![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rngchomfval | Structured version Visualization version GIF version |
Description: Set of arrows of the category of non-unital rings (in a universe). (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
Ref | Expression |
---|---|
rngcbas.c | ⊢ 𝐶 = (RngCat‘𝑈) |
rngcbas.b | ⊢ 𝐵 = (Base‘𝐶) |
rngcbas.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
rngchomfval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
Ref | Expression |
---|---|
rngchomfval | ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngchomfval.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
2 | rngcbas.c | . . . . 5 ⊢ 𝐶 = (RngCat‘𝑈) | |
3 | rngcbas.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
4 | rngcbas.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
5 | 2, 4, 3 | rngcbas 20638 | . . . . 5 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) |
6 | eqidd 2736 | . . . . 5 ⊢ (𝜑 → ( RngHom ↾ (𝐵 × 𝐵)) = ( RngHom ↾ (𝐵 × 𝐵))) | |
7 | 2, 3, 5, 6 | rngcval 20635 | . . . 4 ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat ( RngHom ↾ (𝐵 × 𝐵)))) |
8 | 7 | fveq2d 6911 | . . 3 ⊢ (𝜑 → (Hom ‘𝐶) = (Hom ‘((ExtStrCat‘𝑈) ↾cat ( RngHom ↾ (𝐵 × 𝐵))))) |
9 | 1, 8 | eqtrid 2787 | . 2 ⊢ (𝜑 → 𝐻 = (Hom ‘((ExtStrCat‘𝑈) ↾cat ( RngHom ↾ (𝐵 × 𝐵))))) |
10 | eqid 2735 | . . 3 ⊢ ((ExtStrCat‘𝑈) ↾cat ( RngHom ↾ (𝐵 × 𝐵))) = ((ExtStrCat‘𝑈) ↾cat ( RngHom ↾ (𝐵 × 𝐵))) | |
11 | eqid 2735 | . . 3 ⊢ (Base‘(ExtStrCat‘𝑈)) = (Base‘(ExtStrCat‘𝑈)) | |
12 | fvexd 6922 | . . 3 ⊢ (𝜑 → (ExtStrCat‘𝑈) ∈ V) | |
13 | 5, 6 | rnghmresfn 20636 | . . 3 ⊢ (𝜑 → ( RngHom ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵)) |
14 | inss1 4245 | . . . . 5 ⊢ (𝑈 ∩ Rng) ⊆ 𝑈 | |
15 | 14 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑈 ∩ Rng) ⊆ 𝑈) |
16 | eqid 2735 | . . . . . 6 ⊢ (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈) | |
17 | 16, 3 | estrcbas 18180 | . . . . 5 ⊢ (𝜑 → 𝑈 = (Base‘(ExtStrCat‘𝑈))) |
18 | 17 | eqcomd 2741 | . . . 4 ⊢ (𝜑 → (Base‘(ExtStrCat‘𝑈)) = 𝑈) |
19 | 15, 5, 18 | 3sstr4d 4043 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ (Base‘(ExtStrCat‘𝑈))) |
20 | 10, 11, 12, 13, 19 | reschom 17879 | . 2 ⊢ (𝜑 → ( RngHom ↾ (𝐵 × 𝐵)) = (Hom ‘((ExtStrCat‘𝑈) ↾cat ( RngHom ↾ (𝐵 × 𝐵))))) |
21 | 9, 20 | eqtr4d 2778 | 1 ⊢ (𝜑 → 𝐻 = ( RngHom ↾ (𝐵 × 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ∩ cin 3962 ⊆ wss 3963 × cxp 5687 ↾ cres 5691 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 Hom chom 17309 ↾cat cresc 17856 ExtStrCatcestrc 18177 Rngcrng 20170 RngHom crnghm 20451 RngCatcrngc 20633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-fz 13545 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-hom 17322 df-cco 17323 df-resc 17859 df-estrc 18178 df-rnghm 20453 df-rngc 20634 |
This theorem is referenced by: rngchom 20640 rngchomfeqhom 20642 rngccofval 20643 rnghmsubcsetclem1 20648 rngcifuestrc 20656 funcrngcsetc 20657 rhmsubcrngc 20685 rhmsubc 20706 |
Copyright terms: Public domain | W3C validator |