| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rlmval2 | Structured version Visualization version GIF version | ||
| Description: Value of the ring module extended. (Contributed by AV, 2-Dec-2018.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| Ref | Expression |
|---|---|
| rlmval2 | ⊢ (𝑊 ∈ 𝑋 → (ringLMod‘𝑊) = (((𝑊 sSet 〈(Scalar‘ndx), 𝑊〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlmval 21159 | . . 3 ⊢ (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊)) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝑊 ∈ 𝑋 → (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊))) |
| 3 | ssid 3986 | . . 3 ⊢ (Base‘𝑊) ⊆ (Base‘𝑊) | |
| 4 | sraval 21141 | . . 3 ⊢ ((𝑊 ∈ 𝑋 ∧ (Base‘𝑊) ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘(Base‘𝑊)) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s (Base‘𝑊))〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) | |
| 5 | 3, 4 | mpan2 691 | . 2 ⊢ (𝑊 ∈ 𝑋 → ((subringAlg ‘𝑊)‘(Base‘𝑊)) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s (Base‘𝑊))〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
| 6 | eqid 2734 | . . . . . . 7 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 7 | 6 | ressid 17266 | . . . . . 6 ⊢ (𝑊 ∈ 𝑋 → (𝑊 ↾s (Base‘𝑊)) = 𝑊) |
| 8 | 7 | opeq2d 4860 | . . . . 5 ⊢ (𝑊 ∈ 𝑋 → 〈(Scalar‘ndx), (𝑊 ↾s (Base‘𝑊))〉 = 〈(Scalar‘ndx), 𝑊〉) |
| 9 | 8 | oveq2d 7428 | . . . 4 ⊢ (𝑊 ∈ 𝑋 → (𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s (Base‘𝑊))〉) = (𝑊 sSet 〈(Scalar‘ndx), 𝑊〉)) |
| 10 | 9 | oveq1d 7427 | . . 3 ⊢ (𝑊 ∈ 𝑋 → ((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s (Base‘𝑊))〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) = ((𝑊 sSet 〈(Scalar‘ndx), 𝑊〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉)) |
| 11 | 10 | oveq1d 7427 | . 2 ⊢ (𝑊 ∈ 𝑋 → (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s (Base‘𝑊))〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉) = (((𝑊 sSet 〈(Scalar‘ndx), 𝑊〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
| 12 | 2, 5, 11 | 3eqtrd 2773 | 1 ⊢ (𝑊 ∈ 𝑋 → (ringLMod‘𝑊) = (((𝑊 sSet 〈(Scalar‘ndx), 𝑊〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ⊆ wss 3931 〈cop 4612 ‘cfv 6540 (class class class)co 7412 sSet csts 17181 ndxcnx 17211 Basecbs 17228 ↾s cress 17251 .rcmulr 17273 Scalarcsca 17275 ·𝑠 cvsca 17276 ·𝑖cip 17277 subringAlg csra 21137 ringLModcrglmod 21138 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7415 df-oprab 7416 df-mpo 7417 df-ress 17252 df-sra 21139 df-rgmod 21140 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |