| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rlmlmod | Structured version Visualization version GIF version | ||
| Description: The ring module is a module. (Contributed by Stefan O'Rear, 6-Dec-2014.) |
| Ref | Expression |
|---|---|
| rlmlmod | ⊢ (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlmval 21135 | . 2 ⊢ (ringLMod‘𝑅) = ((subringAlg ‘𝑅)‘(Base‘𝑅)) | |
| 2 | eqid 2733 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | 2 | subrgid 20498 | . . 3 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) ∈ (SubRing‘𝑅)) |
| 4 | eqid 2733 | . . . 4 ⊢ ((subringAlg ‘𝑅)‘(Base‘𝑅)) = ((subringAlg ‘𝑅)‘(Base‘𝑅)) | |
| 5 | 4 | sralmod 21131 | . . 3 ⊢ ((Base‘𝑅) ∈ (SubRing‘𝑅) → ((subringAlg ‘𝑅)‘(Base‘𝑅)) ∈ LMod) |
| 6 | 3, 5 | syl 17 | . 2 ⊢ (𝑅 ∈ Ring → ((subringAlg ‘𝑅)‘(Base‘𝑅)) ∈ LMod) |
| 7 | 1, 6 | eqeltrid 2837 | 1 ⊢ (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ‘cfv 6489 Basecbs 17130 Ringcrg 20161 SubRingcsubrg 20494 LModclmod 20803 subringAlg csra 21115 ringLModcrglmod 21116 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-5 12201 df-6 12202 df-7 12203 df-8 12204 df-sets 17085 df-slot 17103 df-ndx 17115 df-base 17131 df-ress 17152 df-plusg 17184 df-mulr 17185 df-sca 17187 df-vsca 17188 df-ip 17189 df-0g 17355 df-mgm 18558 df-sgrp 18637 df-mnd 18653 df-grp 18859 df-subg 19046 df-mgp 20069 df-ur 20110 df-ring 20163 df-subrg 20495 df-lmod 20805 df-sra 21117 df-rgmod 21118 |
| This theorem is referenced by: rlmlvec 21148 lidl0cl 21167 lidlacl 21168 lidlnegcl 21169 lidl0ALT 21175 lidl1ALT 21178 lidlacs 21181 rspcl 21182 rspssid 21183 rsp0 21185 rspssp 21186 elrspsn 21187 mrcrsp 21188 rspsn 21280 isphld 21601 frlmlmod 21696 frlmlss 21698 frlm0 21701 frlmsubgval 21712 frlmgsum 21719 frlmsplit2 21720 cnrlmod 25080 recvs 25083 qcvs 25084 zclmncvs 25085 elrsp 33348 lsmidllsp 33376 lsmidl 33377 mxidlprm 33446 idlsrgmulrss1 33487 idlsrgmulrss2 33488 frlmsnic 42648 islnr2 43221 |
| Copyright terms: Public domain | W3C validator |