Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngcid | Structured version Visualization version GIF version |
Description: The identity arrow in the category of non-unital rings is the identity function. (Contributed by AV, 27-Feb-2020.) (Revised by AV, 10-Mar-2020.) |
Ref | Expression |
---|---|
rngccat.c | ⊢ 𝐶 = (RngCat‘𝑈) |
rngcid.b | ⊢ 𝐵 = (Base‘𝐶) |
rngcid.o | ⊢ 1 = (Id‘𝐶) |
rngcid.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
rngcid.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
rngcid.s | ⊢ 𝑆 = (Base‘𝑋) |
Ref | Expression |
---|---|
rngcid | ⊢ (𝜑 → ( 1 ‘𝑋) = ( I ↾ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngcid.o | . . . 4 ⊢ 1 = (Id‘𝐶) | |
2 | rngccat.c | . . . . . 6 ⊢ 𝐶 = (RngCat‘𝑈) | |
3 | rngcid.u | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
4 | eqidd 2759 | . . . . . 6 ⊢ (𝜑 → (𝑈 ∩ Rng) = (𝑈 ∩ Rng)) | |
5 | eqidd 2759 | . . . . . 6 ⊢ (𝜑 → ( RngHomo ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) = ( RngHomo ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)))) | |
6 | 2, 3, 4, 5 | rngcval 44953 | . . . . 5 ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat ( RngHomo ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))))) |
7 | 6 | fveq2d 6662 | . . . 4 ⊢ (𝜑 → (Id‘𝐶) = (Id‘((ExtStrCat‘𝑈) ↾cat ( RngHomo ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)))))) |
8 | 1, 7 | syl5eq 2805 | . . 3 ⊢ (𝜑 → 1 = (Id‘((ExtStrCat‘𝑈) ↾cat ( RngHomo ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)))))) |
9 | 8 | fveq1d 6660 | . 2 ⊢ (𝜑 → ( 1 ‘𝑋) = ((Id‘((ExtStrCat‘𝑈) ↾cat ( RngHomo ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)))))‘𝑋)) |
10 | eqid 2758 | . . 3 ⊢ ((ExtStrCat‘𝑈) ↾cat ( RngHomo ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)))) = ((ExtStrCat‘𝑈) ↾cat ( RngHomo ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)))) | |
11 | eqid 2758 | . . . 4 ⊢ (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈) | |
12 | incom 4106 | . . . . 5 ⊢ (𝑈 ∩ Rng) = (Rng ∩ 𝑈) | |
13 | 12 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑈 ∩ Rng) = (Rng ∩ 𝑈)) |
14 | 11, 3, 13, 5 | rnghmsubcsetc 44968 | . . 3 ⊢ (𝜑 → ( RngHomo ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) ∈ (Subcat‘(ExtStrCat‘𝑈))) |
15 | 4, 5 | rnghmresfn 44954 | . . 3 ⊢ (𝜑 → ( RngHomo ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) Fn ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) |
16 | eqid 2758 | . . 3 ⊢ (Id‘(ExtStrCat‘𝑈)) = (Id‘(ExtStrCat‘𝑈)) | |
17 | rngcid.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
18 | rngcid.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
19 | 2, 18, 3 | rngcbas 44956 | . . . . 5 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) |
20 | 19 | eleq2d 2837 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ (𝑈 ∩ Rng))) |
21 | 17, 20 | mpbid 235 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑈 ∩ Rng)) |
22 | 10, 14, 15, 16, 21 | subcid 17176 | . 2 ⊢ (𝜑 → ((Id‘(ExtStrCat‘𝑈))‘𝑋) = ((Id‘((ExtStrCat‘𝑈) ↾cat ( RngHomo ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)))))‘𝑋)) |
23 | elinel1 4100 | . . . . . 6 ⊢ (𝑋 ∈ (𝑈 ∩ Rng) → 𝑋 ∈ 𝑈) | |
24 | 20, 23 | syl6bi 256 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ 𝐵 → 𝑋 ∈ 𝑈)) |
25 | 17, 24 | mpd 15 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
26 | 11, 16, 3, 25 | estrcid 17450 | . . 3 ⊢ (𝜑 → ((Id‘(ExtStrCat‘𝑈))‘𝑋) = ( I ↾ (Base‘𝑋))) |
27 | rngcid.s | . . . . . 6 ⊢ 𝑆 = (Base‘𝑋) | |
28 | 27 | eqcomi 2767 | . . . . 5 ⊢ (Base‘𝑋) = 𝑆 |
29 | 28 | a1i 11 | . . . 4 ⊢ (𝜑 → (Base‘𝑋) = 𝑆) |
30 | 29 | reseq2d 5823 | . . 3 ⊢ (𝜑 → ( I ↾ (Base‘𝑋)) = ( I ↾ 𝑆)) |
31 | 26, 30 | eqtrd 2793 | . 2 ⊢ (𝜑 → ((Id‘(ExtStrCat‘𝑈))‘𝑋) = ( I ↾ 𝑆)) |
32 | 9, 22, 31 | 3eqtr2d 2799 | 1 ⊢ (𝜑 → ( 1 ‘𝑋) = ( I ↾ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 ∩ cin 3857 I cid 5429 × cxp 5522 ↾ cres 5526 ‘cfv 6335 (class class class)co 7150 Basecbs 16541 Idccid 16994 ↾cat cresc 17137 ExtStrCatcestrc 17438 Rngcrng 44865 RngHomo crngh 44876 RngCatcrngc 44948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-er 8299 df-map 8418 df-pm 8419 df-ixp 8480 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-2 11737 df-3 11738 df-4 11739 df-5 11740 df-6 11741 df-7 11742 df-8 11743 df-9 11744 df-n0 11935 df-z 12021 df-dec 12138 df-uz 12283 df-fz 12940 df-struct 16543 df-ndx 16544 df-slot 16545 df-base 16547 df-sets 16548 df-ress 16549 df-plusg 16636 df-hom 16647 df-cco 16648 df-0g 16773 df-cat 16997 df-cid 16998 df-homf 16999 df-ssc 17139 df-resc 17140 df-subc 17141 df-estrc 17439 df-mgm 17918 df-sgrp 17967 df-mnd 17978 df-mhm 18022 df-grp 18172 df-ghm 18423 df-abl 18976 df-mgp 19308 df-mgmhm 44766 df-rng0 44866 df-rnghomo 44878 df-rngc 44950 |
This theorem is referenced by: rngcsect 44971 rhmsubcrngclem1 45018 rhmsubclem3 45079 |
Copyright terms: Public domain | W3C validator |