| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngccofval | Structured version Visualization version GIF version | ||
| Description: Composition in the category of non-unital rings. (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
| Ref | Expression |
|---|---|
| rngcco.c | ⊢ 𝐶 = (RngCat‘𝑈) |
| rngcco.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| rngcco.o | ⊢ · = (comp‘𝐶) |
| Ref | Expression |
|---|---|
| rngccofval | ⊢ (𝜑 → · = (comp‘(ExtStrCat‘𝑈))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngcco.c | . . . 4 ⊢ 𝐶 = (RngCat‘𝑈) | |
| 2 | rngcco.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 3 | eqid 2734 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 4 | 1, 3, 2 | rngcbas 20588 | . . . 4 ⊢ (𝜑 → (Base‘𝐶) = (𝑈 ∩ Rng)) |
| 5 | eqid 2734 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 6 | 1, 3, 2, 5 | rngchomfval 20589 | . . . 4 ⊢ (𝜑 → (Hom ‘𝐶) = ( RngHom ↾ ((Base‘𝐶) × (Base‘𝐶)))) |
| 7 | 1, 2, 4, 6 | rngcval 20585 | . . 3 ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat (Hom ‘𝐶))) |
| 8 | 7 | fveq2d 6889 | . 2 ⊢ (𝜑 → (comp‘𝐶) = (comp‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝐶)))) |
| 9 | rngcco.o | . . 3 ⊢ · = (comp‘𝐶) | |
| 10 | 9 | a1i 11 | . 2 ⊢ (𝜑 → · = (comp‘𝐶)) |
| 11 | eqid 2734 | . . 3 ⊢ ((ExtStrCat‘𝑈) ↾cat (Hom ‘𝐶)) = ((ExtStrCat‘𝑈) ↾cat (Hom ‘𝐶)) | |
| 12 | eqid 2734 | . . 3 ⊢ (Base‘(ExtStrCat‘𝑈)) = (Base‘(ExtStrCat‘𝑈)) | |
| 13 | fvexd 6900 | . . 3 ⊢ (𝜑 → (ExtStrCat‘𝑈) ∈ V) | |
| 14 | 4, 6 | rnghmresfn 20586 | . . 3 ⊢ (𝜑 → (Hom ‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) |
| 15 | inss1 4217 | . . . . 5 ⊢ (𝑈 ∩ Rng) ⊆ 𝑈 | |
| 16 | 15 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑈 ∩ Rng) ⊆ 𝑈) |
| 17 | eqid 2734 | . . . . . 6 ⊢ (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈) | |
| 18 | 17, 2 | estrcbas 18139 | . . . . 5 ⊢ (𝜑 → 𝑈 = (Base‘(ExtStrCat‘𝑈))) |
| 19 | 18 | eqcomd 2740 | . . . 4 ⊢ (𝜑 → (Base‘(ExtStrCat‘𝑈)) = 𝑈) |
| 20 | 16, 4, 19 | 3sstr4d 4019 | . . 3 ⊢ (𝜑 → (Base‘𝐶) ⊆ (Base‘(ExtStrCat‘𝑈))) |
| 21 | eqid 2734 | . . 3 ⊢ (comp‘(ExtStrCat‘𝑈)) = (comp‘(ExtStrCat‘𝑈)) | |
| 22 | 11, 12, 13, 14, 20, 21 | rescco 17846 | . 2 ⊢ (𝜑 → (comp‘(ExtStrCat‘𝑈)) = (comp‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝐶)))) |
| 23 | 8, 10, 22 | 3eqtr4d 2779 | 1 ⊢ (𝜑 → · = (comp‘(ExtStrCat‘𝑈))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ∩ cin 3930 ⊆ wss 3931 ‘cfv 6540 (class class class)co 7412 Basecbs 17228 Hom chom 17283 compcco 17284 ↾cat cresc 17822 ExtStrCatcestrc 18136 Rngcrng 20116 RngCatcrngc 20583 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-nn 12248 df-2 12310 df-3 12311 df-4 12312 df-5 12313 df-6 12314 df-7 12315 df-8 12316 df-9 12317 df-n0 12509 df-z 12596 df-dec 12716 df-uz 12860 df-fz 13529 df-struct 17165 df-sets 17182 df-slot 17200 df-ndx 17212 df-base 17229 df-ress 17252 df-hom 17296 df-cco 17297 df-resc 17825 df-estrc 18137 df-rnghm 20403 df-rngc 20584 |
| This theorem is referenced by: rngcco 20594 |
| Copyright terms: Public domain | W3C validator |