Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hvmapfval Structured version   Visualization version   GIF version

Theorem hvmapfval 39773
Description: Map from nonzero vectors to nonzero functionals in the closed kernel dual space. (Contributed by NM, 23-Mar-2015.)
Hypotheses
Ref Expression
hvmapval.h 𝐻 = (LHyp‘𝐾)
hvmapval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hvmapval.o 𝑂 = ((ocH‘𝐾)‘𝑊)
hvmapval.v 𝑉 = (Base‘𝑈)
hvmapval.p + = (+g𝑈)
hvmapval.t · = ( ·𝑠𝑈)
hvmapval.z 0 = (0g𝑈)
hvmapval.s 𝑆 = (Scalar‘𝑈)
hvmapval.r 𝑅 = (Base‘𝑆)
hvmapval.m 𝑀 = ((HVMap‘𝐾)‘𝑊)
hvmapval.k (𝜑 → (𝐾𝐴𝑊𝐻))
Assertion
Ref Expression
hvmapfval (𝜑𝑀 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥))))))
Distinct variable groups:   𝑡,𝑗,𝑣,𝑥,𝐾   𝑡,𝑊   𝑡,𝑂   𝑅,𝑗   𝑥,𝑉   𝑗,𝑊,𝑣,𝑥   𝑥, 0
Allowed substitution hints:   𝜑(𝑥,𝑣,𝑡,𝑗)   𝐴(𝑥,𝑣,𝑡,𝑗)   + (𝑥,𝑣,𝑡,𝑗)   𝑅(𝑥,𝑣,𝑡)   𝑆(𝑥,𝑣,𝑡,𝑗)   · (𝑥,𝑣,𝑡,𝑗)   𝑈(𝑥,𝑣,𝑡,𝑗)   𝐻(𝑥,𝑣,𝑡,𝑗)   𝑀(𝑥,𝑣,𝑡,𝑗)   𝑂(𝑥,𝑣,𝑗)   𝑉(𝑣,𝑡,𝑗)   0 (𝑣,𝑡,𝑗)

Proof of Theorem hvmapfval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 hvmapval.k . 2 (𝜑 → (𝐾𝐴𝑊𝐻))
2 hvmapval.m . . . 4 𝑀 = ((HVMap‘𝐾)‘𝑊)
3 hvmapval.h . . . . . 6 𝐻 = (LHyp‘𝐾)
43hvmapffval 39772 . . . . 5 (𝐾𝐴 → (HVMap‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ ((Base‘((DVecH‘𝐾)‘𝑤)) ∖ {(0g‘((DVecH‘𝐾)‘𝑤))}) ↦ (𝑣 ∈ (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (𝑗 ∈ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑤)))∃𝑡 ∈ (((ocH‘𝐾)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝐾)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝐾)‘𝑤))𝑥)))))))
54fveq1d 6776 . . . 4 (𝐾𝐴 → ((HVMap‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ (𝑥 ∈ ((Base‘((DVecH‘𝐾)‘𝑤)) ∖ {(0g‘((DVecH‘𝐾)‘𝑤))}) ↦ (𝑣 ∈ (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (𝑗 ∈ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑤)))∃𝑡 ∈ (((ocH‘𝐾)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝐾)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝐾)‘𝑤))𝑥))))))‘𝑊))
62, 5eqtrid 2790 . . 3 (𝐾𝐴𝑀 = ((𝑤𝐻 ↦ (𝑥 ∈ ((Base‘((DVecH‘𝐾)‘𝑤)) ∖ {(0g‘((DVecH‘𝐾)‘𝑤))}) ↦ (𝑣 ∈ (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (𝑗 ∈ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑤)))∃𝑡 ∈ (((ocH‘𝐾)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝐾)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝐾)‘𝑤))𝑥))))))‘𝑊))
7 fveq2 6774 . . . . . . . . 9 (𝑤 = 𝑊 → ((DVecH‘𝐾)‘𝑤) = ((DVecH‘𝐾)‘𝑊))
8 hvmapval.u . . . . . . . . 9 𝑈 = ((DVecH‘𝐾)‘𝑊)
97, 8eqtr4di 2796 . . . . . . . 8 (𝑤 = 𝑊 → ((DVecH‘𝐾)‘𝑤) = 𝑈)
109fveq2d 6778 . . . . . . 7 (𝑤 = 𝑊 → (Base‘((DVecH‘𝐾)‘𝑤)) = (Base‘𝑈))
11 hvmapval.v . . . . . . 7 𝑉 = (Base‘𝑈)
1210, 11eqtr4di 2796 . . . . . 6 (𝑤 = 𝑊 → (Base‘((DVecH‘𝐾)‘𝑤)) = 𝑉)
139fveq2d 6778 . . . . . . . 8 (𝑤 = 𝑊 → (0g‘((DVecH‘𝐾)‘𝑤)) = (0g𝑈))
14 hvmapval.z . . . . . . . 8 0 = (0g𝑈)
1513, 14eqtr4di 2796 . . . . . . 7 (𝑤 = 𝑊 → (0g‘((DVecH‘𝐾)‘𝑤)) = 0 )
1615sneqd 4573 . . . . . 6 (𝑤 = 𝑊 → {(0g‘((DVecH‘𝐾)‘𝑤))} = { 0 })
1712, 16difeq12d 4058 . . . . 5 (𝑤 = 𝑊 → ((Base‘((DVecH‘𝐾)‘𝑤)) ∖ {(0g‘((DVecH‘𝐾)‘𝑤))}) = (𝑉 ∖ { 0 }))
189fveq2d 6778 . . . . . . . . . 10 (𝑤 = 𝑊 → (Scalar‘((DVecH‘𝐾)‘𝑤)) = (Scalar‘𝑈))
19 hvmapval.s . . . . . . . . . 10 𝑆 = (Scalar‘𝑈)
2018, 19eqtr4di 2796 . . . . . . . . 9 (𝑤 = 𝑊 → (Scalar‘((DVecH‘𝐾)‘𝑤)) = 𝑆)
2120fveq2d 6778 . . . . . . . 8 (𝑤 = 𝑊 → (Base‘(Scalar‘((DVecH‘𝐾)‘𝑤))) = (Base‘𝑆))
22 hvmapval.r . . . . . . . 8 𝑅 = (Base‘𝑆)
2321, 22eqtr4di 2796 . . . . . . 7 (𝑤 = 𝑊 → (Base‘(Scalar‘((DVecH‘𝐾)‘𝑤))) = 𝑅)
24 fveq2 6774 . . . . . . . . . 10 (𝑤 = 𝑊 → ((ocH‘𝐾)‘𝑤) = ((ocH‘𝐾)‘𝑊))
25 hvmapval.o . . . . . . . . . 10 𝑂 = ((ocH‘𝐾)‘𝑊)
2624, 25eqtr4di 2796 . . . . . . . . 9 (𝑤 = 𝑊 → ((ocH‘𝐾)‘𝑤) = 𝑂)
2726fveq1d 6776 . . . . . . . 8 (𝑤 = 𝑊 → (((ocH‘𝐾)‘𝑤)‘{𝑥}) = (𝑂‘{𝑥}))
289fveq2d 6778 . . . . . . . . . . 11 (𝑤 = 𝑊 → (+g‘((DVecH‘𝐾)‘𝑤)) = (+g𝑈))
29 hvmapval.p . . . . . . . . . . 11 + = (+g𝑈)
3028, 29eqtr4di 2796 . . . . . . . . . 10 (𝑤 = 𝑊 → (+g‘((DVecH‘𝐾)‘𝑤)) = + )
31 eqidd 2739 . . . . . . . . . 10 (𝑤 = 𝑊𝑡 = 𝑡)
329fveq2d 6778 . . . . . . . . . . . 12 (𝑤 = 𝑊 → ( ·𝑠 ‘((DVecH‘𝐾)‘𝑤)) = ( ·𝑠𝑈))
33 hvmapval.t . . . . . . . . . . . 12 · = ( ·𝑠𝑈)
3432, 33eqtr4di 2796 . . . . . . . . . . 11 (𝑤 = 𝑊 → ( ·𝑠 ‘((DVecH‘𝐾)‘𝑤)) = · )
3534oveqd 7292 . . . . . . . . . 10 (𝑤 = 𝑊 → (𝑗( ·𝑠 ‘((DVecH‘𝐾)‘𝑤))𝑥) = (𝑗 · 𝑥))
3630, 31, 35oveq123d 7296 . . . . . . . . 9 (𝑤 = 𝑊 → (𝑡(+g‘((DVecH‘𝐾)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝐾)‘𝑤))𝑥)) = (𝑡 + (𝑗 · 𝑥)))
3736eqeq2d 2749 . . . . . . . 8 (𝑤 = 𝑊 → (𝑣 = (𝑡(+g‘((DVecH‘𝐾)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝐾)‘𝑤))𝑥)) ↔ 𝑣 = (𝑡 + (𝑗 · 𝑥))))
3827, 37rexeqbidv 3337 . . . . . . 7 (𝑤 = 𝑊 → (∃𝑡 ∈ (((ocH‘𝐾)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝐾)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝐾)‘𝑤))𝑥)) ↔ ∃𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥))))
3923, 38riotaeqbidv 7235 . . . . . 6 (𝑤 = 𝑊 → (𝑗 ∈ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑤)))∃𝑡 ∈ (((ocH‘𝐾)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝐾)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝐾)‘𝑤))𝑥))) = (𝑗𝑅𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥))))
4012, 39mpteq12dv 5165 . . . . 5 (𝑤 = 𝑊 → (𝑣 ∈ (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (𝑗 ∈ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑤)))∃𝑡 ∈ (((ocH‘𝐾)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝐾)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝐾)‘𝑤))𝑥)))) = (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥)))))
4117, 40mpteq12dv 5165 . . . 4 (𝑤 = 𝑊 → (𝑥 ∈ ((Base‘((DVecH‘𝐾)‘𝑤)) ∖ {(0g‘((DVecH‘𝐾)‘𝑤))}) ↦ (𝑣 ∈ (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (𝑗 ∈ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑤)))∃𝑡 ∈ (((ocH‘𝐾)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝐾)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝐾)‘𝑤))𝑥))))) = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥))))))
42 eqid 2738 . . . 4 (𝑤𝐻 ↦ (𝑥 ∈ ((Base‘((DVecH‘𝐾)‘𝑤)) ∖ {(0g‘((DVecH‘𝐾)‘𝑤))}) ↦ (𝑣 ∈ (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (𝑗 ∈ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑤)))∃𝑡 ∈ (((ocH‘𝐾)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝐾)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝐾)‘𝑤))𝑥)))))) = (𝑤𝐻 ↦ (𝑥 ∈ ((Base‘((DVecH‘𝐾)‘𝑤)) ∖ {(0g‘((DVecH‘𝐾)‘𝑤))}) ↦ (𝑣 ∈ (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (𝑗 ∈ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑤)))∃𝑡 ∈ (((ocH‘𝐾)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝐾)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝐾)‘𝑤))𝑥))))))
4311fvexi 6788 . . . . . 6 𝑉 ∈ V
4443difexi 5252 . . . . 5 (𝑉 ∖ { 0 }) ∈ V
4544mptex 7099 . . . 4 (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥))))) ∈ V
4641, 42, 45fvmpt 6875 . . 3 (𝑊𝐻 → ((𝑤𝐻 ↦ (𝑥 ∈ ((Base‘((DVecH‘𝐾)‘𝑤)) ∖ {(0g‘((DVecH‘𝐾)‘𝑤))}) ↦ (𝑣 ∈ (Base‘((DVecH‘𝐾)‘𝑤)) ↦ (𝑗 ∈ (Base‘(Scalar‘((DVecH‘𝐾)‘𝑤)))∃𝑡 ∈ (((ocH‘𝐾)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝐾)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝐾)‘𝑤))𝑥))))))‘𝑊) = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥))))))
476, 46sylan9eq 2798 . 2 ((𝐾𝐴𝑊𝐻) → 𝑀 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥))))))
481, 47syl 17 1 (𝜑𝑀 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑗𝑅𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡 + (𝑗 · 𝑥))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wrex 3065  cdif 3884  {csn 4561  cmpt 5157  cfv 6433  crio 7231  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  Scalarcsca 16965   ·𝑠 cvsca 16966  0gc0g 17150  LHypclh 37998  DVecHcdvh 39092  ocHcoch 39361  HVMapchvm 39770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-hvmap 39771
This theorem is referenced by:  hvmapval  39774  hvmap1o  39777  hvmaplkr  39782
  Copyright terms: Public domain W3C validator