MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngcresringcat Structured version   Visualization version   GIF version

Theorem rngcresringcat 20585
Description: The restriction of the category of non-unital rings to the set of unital ring homomorphisms is the category of unital rings. (Contributed by AV, 16-Mar-2020.)
Hypotheses
Ref Expression
rhmsubcrngc.c 𝐶 = (RngCat‘𝑈)
rhmsubcrngc.u (𝜑𝑈𝑉)
rhmsubcrngc.b (𝜑𝐵 = (Ring ∩ 𝑈))
rhmsubcrngc.h (𝜑𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))
Assertion
Ref Expression
rngcresringcat (𝜑 → (𝐶cat 𝐻) = (RingCat‘𝑈))

Proof of Theorem rngcresringcat
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 rhmsubcrngc.c . . . 4 𝐶 = (RngCat‘𝑈)
2 rhmsubcrngc.u . . . 4 (𝜑𝑈𝑉)
3 eqidd 2732 . . . 4 (𝜑 → (𝑈 ∩ Rng) = (𝑈 ∩ Rng))
4 eqidd 2732 . . . 4 (𝜑 → ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) = ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))))
5 eqidd 2732 . . . 4 (𝜑 → (comp‘(ExtStrCat‘𝑈)) = (comp‘(ExtStrCat‘𝑈)))
61, 2, 3, 4, 5dfrngc2 20544 . . 3 (𝜑𝐶 = {⟨(Base‘ndx), (𝑈 ∩ Rng)⟩, ⟨(Hom ‘ndx), ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)))⟩, ⟨(comp‘ndx), (comp‘(ExtStrCat‘𝑈))⟩})
7 inex1g 5257 . . . 4 (𝑈𝑉 → (𝑈 ∩ Rng) ∈ V)
82, 7syl 17 . . 3 (𝜑 → (𝑈 ∩ Rng) ∈ V)
9 rnghmfn 20358 . . . . 5 RngHom Fn (Rng × Rng)
10 fnfun 6581 . . . . 5 ( RngHom Fn (Rng × Rng) → Fun RngHom )
119, 10mp1i 13 . . . 4 (𝜑 → Fun RngHom )
12 sqxpexg 7688 . . . . 5 ((𝑈 ∩ Rng) ∈ V → ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)) ∈ V)
138, 12syl 17 . . . 4 (𝜑 → ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)) ∈ V)
14 resfunexg 7149 . . . 4 ((Fun RngHom ∧ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)) ∈ V) → ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) ∈ V)
1511, 13, 14syl2anc 584 . . 3 (𝜑 → ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) ∈ V)
16 fvexd 6837 . . 3 (𝜑 → (comp‘(ExtStrCat‘𝑈)) ∈ V)
17 rhmsubcrngc.h . . . 4 (𝜑𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))
18 rhmfn 20415 . . . . . 6 RingHom Fn (Ring × Ring)
19 fnfun 6581 . . . . . 6 ( RingHom Fn (Ring × Ring) → Fun RingHom )
2018, 19mp1i 13 . . . . 5 (𝜑 → Fun RingHom )
21 rhmsubcrngc.b . . . . . . . 8 (𝜑𝐵 = (Ring ∩ 𝑈))
22 incom 4159 . . . . . . . 8 (Ring ∩ 𝑈) = (𝑈 ∩ Ring)
2321, 22eqtrdi 2782 . . . . . . 7 (𝜑𝐵 = (𝑈 ∩ Ring))
24 inex1g 5257 . . . . . . . 8 (𝑈𝑉 → (𝑈 ∩ Ring) ∈ V)
252, 24syl 17 . . . . . . 7 (𝜑 → (𝑈 ∩ Ring) ∈ V)
2623, 25eqeltrd 2831 . . . . . 6 (𝜑𝐵 ∈ V)
27 sqxpexg 7688 . . . . . 6 (𝐵 ∈ V → (𝐵 × 𝐵) ∈ V)
2826, 27syl 17 . . . . 5 (𝜑 → (𝐵 × 𝐵) ∈ V)
29 resfunexg 7149 . . . . 5 ((Fun RingHom ∧ (𝐵 × 𝐵) ∈ V) → ( RingHom ↾ (𝐵 × 𝐵)) ∈ V)
3020, 28, 29syl2anc 584 . . . 4 (𝜑 → ( RingHom ↾ (𝐵 × 𝐵)) ∈ V)
3117, 30eqeltrd 2831 . . 3 (𝜑𝐻 ∈ V)
32 ringrng 20204 . . . . . . 7 (𝑟 ∈ Ring → 𝑟 ∈ Rng)
3332a1i 11 . . . . . 6 (𝜑 → (𝑟 ∈ Ring → 𝑟 ∈ Rng))
3433ssrdv 3940 . . . . 5 (𝜑 → Ring ⊆ Rng)
3534ssrind 4194 . . . 4 (𝜑 → (Ring ∩ 𝑈) ⊆ (Rng ∩ 𝑈))
36 incom 4159 . . . . 5 (𝑈 ∩ Rng) = (Rng ∩ 𝑈)
3736a1i 11 . . . 4 (𝜑 → (𝑈 ∩ Rng) = (Rng ∩ 𝑈))
3835, 21, 373sstr4d 3990 . . 3 (𝜑𝐵 ⊆ (𝑈 ∩ Rng))
396, 8, 15, 16, 31, 38estrres 18045 . 2 (𝜑 → ((𝐶s 𝐵) sSet ⟨(Hom ‘ndx), 𝐻⟩) = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), (comp‘(ExtStrCat‘𝑈))⟩})
40 eqid 2731 . . 3 (𝐶cat 𝐻) = (𝐶cat 𝐻)
41 fvexd 6837 . . . 4 (𝜑 → (RngCat‘𝑈) ∈ V)
421, 41eqeltrid 2835 . . 3 (𝜑𝐶 ∈ V)
4323, 17rhmresfn 20564 . . 3 (𝜑𝐻 Fn (𝐵 × 𝐵))
4440, 42, 26, 43rescval2 17735 . 2 (𝜑 → (𝐶cat 𝐻) = ((𝐶s 𝐵) sSet ⟨(Hom ‘ndx), 𝐻⟩))
45 eqid 2731 . . 3 (RingCat‘𝑈) = (RingCat‘𝑈)
4645, 2, 23, 17, 5dfringc2 20573 . 2 (𝜑 → (RingCat‘𝑈) = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), (comp‘(ExtStrCat‘𝑈))⟩})
4739, 44, 463eqtr4d 2776 1 (𝜑 → (𝐶cat 𝐻) = (RingCat‘𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  cin 3901  {ctp 4580  cop 4582   × cxp 5614  cres 5618  Fun wfun 6475   Fn wfn 6476  cfv 6481  (class class class)co 7346   sSet csts 17074  ndxcnx 17104  Basecbs 17120  s cress 17141  Hom chom 17172  compcco 17173  cat cresc 17715  ExtStrCatcestrc 18028  Rngcrng 20071  Ringcrg 20152   RngHom crnghm 20353   RingHom crh 20388  RngCatcrngc 20532  RingCatcringc 20561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-hom 17185  df-cco 17186  df-0g 17345  df-resc 17718  df-estrc 18029  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-grp 18849  df-minusg 18850  df-ghm 19126  df-cmn 19695  df-abl 19696  df-mgp 20060  df-rng 20072  df-ur 20101  df-ring 20154  df-rnghm 20355  df-rhm 20391  df-rngc 20533  df-ringc 20562
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator