![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngchomfval | Structured version Visualization version GIF version |
Description: Set of arrows of the category of non-unital rings (in a universe). (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
Ref | Expression |
---|---|
rngcbas.c | โข ๐ถ = (RngCatโ๐) |
rngcbas.b | โข ๐ต = (Baseโ๐ถ) |
rngcbas.u | โข (๐ โ ๐ โ ๐) |
rngchomfval.h | โข ๐ป = (Hom โ๐ถ) |
Ref | Expression |
---|---|
rngchomfval | โข (๐ โ ๐ป = ( RngHomo โพ (๐ต ร ๐ต))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngchomfval.h | . . 3 โข ๐ป = (Hom โ๐ถ) | |
2 | rngcbas.c | . . . . 5 โข ๐ถ = (RngCatโ๐) | |
3 | rngcbas.u | . . . . 5 โข (๐ โ ๐ โ ๐) | |
4 | rngcbas.b | . . . . . 6 โข ๐ต = (Baseโ๐ถ) | |
5 | 2, 4, 3 | rngcbas 46863 | . . . . 5 โข (๐ โ ๐ต = (๐ โฉ Rng)) |
6 | eqidd 2734 | . . . . 5 โข (๐ โ ( RngHomo โพ (๐ต ร ๐ต)) = ( RngHomo โพ (๐ต ร ๐ต))) | |
7 | 2, 3, 5, 6 | rngcval 46860 | . . . 4 โข (๐ โ ๐ถ = ((ExtStrCatโ๐) โพcat ( RngHomo โพ (๐ต ร ๐ต)))) |
8 | 7 | fveq2d 6896 | . . 3 โข (๐ โ (Hom โ๐ถ) = (Hom โ((ExtStrCatโ๐) โพcat ( RngHomo โพ (๐ต ร ๐ต))))) |
9 | 1, 8 | eqtrid 2785 | . 2 โข (๐ โ ๐ป = (Hom โ((ExtStrCatโ๐) โพcat ( RngHomo โพ (๐ต ร ๐ต))))) |
10 | eqid 2733 | . . 3 โข ((ExtStrCatโ๐) โพcat ( RngHomo โพ (๐ต ร ๐ต))) = ((ExtStrCatโ๐) โพcat ( RngHomo โพ (๐ต ร ๐ต))) | |
11 | eqid 2733 | . . 3 โข (Baseโ(ExtStrCatโ๐)) = (Baseโ(ExtStrCatโ๐)) | |
12 | fvexd 6907 | . . 3 โข (๐ โ (ExtStrCatโ๐) โ V) | |
13 | 5, 6 | rnghmresfn 46861 | . . 3 โข (๐ โ ( RngHomo โพ (๐ต ร ๐ต)) Fn (๐ต ร ๐ต)) |
14 | inss1 4229 | . . . . 5 โข (๐ โฉ Rng) โ ๐ | |
15 | 14 | a1i 11 | . . . 4 โข (๐ โ (๐ โฉ Rng) โ ๐) |
16 | eqid 2733 | . . . . . 6 โข (ExtStrCatโ๐) = (ExtStrCatโ๐) | |
17 | 16, 3 | estrcbas 18076 | . . . . 5 โข (๐ โ ๐ = (Baseโ(ExtStrCatโ๐))) |
18 | 17 | eqcomd 2739 | . . . 4 โข (๐ โ (Baseโ(ExtStrCatโ๐)) = ๐) |
19 | 15, 5, 18 | 3sstr4d 4030 | . . 3 โข (๐ โ ๐ต โ (Baseโ(ExtStrCatโ๐))) |
20 | 10, 11, 12, 13, 19 | reschom 17778 | . 2 โข (๐ โ ( RngHomo โพ (๐ต ร ๐ต)) = (Hom โ((ExtStrCatโ๐) โพcat ( RngHomo โพ (๐ต ร ๐ต))))) |
21 | 9, 20 | eqtr4d 2776 | 1 โข (๐ โ ๐ป = ( RngHomo โพ (๐ต ร ๐ต))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1542 โ wcel 2107 Vcvv 3475 โฉ cin 3948 โ wss 3949 ร cxp 5675 โพ cres 5679 โcfv 6544 (class class class)co 7409 Basecbs 17144 Hom chom 17208 โพcat cresc 17755 ExtStrCatcestrc 18073 Rngcrng 46648 RngHomo crngh 46683 RngCatcrngc 46855 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-fz 13485 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-hom 17221 df-cco 17222 df-resc 17758 df-estrc 18074 df-rnghomo 46685 df-rngc 46857 |
This theorem is referenced by: rngchom 46865 rngchomfeqhom 46867 rngccofval 46868 rnghmsubcsetclem1 46873 rngcifuestrc 46895 funcrngcsetc 46896 rhmsubcrngc 46927 rhmsubc 46988 |
Copyright terms: Public domain | W3C validator |