Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihfval Structured version   Visualization version   GIF version

Theorem dihfval 41198
Description: Isomorphism H for a lattice 𝐾. Definition of isomorphism map in [Crawley] p. 122 line 3. (Contributed by NM, 28-Jan-2014.)
Hypotheses
Ref Expression
dihval.b 𝐵 = (Base‘𝐾)
dihval.l = (le‘𝐾)
dihval.j = (join‘𝐾)
dihval.m = (meet‘𝐾)
dihval.a 𝐴 = (Atoms‘𝐾)
dihval.h 𝐻 = (LHyp‘𝐾)
dihval.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihval.d 𝐷 = ((DIsoB‘𝐾)‘𝑊)
dihval.c 𝐶 = ((DIsoC‘𝐾)‘𝑊)
dihval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihval.s 𝑆 = (LSubSp‘𝑈)
dihval.p = (LSSum‘𝑈)
Assertion
Ref Expression
dihfval ((𝐾𝑉𝑊𝐻) → 𝐼 = (𝑥𝐵 ↦ if(𝑥 𝑊, (𝐷𝑥), (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑥 𝑊)) = 𝑥) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑥 𝑊))))))))
Distinct variable groups:   𝐴,𝑞   𝑢,𝑞,𝑥,𝐾   𝑥,𝐵   𝑢,𝑆   𝑊,𝑞,𝑢,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑢)   𝐵(𝑢,𝑞)   𝐶(𝑥,𝑢,𝑞)   𝐷(𝑥,𝑢,𝑞)   (𝑥,𝑢,𝑞)   𝑆(𝑥,𝑞)   𝑈(𝑥,𝑢,𝑞)   𝐻(𝑥,𝑢,𝑞)   𝐼(𝑥,𝑢,𝑞)   (𝑥,𝑢,𝑞)   (𝑥,𝑢,𝑞)   (𝑥,𝑢,𝑞)   𝑉(𝑥,𝑢,𝑞)

Proof of Theorem dihfval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 dihval.i . . 3 𝐼 = ((DIsoH‘𝐾)‘𝑊)
2 dihval.b . . . . 5 𝐵 = (Base‘𝐾)
3 dihval.l . . . . 5 = (le‘𝐾)
4 dihval.j . . . . 5 = (join‘𝐾)
5 dihval.m . . . . 5 = (meet‘𝐾)
6 dihval.a . . . . 5 𝐴 = (Atoms‘𝐾)
7 dihval.h . . . . 5 𝐻 = (LHyp‘𝐾)
82, 3, 4, 5, 6, 7dihffval 41197 . . . 4 (𝐾𝑉 → (DIsoH‘𝐾) = (𝑤𝐻 ↦ (𝑥𝐵 ↦ if(𝑥 𝑤, (((DIsoB‘𝐾)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤)))))))))
98fveq1d 6842 . . 3 (𝐾𝑉 → ((DIsoH‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ (𝑥𝐵 ↦ if(𝑥 𝑤, (((DIsoB‘𝐾)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤))))))))‘𝑊))
101, 9eqtrid 2776 . 2 (𝐾𝑉𝐼 = ((𝑤𝐻 ↦ (𝑥𝐵 ↦ if(𝑥 𝑤, (((DIsoB‘𝐾)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤))))))))‘𝑊))
11 breq2 5106 . . . . 5 (𝑤 = 𝑊 → (𝑥 𝑤𝑥 𝑊))
12 fveq2 6840 . . . . . . 7 (𝑤 = 𝑊 → ((DIsoB‘𝐾)‘𝑤) = ((DIsoB‘𝐾)‘𝑊))
13 dihval.d . . . . . . 7 𝐷 = ((DIsoB‘𝐾)‘𝑊)
1412, 13eqtr4di 2782 . . . . . 6 (𝑤 = 𝑊 → ((DIsoB‘𝐾)‘𝑤) = 𝐷)
1514fveq1d 6842 . . . . 5 (𝑤 = 𝑊 → (((DIsoB‘𝐾)‘𝑤)‘𝑥) = (𝐷𝑥))
16 fveq2 6840 . . . . . . . . 9 (𝑤 = 𝑊 → ((DVecH‘𝐾)‘𝑤) = ((DVecH‘𝐾)‘𝑊))
17 dihval.u . . . . . . . . 9 𝑈 = ((DVecH‘𝐾)‘𝑊)
1816, 17eqtr4di 2782 . . . . . . . 8 (𝑤 = 𝑊 → ((DVecH‘𝐾)‘𝑤) = 𝑈)
1918fveq2d 6844 . . . . . . 7 (𝑤 = 𝑊 → (LSubSp‘((DVecH‘𝐾)‘𝑤)) = (LSubSp‘𝑈))
20 dihval.s . . . . . . 7 𝑆 = (LSubSp‘𝑈)
2119, 20eqtr4di 2782 . . . . . 6 (𝑤 = 𝑊 → (LSubSp‘((DVecH‘𝐾)‘𝑤)) = 𝑆)
22 breq2 5106 . . . . . . . . . 10 (𝑤 = 𝑊 → (𝑞 𝑤𝑞 𝑊))
2322notbid 318 . . . . . . . . 9 (𝑤 = 𝑊 → (¬ 𝑞 𝑤 ↔ ¬ 𝑞 𝑊))
24 oveq2 7377 . . . . . . . . . . 11 (𝑤 = 𝑊 → (𝑥 𝑤) = (𝑥 𝑊))
2524oveq2d 7385 . . . . . . . . . 10 (𝑤 = 𝑊 → (𝑞 (𝑥 𝑤)) = (𝑞 (𝑥 𝑊)))
2625eqeq1d 2731 . . . . . . . . 9 (𝑤 = 𝑊 → ((𝑞 (𝑥 𝑤)) = 𝑥 ↔ (𝑞 (𝑥 𝑊)) = 𝑥))
2723, 26anbi12d 632 . . . . . . . 8 (𝑤 = 𝑊 → ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) ↔ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑥 𝑊)) = 𝑥)))
2818fveq2d 6844 . . . . . . . . . . 11 (𝑤 = 𝑊 → (LSSum‘((DVecH‘𝐾)‘𝑤)) = (LSSum‘𝑈))
29 dihval.p . . . . . . . . . . 11 = (LSSum‘𝑈)
3028, 29eqtr4di 2782 . . . . . . . . . 10 (𝑤 = 𝑊 → (LSSum‘((DVecH‘𝐾)‘𝑤)) = )
31 fveq2 6840 . . . . . . . . . . . 12 (𝑤 = 𝑊 → ((DIsoC‘𝐾)‘𝑤) = ((DIsoC‘𝐾)‘𝑊))
32 dihval.c . . . . . . . . . . . 12 𝐶 = ((DIsoC‘𝐾)‘𝑊)
3331, 32eqtr4di 2782 . . . . . . . . . . 11 (𝑤 = 𝑊 → ((DIsoC‘𝐾)‘𝑤) = 𝐶)
3433fveq1d 6842 . . . . . . . . . 10 (𝑤 = 𝑊 → (((DIsoC‘𝐾)‘𝑤)‘𝑞) = (𝐶𝑞))
3514, 24fveq12d 6847 . . . . . . . . . 10 (𝑤 = 𝑊 → (((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤)) = (𝐷‘(𝑥 𝑊)))
3630, 34, 35oveq123d 7390 . . . . . . . . 9 (𝑤 = 𝑊 → ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤))) = ((𝐶𝑞) (𝐷‘(𝑥 𝑊))))
3736eqeq2d 2740 . . . . . . . 8 (𝑤 = 𝑊 → (𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤))) ↔ 𝑢 = ((𝐶𝑞) (𝐷‘(𝑥 𝑊)))))
3827, 37imbi12d 344 . . . . . . 7 (𝑤 = 𝑊 → (((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤)))) ↔ ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑥 𝑊)) = 𝑥) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑥 𝑊))))))
3938ralbidv 3156 . . . . . 6 (𝑤 = 𝑊 → (∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤)))) ↔ ∀𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑥 𝑊)) = 𝑥) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑥 𝑊))))))
4021, 39riotaeqbidv 7329 . . . . 5 (𝑤 = 𝑊 → (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤))))) = (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑥 𝑊)) = 𝑥) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑥 𝑊))))))
4111, 15, 40ifbieq12d 4513 . . . 4 (𝑤 = 𝑊 → if(𝑥 𝑤, (((DIsoB‘𝐾)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤)))))) = if(𝑥 𝑊, (𝐷𝑥), (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑥 𝑊)) = 𝑥) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑥 𝑊)))))))
4241mpteq2dv 5196 . . 3 (𝑤 = 𝑊 → (𝑥𝐵 ↦ if(𝑥 𝑤, (((DIsoB‘𝐾)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤))))))) = (𝑥𝐵 ↦ if(𝑥 𝑊, (𝐷𝑥), (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑥 𝑊)) = 𝑥) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑥 𝑊))))))))
43 eqid 2729 . . 3 (𝑤𝐻 ↦ (𝑥𝐵 ↦ if(𝑥 𝑤, (((DIsoB‘𝐾)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤)))))))) = (𝑤𝐻 ↦ (𝑥𝐵 ↦ if(𝑥 𝑤, (((DIsoB‘𝐾)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤))))))))
4442, 43, 2mptfvmpt 7184 . 2 (𝑊𝐻 → ((𝑤𝐻 ↦ (𝑥𝐵 ↦ if(𝑥 𝑤, (((DIsoB‘𝐾)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤))))))))‘𝑊) = (𝑥𝐵 ↦ if(𝑥 𝑊, (𝐷𝑥), (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑥 𝑊)) = 𝑥) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑥 𝑊))))))))
4510, 44sylan9eq 2784 1 ((𝐾𝑉𝑊𝐻) → 𝐼 = (𝑥𝐵 ↦ if(𝑥 𝑊, (𝐷𝑥), (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑥 𝑊)) = 𝑥) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑥 𝑊))))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  ifcif 4484   class class class wbr 5102  cmpt 5183  cfv 6499  crio 7325  (class class class)co 7369  Basecbs 17155  lecple 17203  joincjn 18248  meetcmee 18249  LSSumclsm 19540  LSubSpclss 20813  Atomscatm 39229  LHypclh 39951  DVecHcdvh 41045  DIsoBcdib 41105  DIsoCcdic 41139  DIsoHcdih 41195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-dih 41196
This theorem is referenced by:  dihval  41199  dihf11lem  41233
  Copyright terms: Public domain W3C validator