MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlmlmod Structured version   Visualization version   GIF version

Theorem rlmlmod 19667
Description: The ring module is a module. (Contributed by Stefan O'Rear, 6-Dec-2014.)
Assertion
Ref Expression
rlmlmod (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod)

Proof of Theorem rlmlmod
StepHypRef Expression
1 rlmval 19653 . 2 (ringLMod‘𝑅) = ((subringAlg ‘𝑅)‘(Base‘𝑅))
2 eqid 2795 . . . 4 (Base‘𝑅) = (Base‘𝑅)
32subrgid 19227 . . 3 (𝑅 ∈ Ring → (Base‘𝑅) ∈ (SubRing‘𝑅))
4 eqid 2795 . . . 4 ((subringAlg ‘𝑅)‘(Base‘𝑅)) = ((subringAlg ‘𝑅)‘(Base‘𝑅))
54sralmod 19649 . . 3 ((Base‘𝑅) ∈ (SubRing‘𝑅) → ((subringAlg ‘𝑅)‘(Base‘𝑅)) ∈ LMod)
63, 5syl 17 . 2 (𝑅 ∈ Ring → ((subringAlg ‘𝑅)‘(Base‘𝑅)) ∈ LMod)
71, 6syl5eqel 2887 1 (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2081  cfv 6225  Basecbs 16312  Ringcrg 18987  SubRingcsubrg 19221  LModclmod 19324  subringAlg csra 19630  ringLModcrglmod 19631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-8 11554  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-mulr 16408  df-sca 16410  df-vsca 16411  df-ip 16412  df-0g 16544  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-grp 17864  df-subg 18030  df-mgp 18930  df-ur 18942  df-ring 18989  df-subrg 19223  df-lmod 19326  df-sra 19634  df-rgmod 19635
This theorem is referenced by:  rlmlvec  19668  lidl0cl  19674  lidlacl  19675  lidlnegcl  19676  lidlmcl  19679  lidl0  19681  lidl1  19682  lidlacs  19683  rspcl  19684  rspssid  19685  rsp0  19687  rspssp  19688  mrcrsp  19689  rspsn  19716  isphld  20480  frlmlmod  20575  frlmlss  20577  frlm0  20580  frlmsubgval  20591  frlmgsum  20598  frlmsplit2  20599  cnrlmod  23430  recvs  23433  qcvs  23434  zclmncvs  23435  frlmsnic  38676  islnr2  39199
  Copyright terms: Public domain W3C validator