| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rlmval2 | Structured version Visualization version GIF version | ||
| Description: Value of the ring module extended. (Contributed by AV, 2-Dec-2018.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| Ref | Expression |
|---|---|
| rlmval2 | ⊢ (𝑊 ∈ 𝑋 → (ringLMod‘𝑊) = (((𝑊 sSet 〈(Scalar‘ndx), 𝑊〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlmval 21104 | . . 3 ⊢ (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊)) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝑊 ∈ 𝑋 → (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊))) |
| 3 | ssid 3977 | . . 3 ⊢ (Base‘𝑊) ⊆ (Base‘𝑊) | |
| 4 | sraval 21088 | . . 3 ⊢ ((𝑊 ∈ 𝑋 ∧ (Base‘𝑊) ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘(Base‘𝑊)) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s (Base‘𝑊))〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) | |
| 5 | 3, 4 | mpan2 691 | . 2 ⊢ (𝑊 ∈ 𝑋 → ((subringAlg ‘𝑊)‘(Base‘𝑊)) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s (Base‘𝑊))〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
| 6 | eqid 2730 | . . . . . . 7 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 7 | 6 | ressid 17220 | . . . . . 6 ⊢ (𝑊 ∈ 𝑋 → (𝑊 ↾s (Base‘𝑊)) = 𝑊) |
| 8 | 7 | opeq2d 4852 | . . . . 5 ⊢ (𝑊 ∈ 𝑋 → 〈(Scalar‘ndx), (𝑊 ↾s (Base‘𝑊))〉 = 〈(Scalar‘ndx), 𝑊〉) |
| 9 | 8 | oveq2d 7410 | . . . 4 ⊢ (𝑊 ∈ 𝑋 → (𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s (Base‘𝑊))〉) = (𝑊 sSet 〈(Scalar‘ndx), 𝑊〉)) |
| 10 | 9 | oveq1d 7409 | . . 3 ⊢ (𝑊 ∈ 𝑋 → ((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s (Base‘𝑊))〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) = ((𝑊 sSet 〈(Scalar‘ndx), 𝑊〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉)) |
| 11 | 10 | oveq1d 7409 | . 2 ⊢ (𝑊 ∈ 𝑋 → (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s (Base‘𝑊))〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉) = (((𝑊 sSet 〈(Scalar‘ndx), 𝑊〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
| 12 | 2, 5, 11 | 3eqtrd 2769 | 1 ⊢ (𝑊 ∈ 𝑋 → (ringLMod‘𝑊) = (((𝑊 sSet 〈(Scalar‘ndx), 𝑊〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3922 〈cop 4603 ‘cfv 6519 (class class class)co 7394 sSet csts 17139 ndxcnx 17169 Basecbs 17185 ↾s cress 17206 .rcmulr 17227 Scalarcsca 17229 ·𝑠 cvsca 17230 ·𝑖cip 17231 subringAlg csra 21084 ringLModcrglmod 21085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-ov 7397 df-oprab 7398 df-mpo 7399 df-ress 17207 df-sra 21086 df-rgmod 21087 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |