| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | rnghmsscmap.r | . . 3
⊢ (𝜑 → 𝑅 = (Rng ∩ 𝑈)) | 
| 2 |  | inss2 4237 | . . 3
⊢ (Rng
∩ 𝑈) ⊆ 𝑈 | 
| 3 | 1, 2 | eqsstrdi 4027 | . 2
⊢ (𝜑 → 𝑅 ⊆ 𝑈) | 
| 4 |  | eqid 2736 | . . . . . . 7
⊢
(Base‘𝑎) =
(Base‘𝑎) | 
| 5 |  | eqid 2736 | . . . . . . 7
⊢
(Base‘𝑏) =
(Base‘𝑏) | 
| 6 | 4, 5 | rnghmf 20449 | . . . . . 6
⊢ (ℎ ∈ (𝑎 RngHom 𝑏) → ℎ:(Base‘𝑎)⟶(Base‘𝑏)) | 
| 7 |  | simpr 484 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅)) ∧ ℎ:(Base‘𝑎)⟶(Base‘𝑏)) → ℎ:(Base‘𝑎)⟶(Base‘𝑏)) | 
| 8 |  | fvex 6918 | . . . . . . . . . 10
⊢
(Base‘𝑏)
∈ V | 
| 9 |  | fvex 6918 | . . . . . . . . . 10
⊢
(Base‘𝑎)
∈ V | 
| 10 | 8, 9 | pm3.2i 470 | . . . . . . . . 9
⊢
((Base‘𝑏)
∈ V ∧ (Base‘𝑎) ∈ V) | 
| 11 |  | elmapg 8880 | . . . . . . . . 9
⊢
(((Base‘𝑏)
∈ V ∧ (Base‘𝑎) ∈ V) → (ℎ ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) ↔ ℎ:(Base‘𝑎)⟶(Base‘𝑏))) | 
| 12 | 10, 11 | mp1i 13 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅)) ∧ ℎ:(Base‘𝑎)⟶(Base‘𝑏)) → (ℎ ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) ↔ ℎ:(Base‘𝑎)⟶(Base‘𝑏))) | 
| 13 | 7, 12 | mpbird 257 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅)) ∧ ℎ:(Base‘𝑎)⟶(Base‘𝑏)) → ℎ ∈ ((Base‘𝑏) ↑m (Base‘𝑎))) | 
| 14 | 13 | ex 412 | . . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅)) → (ℎ:(Base‘𝑎)⟶(Base‘𝑏) → ℎ ∈ ((Base‘𝑏) ↑m (Base‘𝑎)))) | 
| 15 | 6, 14 | syl5 34 | . . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅)) → (ℎ ∈ (𝑎 RngHom 𝑏) → ℎ ∈ ((Base‘𝑏) ↑m (Base‘𝑎)))) | 
| 16 | 15 | ssrdv 3988 | . . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅)) → (𝑎 RngHom 𝑏) ⊆ ((Base‘𝑏) ↑m (Base‘𝑎))) | 
| 17 |  | ovres 7600 | . . . . 5
⊢ ((𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅) → (𝑎( RngHom ↾ (𝑅 × 𝑅))𝑏) = (𝑎 RngHom 𝑏)) | 
| 18 | 17 | adantl 481 | . . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅)) → (𝑎( RngHom ↾ (𝑅 × 𝑅))𝑏) = (𝑎 RngHom 𝑏)) | 
| 19 |  | eqidd 2737 | . . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅)) → (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) = (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))) | 
| 20 |  | fveq2 6905 | . . . . . . 7
⊢ (𝑦 = 𝑏 → (Base‘𝑦) = (Base‘𝑏)) | 
| 21 |  | fveq2 6905 | . . . . . . 7
⊢ (𝑥 = 𝑎 → (Base‘𝑥) = (Base‘𝑎)) | 
| 22 | 20, 21 | oveqan12rd 7452 | . . . . . 6
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → ((Base‘𝑦) ↑m (Base‘𝑥)) = ((Base‘𝑏) ↑m
(Base‘𝑎))) | 
| 23 | 22 | adantl 481 | . . . . 5
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅)) ∧ (𝑥 = 𝑎 ∧ 𝑦 = 𝑏)) → ((Base‘𝑦) ↑m (Base‘𝑥)) = ((Base‘𝑏) ↑m
(Base‘𝑎))) | 
| 24 | 3 | sseld 3981 | . . . . . . . 8
⊢ (𝜑 → (𝑎 ∈ 𝑅 → 𝑎 ∈ 𝑈)) | 
| 25 | 24 | com12 32 | . . . . . . 7
⊢ (𝑎 ∈ 𝑅 → (𝜑 → 𝑎 ∈ 𝑈)) | 
| 26 | 25 | adantr 480 | . . . . . 6
⊢ ((𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅) → (𝜑 → 𝑎 ∈ 𝑈)) | 
| 27 | 26 | impcom 407 | . . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅)) → 𝑎 ∈ 𝑈) | 
| 28 | 3 | sseld 3981 | . . . . . . . 8
⊢ (𝜑 → (𝑏 ∈ 𝑅 → 𝑏 ∈ 𝑈)) | 
| 29 | 28 | com12 32 | . . . . . . 7
⊢ (𝑏 ∈ 𝑅 → (𝜑 → 𝑏 ∈ 𝑈)) | 
| 30 | 29 | adantl 481 | . . . . . 6
⊢ ((𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅) → (𝜑 → 𝑏 ∈ 𝑈)) | 
| 31 | 30 | impcom 407 | . . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅)) → 𝑏 ∈ 𝑈) | 
| 32 |  | ovexd 7467 | . . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅)) → ((Base‘𝑏) ↑m (Base‘𝑎)) ∈ V) | 
| 33 | 19, 23, 27, 31, 32 | ovmpod 7586 | . . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅)) → (𝑎(𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏) = ((Base‘𝑏) ↑m (Base‘𝑎))) | 
| 34 | 16, 18, 33 | 3sstr4d 4038 | . . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅)) → (𝑎( RngHom ↾ (𝑅 × 𝑅))𝑏) ⊆ (𝑎(𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏)) | 
| 35 | 34 | ralrimivva 3201 | . 2
⊢ (𝜑 → ∀𝑎 ∈ 𝑅 ∀𝑏 ∈ 𝑅 (𝑎( RngHom ↾ (𝑅 × 𝑅))𝑏) ⊆ (𝑎(𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏)) | 
| 36 |  | rnghmfn 20440 | . . . . 5
⊢  RngHom
Fn (Rng × Rng) | 
| 37 | 36 | a1i 11 | . . . 4
⊢ (𝜑 → RngHom Fn (Rng ×
Rng)) | 
| 38 |  | inss1 4236 | . . . . . 6
⊢ (Rng
∩ 𝑈) ⊆
Rng | 
| 39 | 1, 38 | eqsstrdi 4027 | . . . . 5
⊢ (𝜑 → 𝑅 ⊆ Rng) | 
| 40 |  | xpss12 5699 | . . . . 5
⊢ ((𝑅 ⊆ Rng ∧ 𝑅 ⊆ Rng) → (𝑅 × 𝑅) ⊆ (Rng ×
Rng)) | 
| 41 | 39, 39, 40 | syl2anc 584 | . . . 4
⊢ (𝜑 → (𝑅 × 𝑅) ⊆ (Rng ×
Rng)) | 
| 42 |  | fnssres 6690 | . . . 4
⊢ (( RngHom
Fn (Rng × Rng) ∧ (𝑅 × 𝑅) ⊆ (Rng × Rng)) → ( RngHom
↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅)) | 
| 43 | 37, 41, 42 | syl2anc 584 | . . 3
⊢ (𝜑 → ( RngHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅)) | 
| 44 |  | eqid 2736 | . . . . 5
⊢ (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) = (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) | 
| 45 |  | ovex 7465 | . . . . 5
⊢
((Base‘𝑦)
↑m (Base‘𝑥)) ∈ V | 
| 46 | 44, 45 | fnmpoi 8096 | . . . 4
⊢ (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) Fn (𝑈 × 𝑈) | 
| 47 | 46 | a1i 11 | . . 3
⊢ (𝜑 → (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) Fn (𝑈 × 𝑈)) | 
| 48 |  | rnghmsscmap.u | . . . 4
⊢ (𝜑 → 𝑈 ∈ 𝑉) | 
| 49 |  | elex 3500 | . . . 4
⊢ (𝑈 ∈ 𝑉 → 𝑈 ∈ V) | 
| 50 | 48, 49 | syl 17 | . . 3
⊢ (𝜑 → 𝑈 ∈ V) | 
| 51 | 43, 47, 50 | isssc 17865 | . 2
⊢ (𝜑 → (( RngHom ↾ (𝑅 × 𝑅)) ⊆cat (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) ↔ (𝑅 ⊆ 𝑈 ∧ ∀𝑎 ∈ 𝑅 ∀𝑏 ∈ 𝑅 (𝑎( RngHom ↾ (𝑅 × 𝑅))𝑏) ⊆ (𝑎(𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏)))) | 
| 52 | 3, 35, 51 | mpbir2and 713 | 1
⊢ (𝜑 → ( RngHom ↾ (𝑅 × 𝑅)) ⊆cat (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))) |