| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rlmval2 | Structured version Visualization version GIF version | ||
| Description: Value of the ring module extended. (Contributed by AV, 2-Dec-2018.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| Ref | Expression |
|---|---|
| rlmval2 | ⊢ (𝑊 ∈ 𝑋 → (ringLMod‘𝑊) = (((𝑊 sSet 〈(Scalar‘ndx), 𝑊〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlmval 21105 | . . 3 ⊢ (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊)) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝑊 ∈ 𝑋 → (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊))) |
| 3 | ssid 3972 | . . 3 ⊢ (Base‘𝑊) ⊆ (Base‘𝑊) | |
| 4 | sraval 21089 | . . 3 ⊢ ((𝑊 ∈ 𝑋 ∧ (Base‘𝑊) ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘(Base‘𝑊)) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s (Base‘𝑊))〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) | |
| 5 | 3, 4 | mpan2 691 | . 2 ⊢ (𝑊 ∈ 𝑋 → ((subringAlg ‘𝑊)‘(Base‘𝑊)) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s (Base‘𝑊))〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
| 6 | eqid 2730 | . . . . . . 7 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 7 | 6 | ressid 17221 | . . . . . 6 ⊢ (𝑊 ∈ 𝑋 → (𝑊 ↾s (Base‘𝑊)) = 𝑊) |
| 8 | 7 | opeq2d 4847 | . . . . 5 ⊢ (𝑊 ∈ 𝑋 → 〈(Scalar‘ndx), (𝑊 ↾s (Base‘𝑊))〉 = 〈(Scalar‘ndx), 𝑊〉) |
| 9 | 8 | oveq2d 7406 | . . . 4 ⊢ (𝑊 ∈ 𝑋 → (𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s (Base‘𝑊))〉) = (𝑊 sSet 〈(Scalar‘ndx), 𝑊〉)) |
| 10 | 9 | oveq1d 7405 | . . 3 ⊢ (𝑊 ∈ 𝑋 → ((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s (Base‘𝑊))〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) = ((𝑊 sSet 〈(Scalar‘ndx), 𝑊〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉)) |
| 11 | 10 | oveq1d 7405 | . 2 ⊢ (𝑊 ∈ 𝑋 → (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s (Base‘𝑊))〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉) = (((𝑊 sSet 〈(Scalar‘ndx), 𝑊〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
| 12 | 2, 5, 11 | 3eqtrd 2769 | 1 ⊢ (𝑊 ∈ 𝑋 → (ringLMod‘𝑊) = (((𝑊 sSet 〈(Scalar‘ndx), 𝑊〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 〈cop 4598 ‘cfv 6514 (class class class)co 7390 sSet csts 17140 ndxcnx 17170 Basecbs 17186 ↾s cress 17207 .rcmulr 17228 Scalarcsca 17230 ·𝑠 cvsca 17231 ·𝑖cip 17232 subringAlg csra 21085 ringLModcrglmod 21086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-ress 17208 df-sra 21087 df-rgmod 21088 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |