈ V
4544mptex 7197 . . . 4 (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥))))) ∈ V
4641, 42, 45fvmpt 6968 . . 3 (𝑊𝐻 → ((𝑤𝐻 ↦ (𝑥 ∈ ((Base‘((DVecH‘𝐾)‘𝑤)) ∖ {(0g‘((DVecH‘𝐾)‘𝑤))}) ↦ (𝑣 ∈ (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (𝑗 ∈ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑤)))∃𝑡 ∈ (((ocH‘𝐾)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝐾)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝐾)‘𝑤))𝑥))))))‘𝑊) = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥))))))
476, 46sylan9eq 2784 . 2 ((𝐾𝐴𝑊𝐻) → 𝑀 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥))))))
481, 47syl 17 1 (𝜑𝑀 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  cdif 3911  {csn 4589  cmpt 5188  cfv 6511  crio 7343  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  Scalarcsca 17223   ·𝑠 cvsca 17224  0gc0g 17402  LHypclh 39978  DVecHcdvh 41072  ocHcoch 41341  HVMapchvm 41750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-hvmap 41751
This theorem is referenced by:  hvmapval  41754  hvmap1o  41757  hvmaplkr  41762
  Copyright terms: Public domain W3C validator