Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngcresringcat | Structured version Visualization version GIF version |
Description: The restriction of the category of non-unital rings to the set of unital ring homomorphisms is the category of unital rings. (Contributed by AV, 16-Mar-2020.) |
Ref | Expression |
---|---|
rhmsubcrngc.c | ⊢ 𝐶 = (RngCat‘𝑈) |
rhmsubcrngc.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
rhmsubcrngc.b | ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) |
rhmsubcrngc.h | ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) |
Ref | Expression |
---|---|
rngcresringcat | ⊢ (𝜑 → (𝐶 ↾cat 𝐻) = (RingCat‘𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rhmsubcrngc.c | . . . 4 ⊢ 𝐶 = (RngCat‘𝑈) | |
2 | rhmsubcrngc.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
3 | eqidd 2737 | . . . 4 ⊢ (𝜑 → (𝑈 ∩ Rng) = (𝑈 ∩ Rng)) | |
4 | eqidd 2737 | . . . 4 ⊢ (𝜑 → ( RngHomo ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) = ( RngHomo ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)))) | |
5 | eqidd 2737 | . . . 4 ⊢ (𝜑 → (comp‘(ExtStrCat‘𝑈)) = (comp‘(ExtStrCat‘𝑈))) | |
6 | 1, 2, 3, 4, 5 | dfrngc2 45889 | . . 3 ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), (𝑈 ∩ Rng)〉, 〈(Hom ‘ndx), ( RngHomo ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)))〉, 〈(comp‘ndx), (comp‘(ExtStrCat‘𝑈))〉}) |
7 | inex1g 5263 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ Rng) ∈ V) | |
8 | 2, 7 | syl 17 | . . 3 ⊢ (𝜑 → (𝑈 ∩ Rng) ∈ V) |
9 | rnghmfn 45807 | . . . . 5 ⊢ RngHomo Fn (Rng × Rng) | |
10 | fnfun 6585 | . . . . 5 ⊢ ( RngHomo Fn (Rng × Rng) → Fun RngHomo ) | |
11 | 9, 10 | mp1i 13 | . . . 4 ⊢ (𝜑 → Fun RngHomo ) |
12 | sqxpexg 7667 | . . . . 5 ⊢ ((𝑈 ∩ Rng) ∈ V → ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)) ∈ V) | |
13 | 8, 12 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)) ∈ V) |
14 | resfunexg 7147 | . . . 4 ⊢ ((Fun RngHomo ∧ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)) ∈ V) → ( RngHomo ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) ∈ V) | |
15 | 11, 13, 14 | syl2anc 584 | . . 3 ⊢ (𝜑 → ( RngHomo ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) ∈ V) |
16 | fvexd 6840 | . . 3 ⊢ (𝜑 → (comp‘(ExtStrCat‘𝑈)) ∈ V) | |
17 | rhmsubcrngc.h | . . . 4 ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) | |
18 | rhmfn 45835 | . . . . . 6 ⊢ RingHom Fn (Ring × Ring) | |
19 | fnfun 6585 | . . . . . 6 ⊢ ( RingHom Fn (Ring × Ring) → Fun RingHom ) | |
20 | 18, 19 | mp1i 13 | . . . . 5 ⊢ (𝜑 → Fun RingHom ) |
21 | rhmsubcrngc.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) | |
22 | incom 4148 | . . . . . . . 8 ⊢ (Ring ∩ 𝑈) = (𝑈 ∩ Ring) | |
23 | 21, 22 | eqtrdi 2792 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) |
24 | inex1g 5263 | . . . . . . . 8 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ Ring) ∈ V) | |
25 | 2, 24 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑈 ∩ Ring) ∈ V) |
26 | 23, 25 | eqeltrd 2837 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ V) |
27 | sqxpexg 7667 | . . . . . 6 ⊢ (𝐵 ∈ V → (𝐵 × 𝐵) ∈ V) | |
28 | 26, 27 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐵 × 𝐵) ∈ V) |
29 | resfunexg 7147 | . . . . 5 ⊢ ((Fun RingHom ∧ (𝐵 × 𝐵) ∈ V) → ( RingHom ↾ (𝐵 × 𝐵)) ∈ V) | |
30 | 20, 28, 29 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ( RingHom ↾ (𝐵 × 𝐵)) ∈ V) |
31 | 17, 30 | eqeltrd 2837 | . . 3 ⊢ (𝜑 → 𝐻 ∈ V) |
32 | ringrng 45796 | . . . . . . 7 ⊢ (𝑟 ∈ Ring → 𝑟 ∈ Rng) | |
33 | 32 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (𝑟 ∈ Ring → 𝑟 ∈ Rng)) |
34 | 33 | ssrdv 3938 | . . . . 5 ⊢ (𝜑 → Ring ⊆ Rng) |
35 | 34 | ssrind 4182 | . . . 4 ⊢ (𝜑 → (Ring ∩ 𝑈) ⊆ (Rng ∩ 𝑈)) |
36 | incom 4148 | . . . . 5 ⊢ (𝑈 ∩ Rng) = (Rng ∩ 𝑈) | |
37 | 36 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑈 ∩ Rng) = (Rng ∩ 𝑈)) |
38 | 35, 21, 37 | 3sstr4d 3979 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ (𝑈 ∩ Rng)) |
39 | 6, 8, 15, 16, 31, 38 | estrres 17953 | . 2 ⊢ (𝜑 → ((𝐶 ↾s 𝐵) sSet 〈(Hom ‘ndx), 𝐻〉) = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), (comp‘(ExtStrCat‘𝑈))〉}) |
40 | eqid 2736 | . . 3 ⊢ (𝐶 ↾cat 𝐻) = (𝐶 ↾cat 𝐻) | |
41 | fvexd 6840 | . . . 4 ⊢ (𝜑 → (RngCat‘𝑈) ∈ V) | |
42 | 1, 41 | eqeltrid 2841 | . . 3 ⊢ (𝜑 → 𝐶 ∈ V) |
43 | 23, 17 | rhmresfn 45926 | . . 3 ⊢ (𝜑 → 𝐻 Fn (𝐵 × 𝐵)) |
44 | 40, 42, 26, 43 | rescval2 17637 | . 2 ⊢ (𝜑 → (𝐶 ↾cat 𝐻) = ((𝐶 ↾s 𝐵) sSet 〈(Hom ‘ndx), 𝐻〉)) |
45 | eqid 2736 | . . 3 ⊢ (RingCat‘𝑈) = (RingCat‘𝑈) | |
46 | 45, 2, 23, 17, 5 | dfringc2 45935 | . 2 ⊢ (𝜑 → (RingCat‘𝑈) = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), (comp‘(ExtStrCat‘𝑈))〉}) |
47 | 39, 44, 46 | 3eqtr4d 2786 | 1 ⊢ (𝜑 → (𝐶 ↾cat 𝐻) = (RingCat‘𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ∩ cin 3897 {ctp 4577 〈cop 4579 × cxp 5618 ↾ cres 5622 Fun wfun 6473 Fn wfn 6474 ‘cfv 6479 (class class class)co 7337 sSet csts 16961 ndxcnx 16991 Basecbs 17009 ↾s cress 17038 Hom chom 17070 compcco 17071 ↾cat cresc 17617 ExtStrCatcestrc 17935 Ringcrg 19878 RingHom crh 20051 Rngcrng 45791 RngHomo crngh 45802 RngCatcrngc 45874 RingCatcringc 45920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-er 8569 df-map 8688 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-2 12137 df-3 12138 df-4 12139 df-5 12140 df-6 12141 df-7 12142 df-8 12143 df-9 12144 df-n0 12335 df-z 12421 df-dec 12539 df-uz 12684 df-fz 13341 df-struct 16945 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-ress 17039 df-plusg 17072 df-hom 17083 df-cco 17084 df-0g 17249 df-resc 17620 df-estrc 17936 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-mhm 18527 df-grp 18676 df-minusg 18677 df-ghm 18928 df-cmn 19483 df-abl 19484 df-mgp 19816 df-ur 19833 df-ring 19880 df-rnghom 20054 df-rng0 45792 df-rnghomo 45804 df-rngc 45876 df-ringc 45922 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |