MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlmbas Structured version   Visualization version   GIF version

Theorem rlmbas 19518
Description: Base set of the ring module. (Contributed by Stefan O'Rear, 31-Mar-2015.)
Assertion
Ref Expression
rlmbas (Base‘𝑅) = (Base‘(ringLMod‘𝑅))

Proof of Theorem rlmbas
StepHypRef Expression
1 rlmval 19514 . . . 4 (ringLMod‘𝑅) = ((subringAlg ‘𝑅)‘(Base‘𝑅))
21a1i 11 . . 3 (⊤ → (ringLMod‘𝑅) = ((subringAlg ‘𝑅)‘(Base‘𝑅)))
3 ssidd 3820 . . 3 (⊤ → (Base‘𝑅) ⊆ (Base‘𝑅))
42, 3srabase 19501 . 2 (⊤ → (Base‘𝑅) = (Base‘(ringLMod‘𝑅)))
54mptru 1661 1 (Base‘𝑅) = (Base‘(ringLMod‘𝑅))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1653  wtru 1654  cfv 6101  Basecbs 16184  subringAlg csra 19491  ringLModcrglmod 19492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-7 11381  df-8 11382  df-ndx 16187  df-slot 16188  df-base 16190  df-sets 16191  df-sca 16283  df-vsca 16284  df-ip 16285  df-sra 19495  df-rgmod 19496
This theorem is referenced by:  rlmsub  19521  rlmvneg  19530  rlmscaf  19531  ixpsnbasval  19532  lidlss  19533  islidl  19534  lidl1  19543  lidlacs  19544  rspcl  19545  rspssid  19546  lidlrsppropd  19553  rspsn  19577  ipcl  20302  isphld  20323  phlpropd  20324  frlmbas  20424  frlmsubgval  20433  frlmgsum  20436  rlmnm  22821  cnrbas  23269  islnr2  38465
  Copyright terms: Public domain W3C validator