MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlmval2 Structured version   Visualization version   GIF version

Theorem rlmval2 20078
Description: Value of the ring module extended. (Contributed by AV, 2-Dec-2018.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Assertion
Ref Expression
rlmval2 (𝑊𝑋 → (ringLMod‘𝑊) = (((𝑊 sSet ⟨(Scalar‘ndx), 𝑊⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))

Proof of Theorem rlmval2
StepHypRef Expression
1 rlmval 20075 . . 3 (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊))
21a1i 11 . 2 (𝑊𝑋 → (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊)))
3 ssid 3897 . . 3 (Base‘𝑊) ⊆ (Base‘𝑊)
4 sraval 20060 . . 3 ((𝑊𝑋 ∧ (Base‘𝑊) ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘(Base‘𝑊)) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s (Base‘𝑊))⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
53, 4mpan2 691 . 2 (𝑊𝑋 → ((subringAlg ‘𝑊)‘(Base‘𝑊)) = (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s (Base‘𝑊))⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
6 eqid 2738 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
76ressid 16655 . . . . . 6 (𝑊𝑋 → (𝑊s (Base‘𝑊)) = 𝑊)
87opeq2d 4765 . . . . 5 (𝑊𝑋 → ⟨(Scalar‘ndx), (𝑊s (Base‘𝑊))⟩ = ⟨(Scalar‘ndx), 𝑊⟩)
98oveq2d 7180 . . . 4 (𝑊𝑋 → (𝑊 sSet ⟨(Scalar‘ndx), (𝑊s (Base‘𝑊))⟩) = (𝑊 sSet ⟨(Scalar‘ndx), 𝑊⟩))
109oveq1d 7179 . . 3 (𝑊𝑋 → ((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s (Base‘𝑊))⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) = ((𝑊 sSet ⟨(Scalar‘ndx), 𝑊⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩))
1110oveq1d 7179 . 2 (𝑊𝑋 → (((𝑊 sSet ⟨(Scalar‘ndx), (𝑊s (Base‘𝑊))⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩) = (((𝑊 sSet ⟨(Scalar‘ndx), 𝑊⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
122, 5, 113eqtrd 2777 1 (𝑊𝑋 → (ringLMod‘𝑊) = (((𝑊 sSet ⟨(Scalar‘ndx), 𝑊⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑊)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑊)⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2113  wss 3841  cop 4519  cfv 6333  (class class class)co 7164  ndxcnx 16576   sSet csts 16577  Basecbs 16579  s cress 16580  .rcmulr 16662  Scalarcsca 16664   ·𝑠 cvsca 16665  ·𝑖cip 16666  subringAlg csra 20052  ringLModcrglmod 20053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-ov 7167  df-oprab 7168  df-mpo 7169  df-ress 16587  df-sra 20056  df-rgmod 20057
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator