| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngcresringcat | Structured version Visualization version GIF version | ||
| Description: The restriction of the category of non-unital rings to the set of unital ring homomorphisms is the category of unital rings. (Contributed by AV, 16-Mar-2020.) |
| Ref | Expression |
|---|---|
| rhmsubcrngc.c | ⊢ 𝐶 = (RngCat‘𝑈) |
| rhmsubcrngc.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| rhmsubcrngc.b | ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) |
| rhmsubcrngc.h | ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) |
| Ref | Expression |
|---|---|
| rngcresringcat | ⊢ (𝜑 → (𝐶 ↾cat 𝐻) = (RingCat‘𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmsubcrngc.c | . . . 4 ⊢ 𝐶 = (RngCat‘𝑈) | |
| 2 | rhmsubcrngc.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 3 | eqidd 2730 | . . . 4 ⊢ (𝜑 → (𝑈 ∩ Rng) = (𝑈 ∩ Rng)) | |
| 4 | eqidd 2730 | . . . 4 ⊢ (𝜑 → ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) = ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)))) | |
| 5 | eqidd 2730 | . . . 4 ⊢ (𝜑 → (comp‘(ExtStrCat‘𝑈)) = (comp‘(ExtStrCat‘𝑈))) | |
| 6 | 1, 2, 3, 4, 5 | dfrngc2 20531 | . . 3 ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), (𝑈 ∩ Rng)〉, 〈(Hom ‘ndx), ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)))〉, 〈(comp‘ndx), (comp‘(ExtStrCat‘𝑈))〉}) |
| 7 | inex1g 5261 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ Rng) ∈ V) | |
| 8 | 2, 7 | syl 17 | . . 3 ⊢ (𝜑 → (𝑈 ∩ Rng) ∈ V) |
| 9 | rnghmfn 20342 | . . . . 5 ⊢ RngHom Fn (Rng × Rng) | |
| 10 | fnfun 6586 | . . . . 5 ⊢ ( RngHom Fn (Rng × Rng) → Fun RngHom ) | |
| 11 | 9, 10 | mp1i 13 | . . . 4 ⊢ (𝜑 → Fun RngHom ) |
| 12 | sqxpexg 7695 | . . . . 5 ⊢ ((𝑈 ∩ Rng) ∈ V → ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)) ∈ V) | |
| 13 | 8, 12 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)) ∈ V) |
| 14 | resfunexg 7155 | . . . 4 ⊢ ((Fun RngHom ∧ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)) ∈ V) → ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) ∈ V) | |
| 15 | 11, 13, 14 | syl2anc 584 | . . 3 ⊢ (𝜑 → ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) ∈ V) |
| 16 | fvexd 6841 | . . 3 ⊢ (𝜑 → (comp‘(ExtStrCat‘𝑈)) ∈ V) | |
| 17 | rhmsubcrngc.h | . . . 4 ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) | |
| 18 | rhmfn 20402 | . . . . . 6 ⊢ RingHom Fn (Ring × Ring) | |
| 19 | fnfun 6586 | . . . . . 6 ⊢ ( RingHom Fn (Ring × Ring) → Fun RingHom ) | |
| 20 | 18, 19 | mp1i 13 | . . . . 5 ⊢ (𝜑 → Fun RingHom ) |
| 21 | rhmsubcrngc.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) | |
| 22 | incom 4162 | . . . . . . . 8 ⊢ (Ring ∩ 𝑈) = (𝑈 ∩ Ring) | |
| 23 | 21, 22 | eqtrdi 2780 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) |
| 24 | inex1g 5261 | . . . . . . . 8 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ Ring) ∈ V) | |
| 25 | 2, 24 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑈 ∩ Ring) ∈ V) |
| 26 | 23, 25 | eqeltrd 2828 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ V) |
| 27 | sqxpexg 7695 | . . . . . 6 ⊢ (𝐵 ∈ V → (𝐵 × 𝐵) ∈ V) | |
| 28 | 26, 27 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐵 × 𝐵) ∈ V) |
| 29 | resfunexg 7155 | . . . . 5 ⊢ ((Fun RingHom ∧ (𝐵 × 𝐵) ∈ V) → ( RingHom ↾ (𝐵 × 𝐵)) ∈ V) | |
| 30 | 20, 28, 29 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ( RingHom ↾ (𝐵 × 𝐵)) ∈ V) |
| 31 | 17, 30 | eqeltrd 2828 | . . 3 ⊢ (𝜑 → 𝐻 ∈ V) |
| 32 | ringrng 20188 | . . . . . . 7 ⊢ (𝑟 ∈ Ring → 𝑟 ∈ Rng) | |
| 33 | 32 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (𝑟 ∈ Ring → 𝑟 ∈ Rng)) |
| 34 | 33 | ssrdv 3943 | . . . . 5 ⊢ (𝜑 → Ring ⊆ Rng) |
| 35 | 34 | ssrind 4197 | . . . 4 ⊢ (𝜑 → (Ring ∩ 𝑈) ⊆ (Rng ∩ 𝑈)) |
| 36 | incom 4162 | . . . . 5 ⊢ (𝑈 ∩ Rng) = (Rng ∩ 𝑈) | |
| 37 | 36 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑈 ∩ Rng) = (Rng ∩ 𝑈)) |
| 38 | 35, 21, 37 | 3sstr4d 3993 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ (𝑈 ∩ Rng)) |
| 39 | 6, 8, 15, 16, 31, 38 | estrres 18063 | . 2 ⊢ (𝜑 → ((𝐶 ↾s 𝐵) sSet 〈(Hom ‘ndx), 𝐻〉) = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), (comp‘(ExtStrCat‘𝑈))〉}) |
| 40 | eqid 2729 | . . 3 ⊢ (𝐶 ↾cat 𝐻) = (𝐶 ↾cat 𝐻) | |
| 41 | fvexd 6841 | . . . 4 ⊢ (𝜑 → (RngCat‘𝑈) ∈ V) | |
| 42 | 1, 41 | eqeltrid 2832 | . . 3 ⊢ (𝜑 → 𝐶 ∈ V) |
| 43 | 23, 17 | rhmresfn 20551 | . . 3 ⊢ (𝜑 → 𝐻 Fn (𝐵 × 𝐵)) |
| 44 | 40, 42, 26, 43 | rescval2 17753 | . 2 ⊢ (𝜑 → (𝐶 ↾cat 𝐻) = ((𝐶 ↾s 𝐵) sSet 〈(Hom ‘ndx), 𝐻〉)) |
| 45 | eqid 2729 | . . 3 ⊢ (RingCat‘𝑈) = (RingCat‘𝑈) | |
| 46 | 45, 2, 23, 17, 5 | dfringc2 20560 | . 2 ⊢ (𝜑 → (RingCat‘𝑈) = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), (comp‘(ExtStrCat‘𝑈))〉}) |
| 47 | 39, 44, 46 | 3eqtr4d 2774 | 1 ⊢ (𝜑 → (𝐶 ↾cat 𝐻) = (RingCat‘𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∩ cin 3904 {ctp 4583 〈cop 4585 × cxp 5621 ↾ cres 5625 Fun wfun 6480 Fn wfn 6481 ‘cfv 6486 (class class class)co 7353 sSet csts 17092 ndxcnx 17122 Basecbs 17138 ↾s cress 17159 Hom chom 17190 compcco 17191 ↾cat cresc 17733 ExtStrCatcestrc 18046 Rngcrng 20055 Ringcrg 20136 RngHom crnghm 20337 RingHom crh 20372 RngCatcrngc 20519 RingCatcringc 20548 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-hom 17203 df-cco 17204 df-0g 17363 df-resc 17736 df-estrc 18047 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-grp 18833 df-minusg 18834 df-ghm 19110 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-rnghm 20339 df-rhm 20375 df-rngc 20520 df-ringc 20549 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |