MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlmval2 Structured version   Visualization version   GIF version

Theorem rlmval2 21045
Description: Value of the ring module extended. (Contributed by AV, 2-Dec-2018.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Assertion
Ref Expression
rlmval2 (π‘Š ∈ 𝑋 β†’ (ringLModβ€˜π‘Š) = (((π‘Š sSet ⟨(Scalarβ€˜ndx), π‘ŠβŸ©) sSet ⟨( ·𝑠 β€˜ndx), (.rβ€˜π‘Š)⟩) sSet ⟨(Β·π‘–β€˜ndx), (.rβ€˜π‘Š)⟩))

Proof of Theorem rlmval2
StepHypRef Expression
1 rlmval 21044 . . 3 (ringLModβ€˜π‘Š) = ((subringAlg β€˜π‘Š)β€˜(Baseβ€˜π‘Š))
21a1i 11 . 2 (π‘Š ∈ 𝑋 β†’ (ringLModβ€˜π‘Š) = ((subringAlg β€˜π‘Š)β€˜(Baseβ€˜π‘Š)))
3 ssid 3999 . . 3 (Baseβ€˜π‘Š) βŠ† (Baseβ€˜π‘Š)
4 sraval 21020 . . 3 ((π‘Š ∈ 𝑋 ∧ (Baseβ€˜π‘Š) βŠ† (Baseβ€˜π‘Š)) β†’ ((subringAlg β€˜π‘Š)β€˜(Baseβ€˜π‘Š)) = (((π‘Š sSet ⟨(Scalarβ€˜ndx), (π‘Š β†Ύs (Baseβ€˜π‘Š))⟩) sSet ⟨( ·𝑠 β€˜ndx), (.rβ€˜π‘Š)⟩) sSet ⟨(Β·π‘–β€˜ndx), (.rβ€˜π‘Š)⟩))
53, 4mpan2 688 . 2 (π‘Š ∈ 𝑋 β†’ ((subringAlg β€˜π‘Š)β€˜(Baseβ€˜π‘Š)) = (((π‘Š sSet ⟨(Scalarβ€˜ndx), (π‘Š β†Ύs (Baseβ€˜π‘Š))⟩) sSet ⟨( ·𝑠 β€˜ndx), (.rβ€˜π‘Š)⟩) sSet ⟨(Β·π‘–β€˜ndx), (.rβ€˜π‘Š)⟩))
6 eqid 2726 . . . . . . 7 (Baseβ€˜π‘Š) = (Baseβ€˜π‘Š)
76ressid 17195 . . . . . 6 (π‘Š ∈ 𝑋 β†’ (π‘Š β†Ύs (Baseβ€˜π‘Š)) = π‘Š)
87opeq2d 4875 . . . . 5 (π‘Š ∈ 𝑋 β†’ ⟨(Scalarβ€˜ndx), (π‘Š β†Ύs (Baseβ€˜π‘Š))⟩ = ⟨(Scalarβ€˜ndx), π‘ŠβŸ©)
98oveq2d 7420 . . . 4 (π‘Š ∈ 𝑋 β†’ (π‘Š sSet ⟨(Scalarβ€˜ndx), (π‘Š β†Ύs (Baseβ€˜π‘Š))⟩) = (π‘Š sSet ⟨(Scalarβ€˜ndx), π‘ŠβŸ©))
109oveq1d 7419 . . 3 (π‘Š ∈ 𝑋 β†’ ((π‘Š sSet ⟨(Scalarβ€˜ndx), (π‘Š β†Ύs (Baseβ€˜π‘Š))⟩) sSet ⟨( ·𝑠 β€˜ndx), (.rβ€˜π‘Š)⟩) = ((π‘Š sSet ⟨(Scalarβ€˜ndx), π‘ŠβŸ©) sSet ⟨( ·𝑠 β€˜ndx), (.rβ€˜π‘Š)⟩))
1110oveq1d 7419 . 2 (π‘Š ∈ 𝑋 β†’ (((π‘Š sSet ⟨(Scalarβ€˜ndx), (π‘Š β†Ύs (Baseβ€˜π‘Š))⟩) sSet ⟨( ·𝑠 β€˜ndx), (.rβ€˜π‘Š)⟩) sSet ⟨(Β·π‘–β€˜ndx), (.rβ€˜π‘Š)⟩) = (((π‘Š sSet ⟨(Scalarβ€˜ndx), π‘ŠβŸ©) sSet ⟨( ·𝑠 β€˜ndx), (.rβ€˜π‘Š)⟩) sSet ⟨(Β·π‘–β€˜ndx), (.rβ€˜π‘Š)⟩))
122, 5, 113eqtrd 2770 1 (π‘Š ∈ 𝑋 β†’ (ringLModβ€˜π‘Š) = (((π‘Š sSet ⟨(Scalarβ€˜ndx), π‘ŠβŸ©) sSet ⟨( ·𝑠 β€˜ndx), (.rβ€˜π‘Š)⟩) sSet ⟨(Β·π‘–β€˜ndx), (.rβ€˜π‘Š)⟩))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1533   ∈ wcel 2098   βŠ† wss 3943  βŸ¨cop 4629  β€˜cfv 6536  (class class class)co 7404   sSet csts 17102  ndxcnx 17132  Basecbs 17150   β†Ύs cress 17179  .rcmulr 17204  Scalarcsca 17206   ·𝑠 cvsca 17207  Β·π‘–cip 17208  subringAlg csra 21016  ringLModcrglmod 21017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7407  df-oprab 7408  df-mpo 7409  df-ress 17180  df-sra 21018  df-rgmod 21019
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator