Step | Hyp | Ref
| Expression |
1 | | dicval.i |
. . 3
⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) |
2 | | dicval.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
3 | | dicval.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
4 | | dicval.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
5 | 2, 3, 4 | dicffval 39115 |
. . . 4
⊢ (𝐾 ∈ 𝑉 → (DIsoC‘𝐾) = (𝑤 ∈ 𝐻 ↦ (𝑞 ∈ {𝑟 ∈ 𝐴 ∣ ¬ 𝑟 ≤ 𝑤} ↦ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤))}))) |
6 | 5 | fveq1d 6758 |
. . 3
⊢ (𝐾 ∈ 𝑉 → ((DIsoC‘𝐾)‘𝑊) = ((𝑤 ∈ 𝐻 ↦ (𝑞 ∈ {𝑟 ∈ 𝐴 ∣ ¬ 𝑟 ≤ 𝑤} ↦ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤))}))‘𝑊)) |
7 | 1, 6 | syl5eq 2791 |
. 2
⊢ (𝐾 ∈ 𝑉 → 𝐼 = ((𝑤 ∈ 𝐻 ↦ (𝑞 ∈ {𝑟 ∈ 𝐴 ∣ ¬ 𝑟 ≤ 𝑤} ↦ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤))}))‘𝑊)) |
8 | | breq2 5074 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (𝑟 ≤ 𝑤 ↔ 𝑟 ≤ 𝑊)) |
9 | 8 | notbid 317 |
. . . . 5
⊢ (𝑤 = 𝑊 → (¬ 𝑟 ≤ 𝑤 ↔ ¬ 𝑟 ≤ 𝑊)) |
10 | 9 | rabbidv 3404 |
. . . 4
⊢ (𝑤 = 𝑊 → {𝑟 ∈ 𝐴 ∣ ¬ 𝑟 ≤ 𝑤} = {𝑟 ∈ 𝐴 ∣ ¬ 𝑟 ≤ 𝑊}) |
11 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = ((LTrn‘𝐾)‘𝑊)) |
12 | | dicval.t |
. . . . . . . . . 10
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
13 | 11, 12 | eqtr4di 2797 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = 𝑇) |
14 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑊 → ((oc‘𝐾)‘𝑤) = ((oc‘𝐾)‘𝑊)) |
15 | | dicval.p |
. . . . . . . . . . 11
⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
16 | 14, 15 | eqtr4di 2797 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑊 → ((oc‘𝐾)‘𝑤) = 𝑃) |
17 | 16 | fveqeq2d 6764 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → ((𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞 ↔ (𝑔‘𝑃) = 𝑞)) |
18 | 13, 17 | riotaeqbidv 7215 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → (℩𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞) = (℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑞)) |
19 | 18 | fveq2d 6760 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑞))) |
20 | 19 | eqeq2d 2749 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (𝑓 = (𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ↔ 𝑓 = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑞)))) |
21 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → ((TEndo‘𝐾)‘𝑤) = ((TEndo‘𝐾)‘𝑊)) |
22 | | dicval.e |
. . . . . . . 8
⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
23 | 21, 22 | eqtr4di 2797 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → ((TEndo‘𝐾)‘𝑤) = 𝐸) |
24 | 23 | eleq2d 2824 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (𝑠 ∈ ((TEndo‘𝐾)‘𝑤) ↔ 𝑠 ∈ 𝐸)) |
25 | 20, 24 | anbi12d 630 |
. . . . 5
⊢ (𝑤 = 𝑊 → ((𝑓 = (𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤)) ↔ (𝑓 = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑞)) ∧ 𝑠 ∈ 𝐸))) |
26 | 25 | opabbidv 5136 |
. . . 4
⊢ (𝑤 = 𝑊 → {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤))} = {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑞)) ∧ 𝑠 ∈ 𝐸)}) |
27 | 10, 26 | mpteq12dv 5161 |
. . 3
⊢ (𝑤 = 𝑊 → (𝑞 ∈ {𝑟 ∈ 𝐴 ∣ ¬ 𝑟 ≤ 𝑤} ↦ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤))}) = (𝑞 ∈ {𝑟 ∈ 𝐴 ∣ ¬ 𝑟 ≤ 𝑊} ↦ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑞)) ∧ 𝑠 ∈ 𝐸)})) |
28 | | eqid 2738 |
. . 3
⊢ (𝑤 ∈ 𝐻 ↦ (𝑞 ∈ {𝑟 ∈ 𝐴 ∣ ¬ 𝑟 ≤ 𝑤} ↦ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤))})) = (𝑤 ∈ 𝐻 ↦ (𝑞 ∈ {𝑟 ∈ 𝐴 ∣ ¬ 𝑟 ≤ 𝑤} ↦ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤))})) |
29 | 3 | fvexi 6770 |
. . . 4
⊢ 𝐴 ∈ V |
30 | 29 | mptrabex 7083 |
. . 3
⊢ (𝑞 ∈ {𝑟 ∈ 𝐴 ∣ ¬ 𝑟 ≤ 𝑊} ↦ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑞)) ∧ 𝑠 ∈ 𝐸)}) ∈ V |
31 | 27, 28, 30 | fvmpt 6857 |
. 2
⊢ (𝑊 ∈ 𝐻 → ((𝑤 ∈ 𝐻 ↦ (𝑞 ∈ {𝑟 ∈ 𝐴 ∣ ¬ 𝑟 ≤ 𝑤} ↦ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤))}))‘𝑊) = (𝑞 ∈ {𝑟 ∈ 𝐴 ∣ ¬ 𝑟 ≤ 𝑊} ↦ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑞)) ∧ 𝑠 ∈ 𝐸)})) |
32 | 7, 31 | sylan9eq 2799 |
1
⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐼 = (𝑞 ∈ {𝑟 ∈ 𝐴 ∣ ¬ 𝑟 ≤ 𝑊} ↦ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑞)) ∧ 𝑠 ∈ 𝐸)})) |