MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngccat Structured version   Visualization version   GIF version

Theorem rngccat 20553
Description: The category of non-unital rings is a category. (Contributed by AV, 27-Feb-2020.) (Revised by AV, 9-Mar-2020.)
Hypothesis
Ref Expression
rngccat.c 𝐶 = (RngCat‘𝑈)
Assertion
Ref Expression
rngccat (𝑈𝑉𝐶 ∈ Cat)

Proof of Theorem rngccat
StepHypRef Expression
1 rngccat.c . . 3 𝐶 = (RngCat‘𝑈)
2 id 22 . . 3 (𝑈𝑉𝑈𝑉)
3 eqidd 2734 . . 3 (𝑈𝑉 → (𝑈 ∩ Rng) = (𝑈 ∩ Rng))
4 eqidd 2734 . . 3 (𝑈𝑉 → ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) = ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))))
51, 2, 3, 4rngcval 20537 . 2 (𝑈𝑉𝐶 = ((ExtStrCat‘𝑈) ↾cat ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)))))
6 eqid 2733 . . 3 ((ExtStrCat‘𝑈) ↾cat ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)))) = ((ExtStrCat‘𝑈) ↾cat ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))))
7 eqid 2733 . . . 4 (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈)
8 eqidd 2734 . . . 4 (𝑈𝑉 → (Rng ∩ 𝑈) = (Rng ∩ 𝑈))
9 incom 4158 . . . . . . 7 (𝑈 ∩ Rng) = (Rng ∩ 𝑈)
109a1i 11 . . . . . 6 (𝑈𝑉 → (𝑈 ∩ Rng) = (Rng ∩ 𝑈))
1110sqxpeqd 5653 . . . . 5 (𝑈𝑉 → ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)) = ((Rng ∩ 𝑈) × (Rng ∩ 𝑈)))
1211reseq2d 5934 . . . 4 (𝑈𝑉 → ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) = ( RngHom ↾ ((Rng ∩ 𝑈) × (Rng ∩ 𝑈))))
137, 2, 8, 12rnghmsubcsetc 20552 . . 3 (𝑈𝑉 → ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) ∈ (Subcat‘(ExtStrCat‘𝑈)))
146, 13subccat 17759 . 2 (𝑈𝑉 → ((ExtStrCat‘𝑈) ↾cat ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)))) ∈ Cat)
155, 14eqeltrd 2833 1 (𝑈𝑉𝐶 ∈ Cat)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cin 3897   × cxp 5619  cres 5623  cfv 6488  (class class class)co 7354  Catccat 17574  cat cresc 17719  ExtStrCatcestrc 18032  Rngcrng 20074   RngHom crnghm 20356  RngCatcrngc 20535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-er 8630  df-map 8760  df-pm 8761  df-ixp 8830  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-6 12201  df-7 12202  df-8 12203  df-9 12204  df-n0 12391  df-z 12478  df-dec 12597  df-uz 12741  df-fz 13412  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-hom 17189  df-cco 17190  df-0g 17349  df-cat 17578  df-cid 17579  df-homf 17580  df-ssc 17721  df-resc 17722  df-subc 17723  df-estrc 18033  df-mgm 18552  df-mgmhm 18604  df-sgrp 18631  df-mnd 18647  df-mhm 18695  df-grp 18853  df-ghm 19129  df-abl 19699  df-mgp 20063  df-rng 20075  df-rnghm 20358  df-rngc 20536
This theorem is referenced by:  rngcsect  20555  rngcinv  20556  rngciso  20557  zrinitorngc  20561  zrtermorngc  20562  zrzeroorngc  20563  rhmsubcrngc  20587  rhmsubc  20608
  Copyright terms: Public domain W3C validator