| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngcresringcat | Structured version Visualization version GIF version | ||
| Description: The restriction of the category of non-unital rings to the set of unital ring homomorphisms is the category of unital rings. (Contributed by AV, 16-Mar-2020.) |
| Ref | Expression |
|---|---|
| rhmsubcrngc.c | ⊢ 𝐶 = (RngCat‘𝑈) |
| rhmsubcrngc.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| rhmsubcrngc.b | ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) |
| rhmsubcrngc.h | ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) |
| Ref | Expression |
|---|---|
| rngcresringcat | ⊢ (𝜑 → (𝐶 ↾cat 𝐻) = (RingCat‘𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmsubcrngc.c | . . . 4 ⊢ 𝐶 = (RngCat‘𝑈) | |
| 2 | rhmsubcrngc.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 3 | eqidd 2735 | . . . 4 ⊢ (𝜑 → (𝑈 ∩ Rng) = (𝑈 ∩ Rng)) | |
| 4 | eqidd 2735 | . . . 4 ⊢ (𝜑 → ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) = ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)))) | |
| 5 | eqidd 2735 | . . . 4 ⊢ (𝜑 → (comp‘(ExtStrCat‘𝑈)) = (comp‘(ExtStrCat‘𝑈))) | |
| 6 | 1, 2, 3, 4, 5 | dfrngc2 20597 | . . 3 ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), (𝑈 ∩ Rng)〉, 〈(Hom ‘ndx), ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)))〉, 〈(comp‘ndx), (comp‘(ExtStrCat‘𝑈))〉}) |
| 7 | inex1g 5299 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ Rng) ∈ V) | |
| 8 | 2, 7 | syl 17 | . . 3 ⊢ (𝜑 → (𝑈 ∩ Rng) ∈ V) |
| 9 | rnghmfn 20408 | . . . . 5 ⊢ RngHom Fn (Rng × Rng) | |
| 10 | fnfun 6648 | . . . . 5 ⊢ ( RngHom Fn (Rng × Rng) → Fun RngHom ) | |
| 11 | 9, 10 | mp1i 13 | . . . 4 ⊢ (𝜑 → Fun RngHom ) |
| 12 | sqxpexg 7757 | . . . . 5 ⊢ ((𝑈 ∩ Rng) ∈ V → ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)) ∈ V) | |
| 13 | 8, 12 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)) ∈ V) |
| 14 | resfunexg 7217 | . . . 4 ⊢ ((Fun RngHom ∧ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)) ∈ V) → ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) ∈ V) | |
| 15 | 11, 13, 14 | syl2anc 584 | . . 3 ⊢ (𝜑 → ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) ∈ V) |
| 16 | fvexd 6901 | . . 3 ⊢ (𝜑 → (comp‘(ExtStrCat‘𝑈)) ∈ V) | |
| 17 | rhmsubcrngc.h | . . . 4 ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) | |
| 18 | rhmfn 20468 | . . . . . 6 ⊢ RingHom Fn (Ring × Ring) | |
| 19 | fnfun 6648 | . . . . . 6 ⊢ ( RingHom Fn (Ring × Ring) → Fun RingHom ) | |
| 20 | 18, 19 | mp1i 13 | . . . . 5 ⊢ (𝜑 → Fun RingHom ) |
| 21 | rhmsubcrngc.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) | |
| 22 | incom 4189 | . . . . . . . 8 ⊢ (Ring ∩ 𝑈) = (𝑈 ∩ Ring) | |
| 23 | 21, 22 | eqtrdi 2785 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) |
| 24 | inex1g 5299 | . . . . . . . 8 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ Ring) ∈ V) | |
| 25 | 2, 24 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑈 ∩ Ring) ∈ V) |
| 26 | 23, 25 | eqeltrd 2833 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ V) |
| 27 | sqxpexg 7757 | . . . . . 6 ⊢ (𝐵 ∈ V → (𝐵 × 𝐵) ∈ V) | |
| 28 | 26, 27 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐵 × 𝐵) ∈ V) |
| 29 | resfunexg 7217 | . . . . 5 ⊢ ((Fun RingHom ∧ (𝐵 × 𝐵) ∈ V) → ( RingHom ↾ (𝐵 × 𝐵)) ∈ V) | |
| 30 | 20, 28, 29 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ( RingHom ↾ (𝐵 × 𝐵)) ∈ V) |
| 31 | 17, 30 | eqeltrd 2833 | . . 3 ⊢ (𝜑 → 𝐻 ∈ V) |
| 32 | ringrng 20251 | . . . . . . 7 ⊢ (𝑟 ∈ Ring → 𝑟 ∈ Rng) | |
| 33 | 32 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (𝑟 ∈ Ring → 𝑟 ∈ Rng)) |
| 34 | 33 | ssrdv 3969 | . . . . 5 ⊢ (𝜑 → Ring ⊆ Rng) |
| 35 | 34 | ssrind 4224 | . . . 4 ⊢ (𝜑 → (Ring ∩ 𝑈) ⊆ (Rng ∩ 𝑈)) |
| 36 | incom 4189 | . . . . 5 ⊢ (𝑈 ∩ Rng) = (Rng ∩ 𝑈) | |
| 37 | 36 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑈 ∩ Rng) = (Rng ∩ 𝑈)) |
| 38 | 35, 21, 37 | 3sstr4d 4019 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ (𝑈 ∩ Rng)) |
| 39 | 6, 8, 15, 16, 31, 38 | estrres 18155 | . 2 ⊢ (𝜑 → ((𝐶 ↾s 𝐵) sSet 〈(Hom ‘ndx), 𝐻〉) = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), (comp‘(ExtStrCat‘𝑈))〉}) |
| 40 | eqid 2734 | . . 3 ⊢ (𝐶 ↾cat 𝐻) = (𝐶 ↾cat 𝐻) | |
| 41 | fvexd 6901 | . . . 4 ⊢ (𝜑 → (RngCat‘𝑈) ∈ V) | |
| 42 | 1, 41 | eqeltrid 2837 | . . 3 ⊢ (𝜑 → 𝐶 ∈ V) |
| 43 | 23, 17 | rhmresfn 20617 | . . 3 ⊢ (𝜑 → 𝐻 Fn (𝐵 × 𝐵)) |
| 44 | 40, 42, 26, 43 | rescval2 17844 | . 2 ⊢ (𝜑 → (𝐶 ↾cat 𝐻) = ((𝐶 ↾s 𝐵) sSet 〈(Hom ‘ndx), 𝐻〉)) |
| 45 | eqid 2734 | . . 3 ⊢ (RingCat‘𝑈) = (RingCat‘𝑈) | |
| 46 | 45, 2, 23, 17, 5 | dfringc2 20626 | . 2 ⊢ (𝜑 → (RingCat‘𝑈) = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), (comp‘(ExtStrCat‘𝑈))〉}) |
| 47 | 39, 44, 46 | 3eqtr4d 2779 | 1 ⊢ (𝜑 → (𝐶 ↾cat 𝐻) = (RingCat‘𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ∩ cin 3930 {ctp 4610 〈cop 4612 × cxp 5663 ↾ cres 5667 Fun wfun 6535 Fn wfn 6536 ‘cfv 6541 (class class class)co 7413 sSet csts 17183 ndxcnx 17213 Basecbs 17230 ↾s cress 17253 Hom chom 17285 compcco 17286 ↾cat cresc 17824 ExtStrCatcestrc 18138 Rngcrng 20118 Ringcrg 20199 RngHom crnghm 20403 RingHom crh 20438 RngCatcrngc 20585 RingCatcringc 20614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-fz 13530 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17254 df-plusg 17287 df-hom 17298 df-cco 17299 df-0g 17458 df-resc 17827 df-estrc 18139 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mhm 18766 df-grp 18924 df-minusg 18925 df-ghm 19201 df-cmn 19769 df-abl 19770 df-mgp 20107 df-rng 20119 df-ur 20148 df-ring 20201 df-rnghm 20405 df-rhm 20441 df-rngc 20586 df-ringc 20615 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |