MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngcresringcat Structured version   Visualization version   GIF version

Theorem rngcresringcat 20578
Description: The restriction of the category of non-unital rings to the set of unital ring homomorphisms is the category of unital rings. (Contributed by AV, 16-Mar-2020.)
Hypotheses
Ref Expression
rhmsubcrngc.c 𝐶 = (RngCat‘𝑈)
rhmsubcrngc.u (𝜑𝑈𝑉)
rhmsubcrngc.b (𝜑𝐵 = (Ring ∩ 𝑈))
rhmsubcrngc.h (𝜑𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))
Assertion
Ref Expression
rngcresringcat (𝜑 → (𝐶cat 𝐻) = (RingCat‘𝑈))

Proof of Theorem rngcresringcat
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 rhmsubcrngc.c . . . 4 𝐶 = (RngCat‘𝑈)
2 rhmsubcrngc.u . . . 4 (𝜑𝑈𝑉)
3 eqidd 2730 . . . 4 (𝜑 → (𝑈 ∩ Rng) = (𝑈 ∩ Rng))
4 eqidd 2730 . . . 4 (𝜑 → ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) = ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))))
5 eqidd 2730 . . . 4 (𝜑 → (comp‘(ExtStrCat‘𝑈)) = (comp‘(ExtStrCat‘𝑈)))
61, 2, 3, 4, 5dfrngc2 20537 . . 3 (𝜑𝐶 = {⟨(Base‘ndx), (𝑈 ∩ Rng)⟩, ⟨(Hom ‘ndx), ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)))⟩, ⟨(comp‘ndx), (comp‘(ExtStrCat‘𝑈))⟩})
7 inex1g 5274 . . . 4 (𝑈𝑉 → (𝑈 ∩ Rng) ∈ V)
82, 7syl 17 . . 3 (𝜑 → (𝑈 ∩ Rng) ∈ V)
9 rnghmfn 20348 . . . . 5 RngHom Fn (Rng × Rng)
10 fnfun 6618 . . . . 5 ( RngHom Fn (Rng × Rng) → Fun RngHom )
119, 10mp1i 13 . . . 4 (𝜑 → Fun RngHom )
12 sqxpexg 7731 . . . . 5 ((𝑈 ∩ Rng) ∈ V → ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)) ∈ V)
138, 12syl 17 . . . 4 (𝜑 → ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)) ∈ V)
14 resfunexg 7189 . . . 4 ((Fun RngHom ∧ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)) ∈ V) → ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) ∈ V)
1511, 13, 14syl2anc 584 . . 3 (𝜑 → ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) ∈ V)
16 fvexd 6873 . . 3 (𝜑 → (comp‘(ExtStrCat‘𝑈)) ∈ V)
17 rhmsubcrngc.h . . . 4 (𝜑𝐻 = ( RingHom ↾ (𝐵 × 𝐵)))
18 rhmfn 20408 . . . . . 6 RingHom Fn (Ring × Ring)
19 fnfun 6618 . . . . . 6 ( RingHom Fn (Ring × Ring) → Fun RingHom )
2018, 19mp1i 13 . . . . 5 (𝜑 → Fun RingHom )
21 rhmsubcrngc.b . . . . . . . 8 (𝜑𝐵 = (Ring ∩ 𝑈))
22 incom 4172 . . . . . . . 8 (Ring ∩ 𝑈) = (𝑈 ∩ Ring)
2321, 22eqtrdi 2780 . . . . . . 7 (𝜑𝐵 = (𝑈 ∩ Ring))
24 inex1g 5274 . . . . . . . 8 (𝑈𝑉 → (𝑈 ∩ Ring) ∈ V)
252, 24syl 17 . . . . . . 7 (𝜑 → (𝑈 ∩ Ring) ∈ V)
2623, 25eqeltrd 2828 . . . . . 6 (𝜑𝐵 ∈ V)
27 sqxpexg 7731 . . . . . 6 (𝐵 ∈ V → (𝐵 × 𝐵) ∈ V)
2826, 27syl 17 . . . . 5 (𝜑 → (𝐵 × 𝐵) ∈ V)
29 resfunexg 7189 . . . . 5 ((Fun RingHom ∧ (𝐵 × 𝐵) ∈ V) → ( RingHom ↾ (𝐵 × 𝐵)) ∈ V)
3020, 28, 29syl2anc 584 . . . 4 (𝜑 → ( RingHom ↾ (𝐵 × 𝐵)) ∈ V)
3117, 30eqeltrd 2828 . . 3 (𝜑𝐻 ∈ V)
32 ringrng 20194 . . . . . . 7 (𝑟 ∈ Ring → 𝑟 ∈ Rng)
3332a1i 11 . . . . . 6 (𝜑 → (𝑟 ∈ Ring → 𝑟 ∈ Rng))
3433ssrdv 3952 . . . . 5 (𝜑 → Ring ⊆ Rng)
3534ssrind 4207 . . . 4 (𝜑 → (Ring ∩ 𝑈) ⊆ (Rng ∩ 𝑈))
36 incom 4172 . . . . 5 (𝑈 ∩ Rng) = (Rng ∩ 𝑈)
3736a1i 11 . . . 4 (𝜑 → (𝑈 ∩ Rng) = (Rng ∩ 𝑈))
3835, 21, 373sstr4d 4002 . . 3 (𝜑𝐵 ⊆ (𝑈 ∩ Rng))
396, 8, 15, 16, 31, 38estrres 18100 . 2 (𝜑 → ((𝐶s 𝐵) sSet ⟨(Hom ‘ndx), 𝐻⟩) = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), (comp‘(ExtStrCat‘𝑈))⟩})
40 eqid 2729 . . 3 (𝐶cat 𝐻) = (𝐶cat 𝐻)
41 fvexd 6873 . . . 4 (𝜑 → (RngCat‘𝑈) ∈ V)
421, 41eqeltrid 2832 . . 3 (𝜑𝐶 ∈ V)
4323, 17rhmresfn 20557 . . 3 (𝜑𝐻 Fn (𝐵 × 𝐵))
4440, 42, 26, 43rescval2 17790 . 2 (𝜑 → (𝐶cat 𝐻) = ((𝐶s 𝐵) sSet ⟨(Hom ‘ndx), 𝐻⟩))
45 eqid 2729 . . 3 (RingCat‘𝑈) = (RingCat‘𝑈)
4645, 2, 23, 17, 5dfringc2 20566 . 2 (𝜑 → (RingCat‘𝑈) = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), (comp‘(ExtStrCat‘𝑈))⟩})
4739, 44, 463eqtr4d 2774 1 (𝜑 → (𝐶cat 𝐻) = (RingCat‘𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3447  cin 3913  {ctp 4593  cop 4595   × cxp 5636  cres 5640  Fun wfun 6505   Fn wfn 6506  cfv 6511  (class class class)co 7387   sSet csts 17133  ndxcnx 17163  Basecbs 17179  s cress 17200  Hom chom 17231  compcco 17232  cat cresc 17770  ExtStrCatcestrc 18083  Rngcrng 20061  Ringcrg 20142   RngHom crnghm 20343   RingHom crh 20378  RngCatcrngc 20525  RingCatcringc 20554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-hom 17244  df-cco 17245  df-0g 17404  df-resc 17773  df-estrc 18084  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-grp 18868  df-minusg 18869  df-ghm 19145  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-rnghm 20345  df-rhm 20381  df-rngc 20526  df-ringc 20555
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator