Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicfval Structured version   Visualization version   GIF version

Theorem dicfval 41132
Description: The partial isomorphism C for a lattice 𝐾. (Contributed by NM, 15-Dec-2013.)
Hypotheses
Ref Expression
dicval.l = (le‘𝐾)
dicval.a 𝐴 = (Atoms‘𝐾)
dicval.h 𝐻 = (LHyp‘𝐾)
dicval.p 𝑃 = ((oc‘𝐾)‘𝑊)
dicval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dicval.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dicval.i 𝐼 = ((DIsoC‘𝐾)‘𝑊)
Assertion
Ref Expression
dicfval ((𝐾𝑉𝑊𝐻) → 𝐼 = (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)) ∧ 𝑠𝐸)}))
Distinct variable groups:   𝐴,𝑟   𝑓,𝑔,𝑞,𝑟,𝑠,𝐾   ,𝑞   𝐴,𝑞   𝑇,𝑔   𝑓,𝑊,𝑔,𝑞,𝑟,𝑠
Allowed substitution hints:   𝐴(𝑓,𝑔,𝑠)   𝑃(𝑓,𝑔,𝑠,𝑟,𝑞)   𝑇(𝑓,𝑠,𝑟,𝑞)   𝐸(𝑓,𝑔,𝑠,𝑟,𝑞)   𝐻(𝑓,𝑔,𝑠,𝑟,𝑞)   𝐼(𝑓,𝑔,𝑠,𝑟,𝑞)   (𝑓,𝑔,𝑠,𝑟)   𝑉(𝑓,𝑔,𝑠,𝑟,𝑞)

Proof of Theorem dicfval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 dicval.i . . 3 𝐼 = ((DIsoC‘𝐾)‘𝑊)
2 dicval.l . . . . 5 = (le‘𝐾)
3 dicval.a . . . . 5 𝐴 = (Atoms‘𝐾)
4 dicval.h . . . . 5 𝐻 = (LHyp‘𝐾)
52, 3, 4dicffval 41131 . . . 4 (𝐾𝑉 → (DIsoC‘𝐾) = (𝑤𝐻 ↦ (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑤} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤))})))
65fveq1d 6922 . . 3 (𝐾𝑉 → ((DIsoC‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑤} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤))}))‘𝑊))
71, 6eqtrid 2792 . 2 (𝐾𝑉𝐼 = ((𝑤𝐻 ↦ (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑤} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤))}))‘𝑊))
8 breq2 5170 . . . . . 6 (𝑤 = 𝑊 → (𝑟 𝑤𝑟 𝑊))
98notbid 318 . . . . 5 (𝑤 = 𝑊 → (¬ 𝑟 𝑤 ↔ ¬ 𝑟 𝑊))
109rabbidv 3451 . . . 4 (𝑤 = 𝑊 → {𝑟𝐴 ∣ ¬ 𝑟 𝑤} = {𝑟𝐴 ∣ ¬ 𝑟 𝑊})
11 fveq2 6920 . . . . . . . . . 10 (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = ((LTrn‘𝐾)‘𝑊))
12 dicval.t . . . . . . . . . 10 𝑇 = ((LTrn‘𝐾)‘𝑊)
1311, 12eqtr4di 2798 . . . . . . . . 9 (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = 𝑇)
14 fveq2 6920 . . . . . . . . . . 11 (𝑤 = 𝑊 → ((oc‘𝐾)‘𝑤) = ((oc‘𝐾)‘𝑊))
15 dicval.p . . . . . . . . . . 11 𝑃 = ((oc‘𝐾)‘𝑊)
1614, 15eqtr4di 2798 . . . . . . . . . 10 (𝑤 = 𝑊 → ((oc‘𝐾)‘𝑤) = 𝑃)
1716fveqeq2d 6928 . . . . . . . . 9 (𝑤 = 𝑊 → ((𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞 ↔ (𝑔𝑃) = 𝑞))
1813, 17riotaeqbidv 7407 . . . . . . . 8 (𝑤 = 𝑊 → (𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞) = (𝑔𝑇 (𝑔𝑃) = 𝑞))
1918fveq2d 6924 . . . . . . 7 (𝑤 = 𝑊 → (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)))
2019eqeq2d 2751 . . . . . 6 (𝑤 = 𝑊 → (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ↔ 𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞))))
21 fveq2 6920 . . . . . . . 8 (𝑤 = 𝑊 → ((TEndo‘𝐾)‘𝑤) = ((TEndo‘𝐾)‘𝑊))
22 dicval.e . . . . . . . 8 𝐸 = ((TEndo‘𝐾)‘𝑊)
2321, 22eqtr4di 2798 . . . . . . 7 (𝑤 = 𝑊 → ((TEndo‘𝐾)‘𝑤) = 𝐸)
2423eleq2d 2830 . . . . . 6 (𝑤 = 𝑊 → (𝑠 ∈ ((TEndo‘𝐾)‘𝑤) ↔ 𝑠𝐸))
2520, 24anbi12d 631 . . . . 5 (𝑤 = 𝑊 → ((𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤)) ↔ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)) ∧ 𝑠𝐸)))
2625opabbidv 5232 . . . 4 (𝑤 = 𝑊 → {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤))} = {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)) ∧ 𝑠𝐸)})
2710, 26mpteq12dv 5257 . . 3 (𝑤 = 𝑊 → (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑤} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤))}) = (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)) ∧ 𝑠𝐸)}))
28 eqid 2740 . . 3 (𝑤𝐻 ↦ (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑤} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤))})) = (𝑤𝐻 ↦ (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑤} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤))}))
293fvexi 6934 . . . 4 𝐴 ∈ V
3029mptrabex 7262 . . 3 (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)) ∧ 𝑠𝐸)}) ∈ V
3127, 28, 30fvmpt 7029 . 2 (𝑊𝐻 → ((𝑤𝐻 ↦ (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑤} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤))}))‘𝑊) = (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)) ∧ 𝑠𝐸)}))
327, 31sylan9eq 2800 1 ((𝐾𝑉𝑊𝐻) → 𝐼 = (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)) ∧ 𝑠𝐸)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  {crab 3443   class class class wbr 5166  {copab 5228  cmpt 5249  cfv 6573  crio 7403  lecple 17318  occoc 17319  Atomscatm 39219  LHypclh 39941  LTrncltrn 40058  TEndoctendo 40709  DIsoCcdic 41129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-dic 41130
This theorem is referenced by:  dicval  41133  dicfnN  41140
  Copyright terms: Public domain W3C validator