MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlmval2 Structured version   Visualization version   GIF version

Theorem rlmval2 21105
Description: Value of the ring module extended. (Contributed by AV, 2-Dec-2018.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Assertion
Ref Expression
rlmval2 (𝑊𝑋 → (ringLMod‘𝑊) = (((𝑊 sSet ⟨(Scalar‘ndx), 𝑊⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))

Proof of Theorem rlmval2
StepHypRef Expression
1 rlmval 21104 . . 3 (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊))
21a1i 11 . 2 (𝑊𝑋 → (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊)))
3 ssid 3977 . . 3 (Base‘𝑊) ⊆ (Base‘𝑊)
4 sraval 21088 . . 3 ((𝑊𝑋 ∧ (Base‘𝑊) ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘(Base‘𝑊)) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s (Base‘𝑊))⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
53, 4mpan2 691 . 2 (𝑊𝑋 → ((subringAlg ‘𝑊)‘(Base‘𝑊)) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s (Base‘𝑊))⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
6 eqid 2730 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
76ressid 17220 . . . . . 6 (𝑊𝑋 → (𝑊s (Base‘𝑊)) = 𝑊)
87opeq2d 4852 . . . . 5 (𝑊𝑋 → ⟨(Scalar‘ndx), (𝑊s (Base‘𝑊))⟩ = ⟨(Scalar‘ndx), 𝑊⟩)
98oveq2d 7410 . . . 4 (𝑊𝑋 → (𝑊 sSet ⟨(Scalar‘ndx), (𝑊s (Base‘𝑊))⟩) = (𝑊 sSet ⟨(Scalar‘ndx), 𝑊⟩))
109oveq1d 7409 . . 3 (𝑊𝑋 → ((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s (Base‘𝑊))⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) = ((𝑊 sSet ⟨(Scalar‘ndx), 𝑊⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩))
1110oveq1d 7409 . 2 (𝑊𝑋 → (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s (Base‘𝑊))⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩) = (((𝑊 sSet ⟨(Scalar‘ndx), 𝑊⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
122, 5, 113eqtrd 2769 1 (𝑊𝑋 → (ringLMod‘𝑊) = (((𝑊 sSet ⟨(Scalar‘ndx), 𝑊⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3922  cop 4603  cfv 6519  (class class class)co 7394   sSet csts 17139  ndxcnx 17169  Basecbs 17185  s cress 17206  .rcmulr 17227  Scalarcsca 17229   ·𝑠 cvsca 17230  ·𝑖cip 17231  subringAlg csra 21084  ringLModcrglmod 21085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-ov 7397  df-oprab 7398  df-mpo 7399  df-ress 17207  df-sra 21086  df-rgmod 21087
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator