![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rlmval2 | Structured version Visualization version GIF version |
Description: Value of the ring module extended. (Contributed by AV, 2-Dec-2018.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
Ref | Expression |
---|---|
rlmval2 | ⊢ (𝑊 ∈ 𝑋 → (ringLMod‘𝑊) = (((𝑊 sSet 〈(Scalar‘ndx), 𝑊〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlmval 21096 | . . 3 ⊢ (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊)) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑊 ∈ 𝑋 → (ringLMod‘𝑊) = ((subringAlg ‘𝑊)‘(Base‘𝑊))) |
3 | ssid 3999 | . . 3 ⊢ (Base‘𝑊) ⊆ (Base‘𝑊) | |
4 | sraval 21072 | . . 3 ⊢ ((𝑊 ∈ 𝑋 ∧ (Base‘𝑊) ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘(Base‘𝑊)) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s (Base‘𝑊))〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) | |
5 | 3, 4 | mpan2 689 | . 2 ⊢ (𝑊 ∈ 𝑋 → ((subringAlg ‘𝑊)‘(Base‘𝑊)) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s (Base‘𝑊))〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
6 | eqid 2725 | . . . . . . 7 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
7 | 6 | ressid 17228 | . . . . . 6 ⊢ (𝑊 ∈ 𝑋 → (𝑊 ↾s (Base‘𝑊)) = 𝑊) |
8 | 7 | opeq2d 4882 | . . . . 5 ⊢ (𝑊 ∈ 𝑋 → 〈(Scalar‘ndx), (𝑊 ↾s (Base‘𝑊))〉 = 〈(Scalar‘ndx), 𝑊〉) |
9 | 8 | oveq2d 7435 | . . . 4 ⊢ (𝑊 ∈ 𝑋 → (𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s (Base‘𝑊))〉) = (𝑊 sSet 〈(Scalar‘ndx), 𝑊〉)) |
10 | 9 | oveq1d 7434 | . . 3 ⊢ (𝑊 ∈ 𝑋 → ((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s (Base‘𝑊))〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) = ((𝑊 sSet 〈(Scalar‘ndx), 𝑊〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉)) |
11 | 10 | oveq1d 7434 | . 2 ⊢ (𝑊 ∈ 𝑋 → (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s (Base‘𝑊))〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉) = (((𝑊 sSet 〈(Scalar‘ndx), 𝑊〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
12 | 2, 5, 11 | 3eqtrd 2769 | 1 ⊢ (𝑊 ∈ 𝑋 → (ringLMod‘𝑊) = (((𝑊 sSet 〈(Scalar‘ndx), 𝑊〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ⊆ wss 3944 〈cop 4636 ‘cfv 6549 (class class class)co 7419 sSet csts 17135 ndxcnx 17165 Basecbs 17183 ↾s cress 17212 .rcmulr 17237 Scalarcsca 17239 ·𝑠 cvsca 17240 ·𝑖cip 17241 subringAlg csra 21068 ringLModcrglmod 21069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-ov 7422 df-oprab 7423 df-mpo 7424 df-ress 17213 df-sra 21070 df-rgmod 21071 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |