| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngccofval | Structured version Visualization version GIF version | ||
| Description: Composition in the category of non-unital rings. (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
| Ref | Expression |
|---|---|
| rngcco.c | ⊢ 𝐶 = (RngCat‘𝑈) |
| rngcco.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| rngcco.o | ⊢ · = (comp‘𝐶) |
| Ref | Expression |
|---|---|
| rngccofval | ⊢ (𝜑 → · = (comp‘(ExtStrCat‘𝑈))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngcco.c | . . . 4 ⊢ 𝐶 = (RngCat‘𝑈) | |
| 2 | rngcco.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 3 | eqid 2730 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 4 | 1, 3, 2 | rngcbas 20536 | . . . 4 ⊢ (𝜑 → (Base‘𝐶) = (𝑈 ∩ Rng)) |
| 5 | eqid 2730 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 6 | 1, 3, 2, 5 | rngchomfval 20537 | . . . 4 ⊢ (𝜑 → (Hom ‘𝐶) = ( RngHom ↾ ((Base‘𝐶) × (Base‘𝐶)))) |
| 7 | 1, 2, 4, 6 | rngcval 20533 | . . 3 ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat (Hom ‘𝐶))) |
| 8 | 7 | fveq2d 6869 | . 2 ⊢ (𝜑 → (comp‘𝐶) = (comp‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝐶)))) |
| 9 | rngcco.o | . . 3 ⊢ · = (comp‘𝐶) | |
| 10 | 9 | a1i 11 | . 2 ⊢ (𝜑 → · = (comp‘𝐶)) |
| 11 | eqid 2730 | . . 3 ⊢ ((ExtStrCat‘𝑈) ↾cat (Hom ‘𝐶)) = ((ExtStrCat‘𝑈) ↾cat (Hom ‘𝐶)) | |
| 12 | eqid 2730 | . . 3 ⊢ (Base‘(ExtStrCat‘𝑈)) = (Base‘(ExtStrCat‘𝑈)) | |
| 13 | fvexd 6880 | . . 3 ⊢ (𝜑 → (ExtStrCat‘𝑈) ∈ V) | |
| 14 | 4, 6 | rnghmresfn 20534 | . . 3 ⊢ (𝜑 → (Hom ‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) |
| 15 | inss1 4208 | . . . . 5 ⊢ (𝑈 ∩ Rng) ⊆ 𝑈 | |
| 16 | 15 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑈 ∩ Rng) ⊆ 𝑈) |
| 17 | eqid 2730 | . . . . . 6 ⊢ (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈) | |
| 18 | 17, 2 | estrcbas 18092 | . . . . 5 ⊢ (𝜑 → 𝑈 = (Base‘(ExtStrCat‘𝑈))) |
| 19 | 18 | eqcomd 2736 | . . . 4 ⊢ (𝜑 → (Base‘(ExtStrCat‘𝑈)) = 𝑈) |
| 20 | 16, 4, 19 | 3sstr4d 4010 | . . 3 ⊢ (𝜑 → (Base‘𝐶) ⊆ (Base‘(ExtStrCat‘𝑈))) |
| 21 | eqid 2730 | . . 3 ⊢ (comp‘(ExtStrCat‘𝑈)) = (comp‘(ExtStrCat‘𝑈)) | |
| 22 | 11, 12, 13, 14, 20, 21 | rescco 17800 | . 2 ⊢ (𝜑 → (comp‘(ExtStrCat‘𝑈)) = (comp‘((ExtStrCat‘𝑈) ↾cat (Hom ‘𝐶)))) |
| 23 | 8, 10, 22 | 3eqtr4d 2775 | 1 ⊢ (𝜑 → · = (comp‘(ExtStrCat‘𝑈))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3455 ∩ cin 3921 ⊆ wss 3922 ‘cfv 6519 (class class class)co 7394 Basecbs 17185 Hom chom 17237 compcco 17238 ↾cat cresc 17776 ExtStrCatcestrc 18089 Rngcrng 20067 RngCatcrngc 20531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-tp 4602 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-2 12260 df-3 12261 df-4 12262 df-5 12263 df-6 12264 df-7 12265 df-8 12266 df-9 12267 df-n0 12459 df-z 12546 df-dec 12666 df-uz 12810 df-fz 13482 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-hom 17250 df-cco 17251 df-resc 17779 df-estrc 18090 df-rnghm 20351 df-rngc 20532 |
| This theorem is referenced by: rngcco 20542 |
| Copyright terms: Public domain | W3C validator |