MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlmval2 Structured version   Visualization version   GIF version

Theorem rlmval2 20377
Description: Value of the ring module extended. (Contributed by AV, 2-Dec-2018.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Assertion
Ref Expression
rlmval2 (𝑊𝑋 → (ringLMod‘𝑊) = (((𝑊 sSet ⟨(Scalar‘ndx), 𝑊⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))

Proof of Theorem rlmval2
StepHypRef Expression
1 rlmval 20374 . . 3 (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊))
21a1i 11 . 2 (𝑊𝑋 → (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊)))
3 ssid 3939 . . 3 (Base‘𝑊) ⊆ (Base‘𝑊)
4 sraval 20353 . . 3 ((𝑊𝑋 ∧ (Base‘𝑊) ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘(Base‘𝑊)) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s (Base‘𝑊))⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
53, 4mpan2 687 . 2 (𝑊𝑋 → ((subringAlg ‘𝑊)‘(Base‘𝑊)) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s (Base‘𝑊))⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
6 eqid 2738 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
76ressid 16880 . . . . . 6 (𝑊𝑋 → (𝑊s (Base‘𝑊)) = 𝑊)
87opeq2d 4808 . . . . 5 (𝑊𝑋 → ⟨(Scalar‘ndx), (𝑊s (Base‘𝑊))⟩ = ⟨(Scalar‘ndx), 𝑊⟩)
98oveq2d 7271 . . . 4 (𝑊𝑋 → (𝑊 sSet ⟨(Scalar‘ndx), (𝑊s (Base‘𝑊))⟩) = (𝑊 sSet ⟨(Scalar‘ndx), 𝑊⟩))
109oveq1d 7270 . . 3 (𝑊𝑋 → ((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s (Base‘𝑊))⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) = ((𝑊 sSet ⟨(Scalar‘ndx), 𝑊⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩))
1110oveq1d 7270 . 2 (𝑊𝑋 → (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s (Base‘𝑊))⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩) = (((𝑊 sSet ⟨(Scalar‘ndx), 𝑊⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
122, 5, 113eqtrd 2782 1 (𝑊𝑋 → (ringLMod‘𝑊) = (((𝑊 sSet ⟨(Scalar‘ndx), 𝑊⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wss 3883  cop 4564  cfv 6418  (class class class)co 7255   sSet csts 16792  ndxcnx 16822  Basecbs 16840  s cress 16867  .rcmulr 16889  Scalarcsca 16891   ·𝑠 cvsca 16892  ·𝑖cip 16893  subringAlg csra 20345  ringLModcrglmod 20346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-ress 16868  df-sra 20349  df-rgmod 20350
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator