Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnghmsscmap Structured version   Visualization version   GIF version

Theorem rnghmsscmap 44390
Description: The non-unital ring homomorphisms between non-unital rings (in a universe) are a subcategory subset of the mappings between base sets of extensible structures (in the same universe). (Contributed by AV, 9-Mar-2020.)
Hypotheses
Ref Expression
rnghmsscmap.u (𝜑𝑈𝑉)
rnghmsscmap.r (𝜑𝑅 = (Rng ∩ 𝑈))
Assertion
Ref Expression
rnghmsscmap (𝜑 → ( RngHomo ↾ (𝑅 × 𝑅)) ⊆cat (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))))
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem rnghmsscmap
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnghmsscmap.r . . 3 (𝜑𝑅 = (Rng ∩ 𝑈))
2 inss2 4184 . . 3 (Rng ∩ 𝑈) ⊆ 𝑈
31, 2eqsstrdi 4000 . 2 (𝜑𝑅𝑈)
4 eqid 2820 . . . . . . 7 (Base‘𝑎) = (Base‘𝑎)
5 eqid 2820 . . . . . . 7 (Base‘𝑏) = (Base‘𝑏)
64, 5rnghmf 44315 . . . . . 6 ( ∈ (𝑎 RngHomo 𝑏) → :(Base‘𝑎)⟶(Base‘𝑏))
7 simpr 487 . . . . . . . 8 (((𝜑 ∧ (𝑎𝑅𝑏𝑅)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → :(Base‘𝑎)⟶(Base‘𝑏))
8 fvex 6659 . . . . . . . . . 10 (Base‘𝑏) ∈ V
9 fvex 6659 . . . . . . . . . 10 (Base‘𝑎) ∈ V
108, 9pm3.2i 473 . . . . . . . . 9 ((Base‘𝑏) ∈ V ∧ (Base‘𝑎) ∈ V)
11 elmapg 8397 . . . . . . . . 9 (((Base‘𝑏) ∈ V ∧ (Base‘𝑎) ∈ V) → ( ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) ↔ :(Base‘𝑎)⟶(Base‘𝑏)))
1210, 11mp1i 13 . . . . . . . 8 (((𝜑 ∧ (𝑎𝑅𝑏𝑅)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → ( ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) ↔ :(Base‘𝑎)⟶(Base‘𝑏)))
137, 12mpbird 259 . . . . . . 7 (((𝜑 ∧ (𝑎𝑅𝑏𝑅)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → ∈ ((Base‘𝑏) ↑m (Base‘𝑎)))
1413ex 415 . . . . . 6 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (:(Base‘𝑎)⟶(Base‘𝑏) → ∈ ((Base‘𝑏) ↑m (Base‘𝑎))))
156, 14syl5 34 . . . . 5 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → ( ∈ (𝑎 RngHomo 𝑏) → ∈ ((Base‘𝑏) ↑m (Base‘𝑎))))
1615ssrdv 3952 . . . 4 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (𝑎 RngHomo 𝑏) ⊆ ((Base‘𝑏) ↑m (Base‘𝑎)))
17 ovres 7292 . . . . 5 ((𝑎𝑅𝑏𝑅) → (𝑎( RngHomo ↾ (𝑅 × 𝑅))𝑏) = (𝑎 RngHomo 𝑏))
1817adantl 484 . . . 4 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (𝑎( RngHomo ↾ (𝑅 × 𝑅))𝑏) = (𝑎 RngHomo 𝑏))
19 eqidd 2821 . . . . 5 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) = (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))))
20 fveq2 6646 . . . . . . 7 (𝑦 = 𝑏 → (Base‘𝑦) = (Base‘𝑏))
21 fveq2 6646 . . . . . . 7 (𝑥 = 𝑎 → (Base‘𝑥) = (Base‘𝑎))
2220, 21oveqan12rd 7153 . . . . . 6 ((𝑥 = 𝑎𝑦 = 𝑏) → ((Base‘𝑦) ↑m (Base‘𝑥)) = ((Base‘𝑏) ↑m (Base‘𝑎)))
2322adantl 484 . . . . 5 (((𝜑 ∧ (𝑎𝑅𝑏𝑅)) ∧ (𝑥 = 𝑎𝑦 = 𝑏)) → ((Base‘𝑦) ↑m (Base‘𝑥)) = ((Base‘𝑏) ↑m (Base‘𝑎)))
243sseld 3945 . . . . . . . 8 (𝜑 → (𝑎𝑅𝑎𝑈))
2524com12 32 . . . . . . 7 (𝑎𝑅 → (𝜑𝑎𝑈))
2625adantr 483 . . . . . 6 ((𝑎𝑅𝑏𝑅) → (𝜑𝑎𝑈))
2726impcom 410 . . . . 5 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → 𝑎𝑈)
283sseld 3945 . . . . . . . 8 (𝜑 → (𝑏𝑅𝑏𝑈))
2928com12 32 . . . . . . 7 (𝑏𝑅 → (𝜑𝑏𝑈))
3029adantl 484 . . . . . 6 ((𝑎𝑅𝑏𝑅) → (𝜑𝑏𝑈))
3130impcom 410 . . . . 5 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → 𝑏𝑈)
32 ovexd 7168 . . . . 5 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → ((Base‘𝑏) ↑m (Base‘𝑎)) ∈ V)
3319, 23, 27, 31, 32ovmpod 7279 . . . 4 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (𝑎(𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏) = ((Base‘𝑏) ↑m (Base‘𝑎)))
3416, 18, 333sstr4d 3993 . . 3 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (𝑎( RngHomo ↾ (𝑅 × 𝑅))𝑏) ⊆ (𝑎(𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏))
3534ralrimivva 3178 . 2 (𝜑 → ∀𝑎𝑅𝑏𝑅 (𝑎( RngHomo ↾ (𝑅 × 𝑅))𝑏) ⊆ (𝑎(𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏))
36 rnghmfn 44306 . . . . 5 RngHomo Fn (Rng × Rng)
3736a1i 11 . . . 4 (𝜑 → RngHomo Fn (Rng × Rng))
38 inss1 4183 . . . . . 6 (Rng ∩ 𝑈) ⊆ Rng
391, 38eqsstrdi 4000 . . . . 5 (𝜑𝑅 ⊆ Rng)
40 xpss12 5546 . . . . 5 ((𝑅 ⊆ Rng ∧ 𝑅 ⊆ Rng) → (𝑅 × 𝑅) ⊆ (Rng × Rng))
4139, 39, 40syl2anc 586 . . . 4 (𝜑 → (𝑅 × 𝑅) ⊆ (Rng × Rng))
42 fnssres 6446 . . . 4 (( RngHomo Fn (Rng × Rng) ∧ (𝑅 × 𝑅) ⊆ (Rng × Rng)) → ( RngHomo ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅))
4337, 41, 42syl2anc 586 . . 3 (𝜑 → ( RngHomo ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅))
44 eqid 2820 . . . . 5 (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) = (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))
45 ovex 7166 . . . . 5 ((Base‘𝑦) ↑m (Base‘𝑥)) ∈ V
4644, 45fnmpoi 7746 . . . 4 (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) Fn (𝑈 × 𝑈)
4746a1i 11 . . 3 (𝜑 → (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) Fn (𝑈 × 𝑈))
48 rnghmsscmap.u . . . 4 (𝜑𝑈𝑉)
49 elex 3491 . . . 4 (𝑈𝑉𝑈 ∈ V)
5048, 49syl 17 . . 3 (𝜑𝑈 ∈ V)
5143, 47, 50isssc 17069 . 2 (𝜑 → (( RngHomo ↾ (𝑅 × 𝑅)) ⊆cat (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) ↔ (𝑅𝑈 ∧ ∀𝑎𝑅𝑏𝑅 (𝑎( RngHomo ↾ (𝑅 × 𝑅))𝑏) ⊆ (𝑎(𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏))))
523, 35, 51mpbir2and 711 1 (𝜑 → ( RngHomo ↾ (𝑅 × 𝑅)) ⊆cat (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3125  Vcvv 3473  cin 3912  wss 3913   class class class wbr 5042   × cxp 5529  cres 5533   Fn wfn 6326  wf 6327  cfv 6331  (class class class)co 7133  cmpo 7135  m cmap 8384  Basecbs 16462  cat cssc 17056  Rngcrng 44290   RngHomo crngh 44301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-ral 3130  df-rex 3131  df-reu 3132  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-op 4550  df-uni 4815  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5436  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-ov 7136  df-oprab 7137  df-mpo 7138  df-1st 7667  df-2nd 7668  df-map 8386  df-ixp 8440  df-ssc 17059  df-ghm 18335  df-abl 18888  df-rng0 44291  df-rnghomo 44303
This theorem is referenced by:  rnghmsubcsetc  44393
  Copyright terms: Public domain W3C validator