![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngcid | Structured version Visualization version GIF version |
Description: The identity arrow in the category of non-unital rings is the identity function. (Contributed by AV, 27-Feb-2020.) (Revised by AV, 10-Mar-2020.) |
Ref | Expression |
---|---|
rngccat.c | β’ πΆ = (RngCatβπ) |
rngcid.b | β’ π΅ = (BaseβπΆ) |
rngcid.o | β’ 1 = (IdβπΆ) |
rngcid.u | β’ (π β π β π) |
rngcid.x | β’ (π β π β π΅) |
rngcid.s | β’ π = (Baseβπ) |
Ref | Expression |
---|---|
rngcid | β’ (π β ( 1 βπ) = ( I βΎ π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngcid.o | . . . 4 β’ 1 = (IdβπΆ) | |
2 | rngccat.c | . . . . . 6 β’ πΆ = (RngCatβπ) | |
3 | rngcid.u | . . . . . 6 β’ (π β π β π) | |
4 | eqidd 2731 | . . . . . 6 β’ (π β (π β© Rng) = (π β© Rng)) | |
5 | eqidd 2731 | . . . . . 6 β’ (π β ( RngHom βΎ ((π β© Rng) Γ (π β© Rng))) = ( RngHom βΎ ((π β© Rng) Γ (π β© Rng)))) | |
6 | 2, 3, 4, 5 | rngcval 46948 | . . . . 5 β’ (π β πΆ = ((ExtStrCatβπ) βΎcat ( RngHom βΎ ((π β© Rng) Γ (π β© Rng))))) |
7 | 6 | fveq2d 6894 | . . . 4 β’ (π β (IdβπΆ) = (Idβ((ExtStrCatβπ) βΎcat ( RngHom βΎ ((π β© Rng) Γ (π β© Rng)))))) |
8 | 1, 7 | eqtrid 2782 | . . 3 β’ (π β 1 = (Idβ((ExtStrCatβπ) βΎcat ( RngHom βΎ ((π β© Rng) Γ (π β© Rng)))))) |
9 | 8 | fveq1d 6892 | . 2 β’ (π β ( 1 βπ) = ((Idβ((ExtStrCatβπ) βΎcat ( RngHom βΎ ((π β© Rng) Γ (π β© Rng)))))βπ)) |
10 | eqid 2730 | . . 3 β’ ((ExtStrCatβπ) βΎcat ( RngHom βΎ ((π β© Rng) Γ (π β© Rng)))) = ((ExtStrCatβπ) βΎcat ( RngHom βΎ ((π β© Rng) Γ (π β© Rng)))) | |
11 | eqid 2730 | . . . 4 β’ (ExtStrCatβπ) = (ExtStrCatβπ) | |
12 | incom 4200 | . . . . 5 β’ (π β© Rng) = (Rng β© π) | |
13 | 12 | a1i 11 | . . . 4 β’ (π β (π β© Rng) = (Rng β© π)) |
14 | 11, 3, 13, 5 | rnghmsubcsetc 46963 | . . 3 β’ (π β ( RngHom βΎ ((π β© Rng) Γ (π β© Rng))) β (Subcatβ(ExtStrCatβπ))) |
15 | 4, 5 | rnghmresfn 46949 | . . 3 β’ (π β ( RngHom βΎ ((π β© Rng) Γ (π β© Rng))) Fn ((π β© Rng) Γ (π β© Rng))) |
16 | eqid 2730 | . . 3 β’ (Idβ(ExtStrCatβπ)) = (Idβ(ExtStrCatβπ)) | |
17 | rngcid.x | . . . 4 β’ (π β π β π΅) | |
18 | rngcid.b | . . . . . 6 β’ π΅ = (BaseβπΆ) | |
19 | 2, 18, 3 | rngcbas 46951 | . . . . 5 β’ (π β π΅ = (π β© Rng)) |
20 | 19 | eleq2d 2817 | . . . 4 β’ (π β (π β π΅ β π β (π β© Rng))) |
21 | 17, 20 | mpbid 231 | . . 3 β’ (π β π β (π β© Rng)) |
22 | 10, 14, 15, 16, 21 | subcid 17801 | . 2 β’ (π β ((Idβ(ExtStrCatβπ))βπ) = ((Idβ((ExtStrCatβπ) βΎcat ( RngHom βΎ ((π β© Rng) Γ (π β© Rng)))))βπ)) |
23 | elinel1 4194 | . . . . . 6 β’ (π β (π β© Rng) β π β π) | |
24 | 20, 23 | syl6bi 252 | . . . . 5 β’ (π β (π β π΅ β π β π)) |
25 | 17, 24 | mpd 15 | . . . 4 β’ (π β π β π) |
26 | 11, 16, 3, 25 | estrcid 18089 | . . 3 β’ (π β ((Idβ(ExtStrCatβπ))βπ) = ( I βΎ (Baseβπ))) |
27 | rngcid.s | . . . . . 6 β’ π = (Baseβπ) | |
28 | 27 | eqcomi 2739 | . . . . 5 β’ (Baseβπ) = π |
29 | 28 | a1i 11 | . . . 4 β’ (π β (Baseβπ) = π) |
30 | 29 | reseq2d 5980 | . . 3 β’ (π β ( I βΎ (Baseβπ)) = ( I βΎ π)) |
31 | 26, 30 | eqtrd 2770 | . 2 β’ (π β ((Idβ(ExtStrCatβπ))βπ) = ( I βΎ π)) |
32 | 9, 22, 31 | 3eqtr2d 2776 | 1 β’ (π β ( 1 βπ) = ( I βΎ π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1539 β wcel 2104 β© cin 3946 I cid 5572 Γ cxp 5673 βΎ cres 5677 βcfv 6542 (class class class)co 7411 Basecbs 17148 Idccid 17613 βΎcat cresc 17759 ExtStrCatcestrc 18077 Rngcrng 20046 RngHom crnghm 20325 RngCatcrngc 46943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-map 8824 df-pm 8825 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-fz 13489 df-struct 17084 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-hom 17225 df-cco 17226 df-0g 17391 df-cat 17616 df-cid 17617 df-homf 17618 df-ssc 17761 df-resc 17762 df-subc 17763 df-estrc 18078 df-mgm 18565 df-mgmhm 18617 df-sgrp 18644 df-mnd 18660 df-mhm 18705 df-grp 18858 df-ghm 19128 df-abl 19692 df-mgp 20029 df-rng 20047 df-rnghm 20327 df-rngc 46945 |
This theorem is referenced by: rngcsect 46966 rhmsubcrngclem1 47013 rhmsubclem3 47074 |
Copyright terms: Public domain | W3C validator |