Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihfval Structured version   Visualization version   GIF version

Theorem dihfval 38235
Description: Isomorphism H for a lattice 𝐾. Definition of isomorphism map in [Crawley] p. 122 line 3. (Contributed by NM, 28-Jan-2014.)
Hypotheses
Ref Expression
dihval.b 𝐵 = (Base‘𝐾)
dihval.l = (le‘𝐾)
dihval.j = (join‘𝐾)
dihval.m = (meet‘𝐾)
dihval.a 𝐴 = (Atoms‘𝐾)
dihval.h 𝐻 = (LHyp‘𝐾)
dihval.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihval.d 𝐷 = ((DIsoB‘𝐾)‘𝑊)
dihval.c 𝐶 = ((DIsoC‘𝐾)‘𝑊)
dihval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihval.s 𝑆 = (LSubSp‘𝑈)
dihval.p = (LSSum‘𝑈)
Assertion
Ref Expression
dihfval ((𝐾𝑉𝑊𝐻) → 𝐼 = (𝑥𝐵 ↦ if(𝑥 𝑊, (𝐷𝑥), (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑥 𝑊)) = 𝑥) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑥 𝑊))))))))
Distinct variable groups:   𝐴,𝑞   𝑢,𝑞,𝑥,𝐾   𝑥,𝐵   𝑢,𝑆   𝑊,𝑞,𝑢,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑢)   𝐵(𝑢,𝑞)   𝐶(𝑥,𝑢,𝑞)   𝐷(𝑥,𝑢,𝑞)   (𝑥,𝑢,𝑞)   𝑆(𝑥,𝑞)   𝑈(𝑥,𝑢,𝑞)   𝐻(𝑥,𝑢,𝑞)   𝐼(𝑥,𝑢,𝑞)   (𝑥,𝑢,𝑞)   (𝑥,𝑢,𝑞)   (𝑥,𝑢,𝑞)   𝑉(𝑥,𝑢,𝑞)

Proof of Theorem dihfval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 dihval.i . . 3 𝐼 = ((DIsoH‘𝐾)‘𝑊)
2 dihval.b . . . . 5 𝐵 = (Base‘𝐾)
3 dihval.l . . . . 5 = (le‘𝐾)
4 dihval.j . . . . 5 = (join‘𝐾)
5 dihval.m . . . . 5 = (meet‘𝐾)
6 dihval.a . . . . 5 𝐴 = (Atoms‘𝐾)
7 dihval.h . . . . 5 𝐻 = (LHyp‘𝐾)
82, 3, 4, 5, 6, 7dihffval 38234 . . . 4 (𝐾𝑉 → (DIsoH‘𝐾) = (𝑤𝐻 ↦ (𝑥𝐵 ↦ if(𝑥 𝑤, (((DIsoB‘𝐾)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤)))))))))
98fveq1d 6668 . . 3 (𝐾𝑉 → ((DIsoH‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ (𝑥𝐵 ↦ if(𝑥 𝑤, (((DIsoB‘𝐾)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤))))))))‘𝑊))
101, 9syl5eq 2872 . 2 (𝐾𝑉𝐼 = ((𝑤𝐻 ↦ (𝑥𝐵 ↦ if(𝑥 𝑤, (((DIsoB‘𝐾)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤))))))))‘𝑊))
11 breq2 5066 . . . . 5 (𝑤 = 𝑊 → (𝑥 𝑤𝑥 𝑊))
12 fveq2 6666 . . . . . . 7 (𝑤 = 𝑊 → ((DIsoB‘𝐾)‘𝑤) = ((DIsoB‘𝐾)‘𝑊))
13 dihval.d . . . . . . 7 𝐷 = ((DIsoB‘𝐾)‘𝑊)
1412, 13syl6eqr 2878 . . . . . 6 (𝑤 = 𝑊 → ((DIsoB‘𝐾)‘𝑤) = 𝐷)
1514fveq1d 6668 . . . . 5 (𝑤 = 𝑊 → (((DIsoB‘𝐾)‘𝑤)‘𝑥) = (𝐷𝑥))
16 fveq2 6666 . . . . . . . . 9 (𝑤 = 𝑊 → ((DVecH‘𝐾)‘𝑤) = ((DVecH‘𝐾)‘𝑊))
17 dihval.u . . . . . . . . 9 𝑈 = ((DVecH‘𝐾)‘𝑊)
1816, 17syl6eqr 2878 . . . . . . . 8 (𝑤 = 𝑊 → ((DVecH‘𝐾)‘𝑤) = 𝑈)
1918fveq2d 6670 . . . . . . 7 (𝑤 = 𝑊 → (LSubSp‘((DVecH‘𝐾)‘𝑤)) = (LSubSp‘𝑈))
20 dihval.s . . . . . . 7 𝑆 = (LSubSp‘𝑈)
2119, 20syl6eqr 2878 . . . . . 6 (𝑤 = 𝑊 → (LSubSp‘((DVecH‘𝐾)‘𝑤)) = 𝑆)
22 breq2 5066 . . . . . . . . . 10 (𝑤 = 𝑊 → (𝑞 𝑤𝑞 𝑊))
2322notbid 319 . . . . . . . . 9 (𝑤 = 𝑊 → (¬ 𝑞 𝑤 ↔ ¬ 𝑞 𝑊))
24 oveq2 7159 . . . . . . . . . . 11 (𝑤 = 𝑊 → (𝑥 𝑤) = (𝑥 𝑊))
2524oveq2d 7167 . . . . . . . . . 10 (𝑤 = 𝑊 → (𝑞 (𝑥 𝑤)) = (𝑞 (𝑥 𝑊)))
2625eqeq1d 2826 . . . . . . . . 9 (𝑤 = 𝑊 → ((𝑞 (𝑥 𝑤)) = 𝑥 ↔ (𝑞 (𝑥 𝑊)) = 𝑥))
2723, 26anbi12d 630 . . . . . . . 8 (𝑤 = 𝑊 → ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) ↔ (¬ 𝑞 𝑊 ∧ (𝑞 (𝑥 𝑊)) = 𝑥)))
2818fveq2d 6670 . . . . . . . . . . 11 (𝑤 = 𝑊 → (LSSum‘((DVecH‘𝐾)‘𝑤)) = (LSSum‘𝑈))
29 dihval.p . . . . . . . . . . 11 = (LSSum‘𝑈)
3028, 29syl6eqr 2878 . . . . . . . . . 10 (𝑤 = 𝑊 → (LSSum‘((DVecH‘𝐾)‘𝑤)) = )
31 fveq2 6666 . . . . . . . . . . . 12 (𝑤 = 𝑊 → ((DIsoC‘𝐾)‘𝑤) = ((DIsoC‘𝐾)‘𝑊))
32 dihval.c . . . . . . . . . . . 12 𝐶 = ((DIsoC‘𝐾)‘𝑊)
3331, 32syl6eqr 2878 . . . . . . . . . . 11 (𝑤 = 𝑊 → ((DIsoC‘𝐾)‘𝑤) = 𝐶)
3433fveq1d 6668 . . . . . . . . . 10 (𝑤 = 𝑊 → (((DIsoC‘𝐾)‘𝑤)‘𝑞) = (𝐶𝑞))
3514, 24fveq12d 6673 . . . . . . . . . 10 (𝑤 = 𝑊 → (((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤)) = (𝐷‘(𝑥 𝑊)))
3630, 34, 35oveq123d 7172 . . . . . . . . 9 (𝑤 = 𝑊 → ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤))) = ((𝐶𝑞) (𝐷‘(𝑥 𝑊))))
3736eqeq2d 2835 . . . . . . . 8 (𝑤 = 𝑊 → (𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤))) ↔ 𝑢 = ((𝐶𝑞) (𝐷‘(𝑥 𝑊)))))
3827, 37imbi12d 346 . . . . . . 7 (𝑤 = 𝑊 → (((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤)))) ↔ ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑥 𝑊)) = 𝑥) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑥 𝑊))))))
3938ralbidv 3201 . . . . . 6 (𝑤 = 𝑊 → (∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤)))) ↔ ∀𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑥 𝑊)) = 𝑥) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑥 𝑊))))))
4021, 39riotaeqbidv 7112 . . . . 5 (𝑤 = 𝑊 → (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤))))) = (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑥 𝑊)) = 𝑥) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑥 𝑊))))))
4111, 15, 40ifbieq12d 4496 . . . 4 (𝑤 = 𝑊 → if(𝑥 𝑤, (((DIsoB‘𝐾)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤)))))) = if(𝑥 𝑊, (𝐷𝑥), (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑥 𝑊)) = 𝑥) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑥 𝑊)))))))
4241mpteq2dv 5158 . . 3 (𝑤 = 𝑊 → (𝑥𝐵 ↦ if(𝑥 𝑤, (((DIsoB‘𝐾)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤))))))) = (𝑥𝐵 ↦ if(𝑥 𝑊, (𝐷𝑥), (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑥 𝑊)) = 𝑥) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑥 𝑊))))))))
43 eqid 2824 . . 3 (𝑤𝐻 ↦ (𝑥𝐵 ↦ if(𝑥 𝑤, (((DIsoB‘𝐾)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤)))))))) = (𝑤𝐻 ↦ (𝑥𝐵 ↦ if(𝑥 𝑤, (((DIsoB‘𝐾)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤))))))))
4442, 43, 2mptfvmpt 6988 . 2 (𝑊𝐻 → ((𝑤𝐻 ↦ (𝑥𝐵 ↦ if(𝑥 𝑤, (((DIsoB‘𝐾)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤))∀𝑞𝐴 ((¬ 𝑞 𝑤 ∧ (𝑞 (𝑥 𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝐾)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝐾)‘𝑤))(((DIsoB‘𝐾)‘𝑤)‘(𝑥 𝑤))))))))‘𝑊) = (𝑥𝐵 ↦ if(𝑥 𝑊, (𝐷𝑥), (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑥 𝑊)) = 𝑥) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑥 𝑊))))))))
4510, 44sylan9eq 2880 1 ((𝐾𝑉𝑊𝐻) → 𝐼 = (𝑥𝐵 ↦ if(𝑥 𝑊, (𝐷𝑥), (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑥 𝑊)) = 𝑥) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑥 𝑊))))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1530  wcel 2106  wral 3142  ifcif 4469   class class class wbr 5062  cmpt 5142  cfv 6351  crio 7108  (class class class)co 7151  Basecbs 16475  lecple 16564  joincjn 17546  meetcmee 17547  LSSumclsm 18681  LSubSpclss 19625  Atomscatm 36267  LHypclh 36988  DVecHcdvh 38082  DIsoBcdib 38142  DIsoCcdic 38176  DIsoHcdih 38232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-ext 2796  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pr 5325
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-dih 38233
This theorem is referenced by:  dihval  38236  dihf11lem  38270
  Copyright terms: Public domain W3C validator