Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnghmsscmap Structured version   Visualization version   GIF version

Theorem rnghmsscmap 45802
Description: The non-unital ring homomorphisms between non-unital rings (in a universe) are a subcategory subset of the mappings between base sets of extensible structures (in the same universe). (Contributed by AV, 9-Mar-2020.)
Hypotheses
Ref Expression
rnghmsscmap.u (𝜑𝑈𝑉)
rnghmsscmap.r (𝜑𝑅 = (Rng ∩ 𝑈))
Assertion
Ref Expression
rnghmsscmap (𝜑 → ( RngHomo ↾ (𝑅 × 𝑅)) ⊆cat (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))))
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem rnghmsscmap
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnghmsscmap.r . . 3 (𝜑𝑅 = (Rng ∩ 𝑈))
2 inss2 4173 . . 3 (Rng ∩ 𝑈) ⊆ 𝑈
31, 2eqsstrdi 3984 . 2 (𝜑𝑅𝑈)
4 eqid 2736 . . . . . . 7 (Base‘𝑎) = (Base‘𝑎)
5 eqid 2736 . . . . . . 7 (Base‘𝑏) = (Base‘𝑏)
64, 5rnghmf 45727 . . . . . 6 ( ∈ (𝑎 RngHomo 𝑏) → :(Base‘𝑎)⟶(Base‘𝑏))
7 simpr 485 . . . . . . . 8 (((𝜑 ∧ (𝑎𝑅𝑏𝑅)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → :(Base‘𝑎)⟶(Base‘𝑏))
8 fvex 6824 . . . . . . . . . 10 (Base‘𝑏) ∈ V
9 fvex 6824 . . . . . . . . . 10 (Base‘𝑎) ∈ V
108, 9pm3.2i 471 . . . . . . . . 9 ((Base‘𝑏) ∈ V ∧ (Base‘𝑎) ∈ V)
11 elmapg 8677 . . . . . . . . 9 (((Base‘𝑏) ∈ V ∧ (Base‘𝑎) ∈ V) → ( ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) ↔ :(Base‘𝑎)⟶(Base‘𝑏)))
1210, 11mp1i 13 . . . . . . . 8 (((𝜑 ∧ (𝑎𝑅𝑏𝑅)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → ( ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) ↔ :(Base‘𝑎)⟶(Base‘𝑏)))
137, 12mpbird 256 . . . . . . 7 (((𝜑 ∧ (𝑎𝑅𝑏𝑅)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → ∈ ((Base‘𝑏) ↑m (Base‘𝑎)))
1413ex 413 . . . . . 6 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (:(Base‘𝑎)⟶(Base‘𝑏) → ∈ ((Base‘𝑏) ↑m (Base‘𝑎))))
156, 14syl5 34 . . . . 5 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → ( ∈ (𝑎 RngHomo 𝑏) → ∈ ((Base‘𝑏) ↑m (Base‘𝑎))))
1615ssrdv 3936 . . . 4 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (𝑎 RngHomo 𝑏) ⊆ ((Base‘𝑏) ↑m (Base‘𝑎)))
17 ovres 7479 . . . . 5 ((𝑎𝑅𝑏𝑅) → (𝑎( RngHomo ↾ (𝑅 × 𝑅))𝑏) = (𝑎 RngHomo 𝑏))
1817adantl 482 . . . 4 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (𝑎( RngHomo ↾ (𝑅 × 𝑅))𝑏) = (𝑎 RngHomo 𝑏))
19 eqidd 2737 . . . . 5 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) = (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))))
20 fveq2 6811 . . . . . . 7 (𝑦 = 𝑏 → (Base‘𝑦) = (Base‘𝑏))
21 fveq2 6811 . . . . . . 7 (𝑥 = 𝑎 → (Base‘𝑥) = (Base‘𝑎))
2220, 21oveqan12rd 7336 . . . . . 6 ((𝑥 = 𝑎𝑦 = 𝑏) → ((Base‘𝑦) ↑m (Base‘𝑥)) = ((Base‘𝑏) ↑m (Base‘𝑎)))
2322adantl 482 . . . . 5 (((𝜑 ∧ (𝑎𝑅𝑏𝑅)) ∧ (𝑥 = 𝑎𝑦 = 𝑏)) → ((Base‘𝑦) ↑m (Base‘𝑥)) = ((Base‘𝑏) ↑m (Base‘𝑎)))
243sseld 3929 . . . . . . . 8 (𝜑 → (𝑎𝑅𝑎𝑈))
2524com12 32 . . . . . . 7 (𝑎𝑅 → (𝜑𝑎𝑈))
2625adantr 481 . . . . . 6 ((𝑎𝑅𝑏𝑅) → (𝜑𝑎𝑈))
2726impcom 408 . . . . 5 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → 𝑎𝑈)
283sseld 3929 . . . . . . . 8 (𝜑 → (𝑏𝑅𝑏𝑈))
2928com12 32 . . . . . . 7 (𝑏𝑅 → (𝜑𝑏𝑈))
3029adantl 482 . . . . . 6 ((𝑎𝑅𝑏𝑅) → (𝜑𝑏𝑈))
3130impcom 408 . . . . 5 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → 𝑏𝑈)
32 ovexd 7351 . . . . 5 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → ((Base‘𝑏) ↑m (Base‘𝑎)) ∈ V)
3319, 23, 27, 31, 32ovmpod 7466 . . . 4 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (𝑎(𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏) = ((Base‘𝑏) ↑m (Base‘𝑎)))
3416, 18, 333sstr4d 3977 . . 3 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (𝑎( RngHomo ↾ (𝑅 × 𝑅))𝑏) ⊆ (𝑎(𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏))
3534ralrimivva 3193 . 2 (𝜑 → ∀𝑎𝑅𝑏𝑅 (𝑎( RngHomo ↾ (𝑅 × 𝑅))𝑏) ⊆ (𝑎(𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏))
36 rnghmfn 45718 . . . . 5 RngHomo Fn (Rng × Rng)
3736a1i 11 . . . 4 (𝜑 → RngHomo Fn (Rng × Rng))
38 inss1 4172 . . . . . 6 (Rng ∩ 𝑈) ⊆ Rng
391, 38eqsstrdi 3984 . . . . 5 (𝜑𝑅 ⊆ Rng)
40 xpss12 5622 . . . . 5 ((𝑅 ⊆ Rng ∧ 𝑅 ⊆ Rng) → (𝑅 × 𝑅) ⊆ (Rng × Rng))
4139, 39, 40syl2anc 584 . . . 4 (𝜑 → (𝑅 × 𝑅) ⊆ (Rng × Rng))
42 fnssres 6593 . . . 4 (( RngHomo Fn (Rng × Rng) ∧ (𝑅 × 𝑅) ⊆ (Rng × Rng)) → ( RngHomo ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅))
4337, 41, 42syl2anc 584 . . 3 (𝜑 → ( RngHomo ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅))
44 eqid 2736 . . . . 5 (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) = (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))
45 ovex 7349 . . . . 5 ((Base‘𝑦) ↑m (Base‘𝑥)) ∈ V
4644, 45fnmpoi 7956 . . . 4 (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) Fn (𝑈 × 𝑈)
4746a1i 11 . . 3 (𝜑 → (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) Fn (𝑈 × 𝑈))
48 rnghmsscmap.u . . . 4 (𝜑𝑈𝑉)
49 elex 3458 . . . 4 (𝑈𝑉𝑈 ∈ V)
5048, 49syl 17 . . 3 (𝜑𝑈 ∈ V)
5143, 47, 50isssc 17606 . 2 (𝜑 → (( RngHomo ↾ (𝑅 × 𝑅)) ⊆cat (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) ↔ (𝑅𝑈 ∧ ∀𝑎𝑅𝑏𝑅 (𝑎( RngHomo ↾ (𝑅 × 𝑅))𝑏) ⊆ (𝑎(𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏))))
523, 35, 51mpbir2and 710 1 (𝜑 → ( RngHomo ↾ (𝑅 × 𝑅)) ⊆cat (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  wral 3061  Vcvv 3440  cin 3895  wss 3896   class class class wbr 5086   × cxp 5605  cres 5609   Fn wfn 6460  wf 6461  cfv 6465  (class class class)co 7316  cmpo 7318  m cmap 8664  Basecbs 16986  cat cssc 17593  Rngcrng 45702   RngHomo crngh 45713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5223  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5170  df-id 5506  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-ov 7319  df-oprab 7320  df-mpo 7321  df-1st 7877  df-2nd 7878  df-map 8666  df-ixp 8735  df-ssc 17596  df-ghm 18905  df-abl 19461  df-rng0 45703  df-rnghomo 45715
This theorem is referenced by:  rnghmsubcsetc  45805
  Copyright terms: Public domain W3C validator