Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngcid Structured version   Visualization version   GIF version

Theorem rngcid 44970
 Description: The identity arrow in the category of non-unital rings is the identity function. (Contributed by AV, 27-Feb-2020.) (Revised by AV, 10-Mar-2020.)
Hypotheses
Ref Expression
rngccat.c 𝐶 = (RngCat‘𝑈)
rngcid.b 𝐵 = (Base‘𝐶)
rngcid.o 1 = (Id‘𝐶)
rngcid.u (𝜑𝑈𝑉)
rngcid.x (𝜑𝑋𝐵)
rngcid.s 𝑆 = (Base‘𝑋)
Assertion
Ref Expression
rngcid (𝜑 → ( 1𝑋) = ( I ↾ 𝑆))

Proof of Theorem rngcid
StepHypRef Expression
1 rngcid.o . . . 4 1 = (Id‘𝐶)
2 rngccat.c . . . . . 6 𝐶 = (RngCat‘𝑈)
3 rngcid.u . . . . . 6 (𝜑𝑈𝑉)
4 eqidd 2759 . . . . . 6 (𝜑 → (𝑈 ∩ Rng) = (𝑈 ∩ Rng))
5 eqidd 2759 . . . . . 6 (𝜑 → ( RngHomo ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) = ( RngHomo ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))))
62, 3, 4, 5rngcval 44953 . . . . 5 (𝜑𝐶 = ((ExtStrCat‘𝑈) ↾cat ( RngHomo ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)))))
76fveq2d 6662 . . . 4 (𝜑 → (Id‘𝐶) = (Id‘((ExtStrCat‘𝑈) ↾cat ( RngHomo ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))))))
81, 7syl5eq 2805 . . 3 (𝜑1 = (Id‘((ExtStrCat‘𝑈) ↾cat ( RngHomo ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))))))
98fveq1d 6660 . 2 (𝜑 → ( 1𝑋) = ((Id‘((ExtStrCat‘𝑈) ↾cat ( RngHomo ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)))))‘𝑋))
10 eqid 2758 . . 3 ((ExtStrCat‘𝑈) ↾cat ( RngHomo ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)))) = ((ExtStrCat‘𝑈) ↾cat ( RngHomo ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))))
11 eqid 2758 . . . 4 (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈)
12 incom 4106 . . . . 5 (𝑈 ∩ Rng) = (Rng ∩ 𝑈)
1312a1i 11 . . . 4 (𝜑 → (𝑈 ∩ Rng) = (Rng ∩ 𝑈))
1411, 3, 13, 5rnghmsubcsetc 44968 . . 3 (𝜑 → ( RngHomo ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) ∈ (Subcat‘(ExtStrCat‘𝑈)))
154, 5rnghmresfn 44954 . . 3 (𝜑 → ( RngHomo ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) Fn ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)))
16 eqid 2758 . . 3 (Id‘(ExtStrCat‘𝑈)) = (Id‘(ExtStrCat‘𝑈))
17 rngcid.x . . . 4 (𝜑𝑋𝐵)
18 rngcid.b . . . . . 6 𝐵 = (Base‘𝐶)
192, 18, 3rngcbas 44956 . . . . 5 (𝜑𝐵 = (𝑈 ∩ Rng))
2019eleq2d 2837 . . . 4 (𝜑 → (𝑋𝐵𝑋 ∈ (𝑈 ∩ Rng)))
2117, 20mpbid 235 . . 3 (𝜑𝑋 ∈ (𝑈 ∩ Rng))
2210, 14, 15, 16, 21subcid 17176 . 2 (𝜑 → ((Id‘(ExtStrCat‘𝑈))‘𝑋) = ((Id‘((ExtStrCat‘𝑈) ↾cat ( RngHomo ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)))))‘𝑋))
23 elinel1 4100 . . . . . 6 (𝑋 ∈ (𝑈 ∩ Rng) → 𝑋𝑈)
2420, 23syl6bi 256 . . . . 5 (𝜑 → (𝑋𝐵𝑋𝑈))
2517, 24mpd 15 . . . 4 (𝜑𝑋𝑈)
2611, 16, 3, 25estrcid 17450 . . 3 (𝜑 → ((Id‘(ExtStrCat‘𝑈))‘𝑋) = ( I ↾ (Base‘𝑋)))
27 rngcid.s . . . . . 6 𝑆 = (Base‘𝑋)
2827eqcomi 2767 . . . . 5 (Base‘𝑋) = 𝑆
2928a1i 11 . . . 4 (𝜑 → (Base‘𝑋) = 𝑆)
3029reseq2d 5823 . . 3 (𝜑 → ( I ↾ (Base‘𝑋)) = ( I ↾ 𝑆))
3126, 30eqtrd 2793 . 2 (𝜑 → ((Id‘(ExtStrCat‘𝑈))‘𝑋) = ( I ↾ 𝑆))
329, 22, 313eqtr2d 2799 1 (𝜑 → ( 1𝑋) = ( I ↾ 𝑆))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2111   ∩ cin 3857   I cid 5429   × cxp 5522   ↾ cres 5526  ‘cfv 6335  (class class class)co 7150  Basecbs 16541  Idccid 16994   ↾cat cresc 17137  ExtStrCatcestrc 17438  Rngcrng 44865   RngHomo crngh 44876  RngCatcrngc 44948 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-er 8299  df-map 8418  df-pm 8419  df-ixp 8480  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-z 12021  df-dec 12138  df-uz 12283  df-fz 12940  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-ress 16549  df-plusg 16636  df-hom 16647  df-cco 16648  df-0g 16773  df-cat 16997  df-cid 16998  df-homf 16999  df-ssc 17139  df-resc 17140  df-subc 17141  df-estrc 17439  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-mhm 18022  df-grp 18172  df-ghm 18423  df-abl 18976  df-mgp 19308  df-mgmhm 44766  df-rng0 44866  df-rnghomo 44878  df-rngc 44950 This theorem is referenced by:  rngcsect  44971  rhmsubcrngclem1  45018  rhmsubclem3  45079
 Copyright terms: Public domain W3C validator