Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihfval Structured version   Visualization version   GIF version

Theorem dihfval 40558
Description: Isomorphism H for a lattice 𝐾. Definition of isomorphism map in [Crawley] p. 122 line 3. (Contributed by NM, 28-Jan-2014.)
Hypotheses
Ref Expression
dihval.b 𝐡 = (Baseβ€˜πΎ)
dihval.l ≀ = (leβ€˜πΎ)
dihval.j ∨ = (joinβ€˜πΎ)
dihval.m ∧ = (meetβ€˜πΎ)
dihval.a 𝐴 = (Atomsβ€˜πΎ)
dihval.h 𝐻 = (LHypβ€˜πΎ)
dihval.i 𝐼 = ((DIsoHβ€˜πΎ)β€˜π‘Š)
dihval.d 𝐷 = ((DIsoBβ€˜πΎ)β€˜π‘Š)
dihval.c 𝐢 = ((DIsoCβ€˜πΎ)β€˜π‘Š)
dihval.u π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
dihval.s 𝑆 = (LSubSpβ€˜π‘ˆ)
dihval.p βŠ• = (LSSumβ€˜π‘ˆ)
Assertion
Ref Expression
dihfval ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ 𝐼 = (π‘₯ ∈ 𝐡 ↦ if(π‘₯ ≀ π‘Š, (π·β€˜π‘₯), (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(π‘₯ ∧ π‘Š))))))))
Distinct variable groups:   𝐴,π‘ž   𝑒,π‘ž,π‘₯,𝐾   π‘₯,𝐡   𝑒,𝑆   π‘Š,π‘ž,𝑒,π‘₯
Allowed substitution hints:   𝐴(π‘₯,𝑒)   𝐡(𝑒,π‘ž)   𝐢(π‘₯,𝑒,π‘ž)   𝐷(π‘₯,𝑒,π‘ž)   βŠ• (π‘₯,𝑒,π‘ž)   𝑆(π‘₯,π‘ž)   π‘ˆ(π‘₯,𝑒,π‘ž)   𝐻(π‘₯,𝑒,π‘ž)   𝐼(π‘₯,𝑒,π‘ž)   ∨ (π‘₯,𝑒,π‘ž)   ≀ (π‘₯,𝑒,π‘ž)   ∧ (π‘₯,𝑒,π‘ž)   𝑉(π‘₯,𝑒,π‘ž)

Proof of Theorem dihfval
Dummy variable 𝑀 is distinct from all other variables.
StepHypRef Expression
1 dihval.i . . 3 𝐼 = ((DIsoHβ€˜πΎ)β€˜π‘Š)
2 dihval.b . . . . 5 𝐡 = (Baseβ€˜πΎ)
3 dihval.l . . . . 5 ≀ = (leβ€˜πΎ)
4 dihval.j . . . . 5 ∨ = (joinβ€˜πΎ)
5 dihval.m . . . . 5 ∧ = (meetβ€˜πΎ)
6 dihval.a . . . . 5 𝐴 = (Atomsβ€˜πΎ)
7 dihval.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
82, 3, 4, 5, 6, 7dihffval 40557 . . . 4 (𝐾 ∈ 𝑉 β†’ (DIsoHβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ (π‘₯ ∈ 𝐡 ↦ if(π‘₯ ≀ 𝑀, (((DIsoBβ€˜πΎ)β€˜π‘€)β€˜π‘₯), (℩𝑒 ∈ (LSubSpβ€˜((DVecHβ€˜πΎ)β€˜π‘€))βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ 𝑀 ∧ (π‘ž ∨ (π‘₯ ∧ 𝑀)) = π‘₯) β†’ 𝑒 = ((((DIsoCβ€˜πΎ)β€˜π‘€)β€˜π‘ž)(LSSumβ€˜((DVecHβ€˜πΎ)β€˜π‘€))(((DIsoBβ€˜πΎ)β€˜π‘€)β€˜(π‘₯ ∧ 𝑀)))))))))
98fveq1d 6883 . . 3 (𝐾 ∈ 𝑉 β†’ ((DIsoHβ€˜πΎ)β€˜π‘Š) = ((𝑀 ∈ 𝐻 ↦ (π‘₯ ∈ 𝐡 ↦ if(π‘₯ ≀ 𝑀, (((DIsoBβ€˜πΎ)β€˜π‘€)β€˜π‘₯), (℩𝑒 ∈ (LSubSpβ€˜((DVecHβ€˜πΎ)β€˜π‘€))βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ 𝑀 ∧ (π‘ž ∨ (π‘₯ ∧ 𝑀)) = π‘₯) β†’ 𝑒 = ((((DIsoCβ€˜πΎ)β€˜π‘€)β€˜π‘ž)(LSSumβ€˜((DVecHβ€˜πΎ)β€˜π‘€))(((DIsoBβ€˜πΎ)β€˜π‘€)β€˜(π‘₯ ∧ 𝑀))))))))β€˜π‘Š))
101, 9eqtrid 2776 . 2 (𝐾 ∈ 𝑉 β†’ 𝐼 = ((𝑀 ∈ 𝐻 ↦ (π‘₯ ∈ 𝐡 ↦ if(π‘₯ ≀ 𝑀, (((DIsoBβ€˜πΎ)β€˜π‘€)β€˜π‘₯), (℩𝑒 ∈ (LSubSpβ€˜((DVecHβ€˜πΎ)β€˜π‘€))βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ 𝑀 ∧ (π‘ž ∨ (π‘₯ ∧ 𝑀)) = π‘₯) β†’ 𝑒 = ((((DIsoCβ€˜πΎ)β€˜π‘€)β€˜π‘ž)(LSSumβ€˜((DVecHβ€˜πΎ)β€˜π‘€))(((DIsoBβ€˜πΎ)β€˜π‘€)β€˜(π‘₯ ∧ 𝑀))))))))β€˜π‘Š))
11 breq2 5142 . . . . 5 (𝑀 = π‘Š β†’ (π‘₯ ≀ 𝑀 ↔ π‘₯ ≀ π‘Š))
12 fveq2 6881 . . . . . . 7 (𝑀 = π‘Š β†’ ((DIsoBβ€˜πΎ)β€˜π‘€) = ((DIsoBβ€˜πΎ)β€˜π‘Š))
13 dihval.d . . . . . . 7 𝐷 = ((DIsoBβ€˜πΎ)β€˜π‘Š)
1412, 13eqtr4di 2782 . . . . . 6 (𝑀 = π‘Š β†’ ((DIsoBβ€˜πΎ)β€˜π‘€) = 𝐷)
1514fveq1d 6883 . . . . 5 (𝑀 = π‘Š β†’ (((DIsoBβ€˜πΎ)β€˜π‘€)β€˜π‘₯) = (π·β€˜π‘₯))
16 fveq2 6881 . . . . . . . . 9 (𝑀 = π‘Š β†’ ((DVecHβ€˜πΎ)β€˜π‘€) = ((DVecHβ€˜πΎ)β€˜π‘Š))
17 dihval.u . . . . . . . . 9 π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
1816, 17eqtr4di 2782 . . . . . . . 8 (𝑀 = π‘Š β†’ ((DVecHβ€˜πΎ)β€˜π‘€) = π‘ˆ)
1918fveq2d 6885 . . . . . . 7 (𝑀 = π‘Š β†’ (LSubSpβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) = (LSubSpβ€˜π‘ˆ))
20 dihval.s . . . . . . 7 𝑆 = (LSubSpβ€˜π‘ˆ)
2119, 20eqtr4di 2782 . . . . . 6 (𝑀 = π‘Š β†’ (LSubSpβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) = 𝑆)
22 breq2 5142 . . . . . . . . . 10 (𝑀 = π‘Š β†’ (π‘ž ≀ 𝑀 ↔ π‘ž ≀ π‘Š))
2322notbid 318 . . . . . . . . 9 (𝑀 = π‘Š β†’ (Β¬ π‘ž ≀ 𝑀 ↔ Β¬ π‘ž ≀ π‘Š))
24 oveq2 7409 . . . . . . . . . . 11 (𝑀 = π‘Š β†’ (π‘₯ ∧ 𝑀) = (π‘₯ ∧ π‘Š))
2524oveq2d 7417 . . . . . . . . . 10 (𝑀 = π‘Š β†’ (π‘ž ∨ (π‘₯ ∧ 𝑀)) = (π‘ž ∨ (π‘₯ ∧ π‘Š)))
2625eqeq1d 2726 . . . . . . . . 9 (𝑀 = π‘Š β†’ ((π‘ž ∨ (π‘₯ ∧ 𝑀)) = π‘₯ ↔ (π‘ž ∨ (π‘₯ ∧ π‘Š)) = π‘₯))
2723, 26anbi12d 630 . . . . . . . 8 (𝑀 = π‘Š β†’ ((Β¬ π‘ž ≀ 𝑀 ∧ (π‘ž ∨ (π‘₯ ∧ 𝑀)) = π‘₯) ↔ (Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (π‘₯ ∧ π‘Š)) = π‘₯)))
2818fveq2d 6885 . . . . . . . . . . 11 (𝑀 = π‘Š β†’ (LSSumβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) = (LSSumβ€˜π‘ˆ))
29 dihval.p . . . . . . . . . . 11 βŠ• = (LSSumβ€˜π‘ˆ)
3028, 29eqtr4di 2782 . . . . . . . . . 10 (𝑀 = π‘Š β†’ (LSSumβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) = βŠ• )
31 fveq2 6881 . . . . . . . . . . . 12 (𝑀 = π‘Š β†’ ((DIsoCβ€˜πΎ)β€˜π‘€) = ((DIsoCβ€˜πΎ)β€˜π‘Š))
32 dihval.c . . . . . . . . . . . 12 𝐢 = ((DIsoCβ€˜πΎ)β€˜π‘Š)
3331, 32eqtr4di 2782 . . . . . . . . . . 11 (𝑀 = π‘Š β†’ ((DIsoCβ€˜πΎ)β€˜π‘€) = 𝐢)
3433fveq1d 6883 . . . . . . . . . 10 (𝑀 = π‘Š β†’ (((DIsoCβ€˜πΎ)β€˜π‘€)β€˜π‘ž) = (πΆβ€˜π‘ž))
3514, 24fveq12d 6888 . . . . . . . . . 10 (𝑀 = π‘Š β†’ (((DIsoBβ€˜πΎ)β€˜π‘€)β€˜(π‘₯ ∧ 𝑀)) = (π·β€˜(π‘₯ ∧ π‘Š)))
3630, 34, 35oveq123d 7422 . . . . . . . . 9 (𝑀 = π‘Š β†’ ((((DIsoCβ€˜πΎ)β€˜π‘€)β€˜π‘ž)(LSSumβ€˜((DVecHβ€˜πΎ)β€˜π‘€))(((DIsoBβ€˜πΎ)β€˜π‘€)β€˜(π‘₯ ∧ 𝑀))) = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(π‘₯ ∧ π‘Š))))
3736eqeq2d 2735 . . . . . . . 8 (𝑀 = π‘Š β†’ (𝑒 = ((((DIsoCβ€˜πΎ)β€˜π‘€)β€˜π‘ž)(LSSumβ€˜((DVecHβ€˜πΎ)β€˜π‘€))(((DIsoBβ€˜πΎ)β€˜π‘€)β€˜(π‘₯ ∧ 𝑀))) ↔ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(π‘₯ ∧ π‘Š)))))
3827, 37imbi12d 344 . . . . . . 7 (𝑀 = π‘Š β†’ (((Β¬ π‘ž ≀ 𝑀 ∧ (π‘ž ∨ (π‘₯ ∧ 𝑀)) = π‘₯) β†’ 𝑒 = ((((DIsoCβ€˜πΎ)β€˜π‘€)β€˜π‘ž)(LSSumβ€˜((DVecHβ€˜πΎ)β€˜π‘€))(((DIsoBβ€˜πΎ)β€˜π‘€)β€˜(π‘₯ ∧ 𝑀)))) ↔ ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(π‘₯ ∧ π‘Š))))))
3938ralbidv 3169 . . . . . 6 (𝑀 = π‘Š β†’ (βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ 𝑀 ∧ (π‘ž ∨ (π‘₯ ∧ 𝑀)) = π‘₯) β†’ 𝑒 = ((((DIsoCβ€˜πΎ)β€˜π‘€)β€˜π‘ž)(LSSumβ€˜((DVecHβ€˜πΎ)β€˜π‘€))(((DIsoBβ€˜πΎ)β€˜π‘€)β€˜(π‘₯ ∧ 𝑀)))) ↔ βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(π‘₯ ∧ π‘Š))))))
4021, 39riotaeqbidv 7360 . . . . 5 (𝑀 = π‘Š β†’ (℩𝑒 ∈ (LSubSpβ€˜((DVecHβ€˜πΎ)β€˜π‘€))βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ 𝑀 ∧ (π‘ž ∨ (π‘₯ ∧ 𝑀)) = π‘₯) β†’ 𝑒 = ((((DIsoCβ€˜πΎ)β€˜π‘€)β€˜π‘ž)(LSSumβ€˜((DVecHβ€˜πΎ)β€˜π‘€))(((DIsoBβ€˜πΎ)β€˜π‘€)β€˜(π‘₯ ∧ 𝑀))))) = (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(π‘₯ ∧ π‘Š))))))
4111, 15, 40ifbieq12d 4548 . . . 4 (𝑀 = π‘Š β†’ if(π‘₯ ≀ 𝑀, (((DIsoBβ€˜πΎ)β€˜π‘€)β€˜π‘₯), (℩𝑒 ∈ (LSubSpβ€˜((DVecHβ€˜πΎ)β€˜π‘€))βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ 𝑀 ∧ (π‘ž ∨ (π‘₯ ∧ 𝑀)) = π‘₯) β†’ 𝑒 = ((((DIsoCβ€˜πΎ)β€˜π‘€)β€˜π‘ž)(LSSumβ€˜((DVecHβ€˜πΎ)β€˜π‘€))(((DIsoBβ€˜πΎ)β€˜π‘€)β€˜(π‘₯ ∧ 𝑀)))))) = if(π‘₯ ≀ π‘Š, (π·β€˜π‘₯), (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(π‘₯ ∧ π‘Š)))))))
4241mpteq2dv 5240 . . 3 (𝑀 = π‘Š β†’ (π‘₯ ∈ 𝐡 ↦ if(π‘₯ ≀ 𝑀, (((DIsoBβ€˜πΎ)β€˜π‘€)β€˜π‘₯), (℩𝑒 ∈ (LSubSpβ€˜((DVecHβ€˜πΎ)β€˜π‘€))βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ 𝑀 ∧ (π‘ž ∨ (π‘₯ ∧ 𝑀)) = π‘₯) β†’ 𝑒 = ((((DIsoCβ€˜πΎ)β€˜π‘€)β€˜π‘ž)(LSSumβ€˜((DVecHβ€˜πΎ)β€˜π‘€))(((DIsoBβ€˜πΎ)β€˜π‘€)β€˜(π‘₯ ∧ 𝑀))))))) = (π‘₯ ∈ 𝐡 ↦ if(π‘₯ ≀ π‘Š, (π·β€˜π‘₯), (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(π‘₯ ∧ π‘Š))))))))
43 eqid 2724 . . 3 (𝑀 ∈ 𝐻 ↦ (π‘₯ ∈ 𝐡 ↦ if(π‘₯ ≀ 𝑀, (((DIsoBβ€˜πΎ)β€˜π‘€)β€˜π‘₯), (℩𝑒 ∈ (LSubSpβ€˜((DVecHβ€˜πΎ)β€˜π‘€))βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ 𝑀 ∧ (π‘ž ∨ (π‘₯ ∧ 𝑀)) = π‘₯) β†’ 𝑒 = ((((DIsoCβ€˜πΎ)β€˜π‘€)β€˜π‘ž)(LSSumβ€˜((DVecHβ€˜πΎ)β€˜π‘€))(((DIsoBβ€˜πΎ)β€˜π‘€)β€˜(π‘₯ ∧ 𝑀)))))))) = (𝑀 ∈ 𝐻 ↦ (π‘₯ ∈ 𝐡 ↦ if(π‘₯ ≀ 𝑀, (((DIsoBβ€˜πΎ)β€˜π‘€)β€˜π‘₯), (℩𝑒 ∈ (LSubSpβ€˜((DVecHβ€˜πΎ)β€˜π‘€))βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ 𝑀 ∧ (π‘ž ∨ (π‘₯ ∧ 𝑀)) = π‘₯) β†’ 𝑒 = ((((DIsoCβ€˜πΎ)β€˜π‘€)β€˜π‘ž)(LSSumβ€˜((DVecHβ€˜πΎ)β€˜π‘€))(((DIsoBβ€˜πΎ)β€˜π‘€)β€˜(π‘₯ ∧ 𝑀))))))))
4442, 43, 2mptfvmpt 7221 . 2 (π‘Š ∈ 𝐻 β†’ ((𝑀 ∈ 𝐻 ↦ (π‘₯ ∈ 𝐡 ↦ if(π‘₯ ≀ 𝑀, (((DIsoBβ€˜πΎ)β€˜π‘€)β€˜π‘₯), (℩𝑒 ∈ (LSubSpβ€˜((DVecHβ€˜πΎ)β€˜π‘€))βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ 𝑀 ∧ (π‘ž ∨ (π‘₯ ∧ 𝑀)) = π‘₯) β†’ 𝑒 = ((((DIsoCβ€˜πΎ)β€˜π‘€)β€˜π‘ž)(LSSumβ€˜((DVecHβ€˜πΎ)β€˜π‘€))(((DIsoBβ€˜πΎ)β€˜π‘€)β€˜(π‘₯ ∧ 𝑀))))))))β€˜π‘Š) = (π‘₯ ∈ 𝐡 ↦ if(π‘₯ ≀ π‘Š, (π·β€˜π‘₯), (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(π‘₯ ∧ π‘Š))))))))
4510, 44sylan9eq 2784 1 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ 𝐼 = (π‘₯ ∈ 𝐡 ↦ if(π‘₯ ≀ π‘Š, (π·β€˜π‘₯), (℩𝑒 ∈ 𝑆 βˆ€π‘ž ∈ 𝐴 ((Β¬ π‘ž ≀ π‘Š ∧ (π‘ž ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑒 = ((πΆβ€˜π‘ž) βŠ• (π·β€˜(π‘₯ ∧ π‘Š))))))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098  βˆ€wral 3053  ifcif 4520   class class class wbr 5138   ↦ cmpt 5221  β€˜cfv 6533  β„©crio 7356  (class class class)co 7401  Basecbs 17140  lecple 17200  joincjn 18263  meetcmee 18264  LSSumclsm 19539  LSubSpclss 20763  Atomscatm 38589  LHypclh 39311  DVecHcdvh 40405  DIsoBcdib 40465  DIsoCcdic 40499  DIsoHcdih 40555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-dih 40556
This theorem is referenced by:  dihval  40559  dihf11lem  40593
  Copyright terms: Public domain W3C validator