MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngcid Structured version   Visualization version   GIF version

Theorem rngcid 20593
Description: The identity arrow in the category of non-unital rings is the identity function. (Contributed by AV, 27-Feb-2020.) (Revised by AV, 10-Mar-2020.)
Hypotheses
Ref Expression
rngccat.c 𝐶 = (RngCat‘𝑈)
rngcid.b 𝐵 = (Base‘𝐶)
rngcid.o 1 = (Id‘𝐶)
rngcid.u (𝜑𝑈𝑉)
rngcid.x (𝜑𝑋𝐵)
rngcid.s 𝑆 = (Base‘𝑋)
Assertion
Ref Expression
rngcid (𝜑 → ( 1𝑋) = ( I ↾ 𝑆))

Proof of Theorem rngcid
StepHypRef Expression
1 rngcid.o . . . 4 1 = (Id‘𝐶)
2 rngccat.c . . . . . 6 𝐶 = (RngCat‘𝑈)
3 rngcid.u . . . . . 6 (𝜑𝑈𝑉)
4 eqidd 2736 . . . . . 6 (𝜑 → (𝑈 ∩ Rng) = (𝑈 ∩ Rng))
5 eqidd 2736 . . . . . 6 (𝜑 → ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) = ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))))
62, 3, 4, 5rngcval 20576 . . . . 5 (𝜑𝐶 = ((ExtStrCat‘𝑈) ↾cat ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)))))
76fveq2d 6879 . . . 4 (𝜑 → (Id‘𝐶) = (Id‘((ExtStrCat‘𝑈) ↾cat ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))))))
81, 7eqtrid 2782 . . 3 (𝜑1 = (Id‘((ExtStrCat‘𝑈) ↾cat ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))))))
98fveq1d 6877 . 2 (𝜑 → ( 1𝑋) = ((Id‘((ExtStrCat‘𝑈) ↾cat ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)))))‘𝑋))
10 eqid 2735 . . 3 ((ExtStrCat‘𝑈) ↾cat ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)))) = ((ExtStrCat‘𝑈) ↾cat ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))))
11 eqid 2735 . . . 4 (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈)
12 incom 4184 . . . . 5 (𝑈 ∩ Rng) = (Rng ∩ 𝑈)
1312a1i 11 . . . 4 (𝜑 → (𝑈 ∩ Rng) = (Rng ∩ 𝑈))
1411, 3, 13, 5rnghmsubcsetc 20591 . . 3 (𝜑 → ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) ∈ (Subcat‘(ExtStrCat‘𝑈)))
154, 5rnghmresfn 20577 . . 3 (𝜑 → ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) Fn ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)))
16 eqid 2735 . . 3 (Id‘(ExtStrCat‘𝑈)) = (Id‘(ExtStrCat‘𝑈))
17 rngcid.x . . . 4 (𝜑𝑋𝐵)
18 rngcid.b . . . . . 6 𝐵 = (Base‘𝐶)
192, 18, 3rngcbas 20579 . . . . 5 (𝜑𝐵 = (𝑈 ∩ Rng))
2019eleq2d 2820 . . . 4 (𝜑 → (𝑋𝐵𝑋 ∈ (𝑈 ∩ Rng)))
2117, 20mpbid 232 . . 3 (𝜑𝑋 ∈ (𝑈 ∩ Rng))
2210, 14, 15, 16, 21subcid 17858 . 2 (𝜑 → ((Id‘(ExtStrCat‘𝑈))‘𝑋) = ((Id‘((ExtStrCat‘𝑈) ↾cat ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)))))‘𝑋))
23 elinel1 4176 . . . . . 6 (𝑋 ∈ (𝑈 ∩ Rng) → 𝑋𝑈)
2420, 23biimtrdi 253 . . . . 5 (𝜑 → (𝑋𝐵𝑋𝑈))
2517, 24mpd 15 . . . 4 (𝜑𝑋𝑈)
2611, 16, 3, 25estrcid 18144 . . 3 (𝜑 → ((Id‘(ExtStrCat‘𝑈))‘𝑋) = ( I ↾ (Base‘𝑋)))
27 rngcid.s . . . . . 6 𝑆 = (Base‘𝑋)
2827eqcomi 2744 . . . . 5 (Base‘𝑋) = 𝑆
2928a1i 11 . . . 4 (𝜑 → (Base‘𝑋) = 𝑆)
3029reseq2d 5966 . . 3 (𝜑 → ( I ↾ (Base‘𝑋)) = ( I ↾ 𝑆))
3126, 30eqtrd 2770 . 2 (𝜑 → ((Id‘(ExtStrCat‘𝑈))‘𝑋) = ( I ↾ 𝑆))
329, 22, 313eqtr2d 2776 1 (𝜑 → ( 1𝑋) = ( I ↾ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  cin 3925   I cid 5547   × cxp 5652  cres 5656  cfv 6530  (class class class)co 7403  Basecbs 17226  Idccid 17675  cat cresc 17819  ExtStrCatcestrc 18132  Rngcrng 20110   RngHom crnghm 20392  RngCatcrngc 20574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8717  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-fz 13523  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-hom 17293  df-cco 17294  df-0g 17453  df-cat 17678  df-cid 17679  df-homf 17680  df-ssc 17821  df-resc 17822  df-subc 17823  df-estrc 18133  df-mgm 18616  df-mgmhm 18668  df-sgrp 18695  df-mnd 18711  df-mhm 18759  df-grp 18917  df-ghm 19194  df-abl 19762  df-mgp 20099  df-rng 20111  df-rnghm 20394  df-rngc 20575
This theorem is referenced by:  rngcsect  20594  rhmsubcrngclem1  20624  rhmsubclem3  20645
  Copyright terms: Public domain W3C validator