| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngcresringcat | Structured version Visualization version GIF version | ||
| Description: The restriction of the category of non-unital rings to the set of unital ring homomorphisms is the category of unital rings. (Contributed by AV, 16-Mar-2020.) |
| Ref | Expression |
|---|---|
| rhmsubcrngc.c | ⊢ 𝐶 = (RngCat‘𝑈) |
| rhmsubcrngc.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| rhmsubcrngc.b | ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) |
| rhmsubcrngc.h | ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) |
| Ref | Expression |
|---|---|
| rngcresringcat | ⊢ (𝜑 → (𝐶 ↾cat 𝐻) = (RingCat‘𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmsubcrngc.c | . . . 4 ⊢ 𝐶 = (RngCat‘𝑈) | |
| 2 | rhmsubcrngc.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 3 | eqidd 2730 | . . . 4 ⊢ (𝜑 → (𝑈 ∩ Rng) = (𝑈 ∩ Rng)) | |
| 4 | eqidd 2730 | . . . 4 ⊢ (𝜑 → ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) = ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)))) | |
| 5 | eqidd 2730 | . . . 4 ⊢ (𝜑 → (comp‘(ExtStrCat‘𝑈)) = (comp‘(ExtStrCat‘𝑈))) | |
| 6 | 1, 2, 3, 4, 5 | dfrngc2 20537 | . . 3 ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), (𝑈 ∩ Rng)〉, 〈(Hom ‘ndx), ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)))〉, 〈(comp‘ndx), (comp‘(ExtStrCat‘𝑈))〉}) |
| 7 | inex1g 5274 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ Rng) ∈ V) | |
| 8 | 2, 7 | syl 17 | . . 3 ⊢ (𝜑 → (𝑈 ∩ Rng) ∈ V) |
| 9 | rnghmfn 20348 | . . . . 5 ⊢ RngHom Fn (Rng × Rng) | |
| 10 | fnfun 6618 | . . . . 5 ⊢ ( RngHom Fn (Rng × Rng) → Fun RngHom ) | |
| 11 | 9, 10 | mp1i 13 | . . . 4 ⊢ (𝜑 → Fun RngHom ) |
| 12 | sqxpexg 7731 | . . . . 5 ⊢ ((𝑈 ∩ Rng) ∈ V → ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)) ∈ V) | |
| 13 | 8, 12 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)) ∈ V) |
| 14 | resfunexg 7189 | . . . 4 ⊢ ((Fun RngHom ∧ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)) ∈ V) → ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) ∈ V) | |
| 15 | 11, 13, 14 | syl2anc 584 | . . 3 ⊢ (𝜑 → ( RngHom ↾ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng))) ∈ V) |
| 16 | fvexd 6873 | . . 3 ⊢ (𝜑 → (comp‘(ExtStrCat‘𝑈)) ∈ V) | |
| 17 | rhmsubcrngc.h | . . . 4 ⊢ (𝜑 → 𝐻 = ( RingHom ↾ (𝐵 × 𝐵))) | |
| 18 | rhmfn 20408 | . . . . . 6 ⊢ RingHom Fn (Ring × Ring) | |
| 19 | fnfun 6618 | . . . . . 6 ⊢ ( RingHom Fn (Ring × Ring) → Fun RingHom ) | |
| 20 | 18, 19 | mp1i 13 | . . . . 5 ⊢ (𝜑 → Fun RingHom ) |
| 21 | rhmsubcrngc.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 = (Ring ∩ 𝑈)) | |
| 22 | incom 4172 | . . . . . . . 8 ⊢ (Ring ∩ 𝑈) = (𝑈 ∩ Ring) | |
| 23 | 21, 22 | eqtrdi 2780 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) |
| 24 | inex1g 5274 | . . . . . . . 8 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ Ring) ∈ V) | |
| 25 | 2, 24 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑈 ∩ Ring) ∈ V) |
| 26 | 23, 25 | eqeltrd 2828 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ V) |
| 27 | sqxpexg 7731 | . . . . . 6 ⊢ (𝐵 ∈ V → (𝐵 × 𝐵) ∈ V) | |
| 28 | 26, 27 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐵 × 𝐵) ∈ V) |
| 29 | resfunexg 7189 | . . . . 5 ⊢ ((Fun RingHom ∧ (𝐵 × 𝐵) ∈ V) → ( RingHom ↾ (𝐵 × 𝐵)) ∈ V) | |
| 30 | 20, 28, 29 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ( RingHom ↾ (𝐵 × 𝐵)) ∈ V) |
| 31 | 17, 30 | eqeltrd 2828 | . . 3 ⊢ (𝜑 → 𝐻 ∈ V) |
| 32 | ringrng 20194 | . . . . . . 7 ⊢ (𝑟 ∈ Ring → 𝑟 ∈ Rng) | |
| 33 | 32 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (𝑟 ∈ Ring → 𝑟 ∈ Rng)) |
| 34 | 33 | ssrdv 3952 | . . . . 5 ⊢ (𝜑 → Ring ⊆ Rng) |
| 35 | 34 | ssrind 4207 | . . . 4 ⊢ (𝜑 → (Ring ∩ 𝑈) ⊆ (Rng ∩ 𝑈)) |
| 36 | incom 4172 | . . . . 5 ⊢ (𝑈 ∩ Rng) = (Rng ∩ 𝑈) | |
| 37 | 36 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑈 ∩ Rng) = (Rng ∩ 𝑈)) |
| 38 | 35, 21, 37 | 3sstr4d 4002 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ (𝑈 ∩ Rng)) |
| 39 | 6, 8, 15, 16, 31, 38 | estrres 18100 | . 2 ⊢ (𝜑 → ((𝐶 ↾s 𝐵) sSet 〈(Hom ‘ndx), 𝐻〉) = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), (comp‘(ExtStrCat‘𝑈))〉}) |
| 40 | eqid 2729 | . . 3 ⊢ (𝐶 ↾cat 𝐻) = (𝐶 ↾cat 𝐻) | |
| 41 | fvexd 6873 | . . . 4 ⊢ (𝜑 → (RngCat‘𝑈) ∈ V) | |
| 42 | 1, 41 | eqeltrid 2832 | . . 3 ⊢ (𝜑 → 𝐶 ∈ V) |
| 43 | 23, 17 | rhmresfn 20557 | . . 3 ⊢ (𝜑 → 𝐻 Fn (𝐵 × 𝐵)) |
| 44 | 40, 42, 26, 43 | rescval2 17790 | . 2 ⊢ (𝜑 → (𝐶 ↾cat 𝐻) = ((𝐶 ↾s 𝐵) sSet 〈(Hom ‘ndx), 𝐻〉)) |
| 45 | eqid 2729 | . . 3 ⊢ (RingCat‘𝑈) = (RingCat‘𝑈) | |
| 46 | 45, 2, 23, 17, 5 | dfringc2 20566 | . 2 ⊢ (𝜑 → (RingCat‘𝑈) = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), (comp‘(ExtStrCat‘𝑈))〉}) |
| 47 | 39, 44, 46 | 3eqtr4d 2774 | 1 ⊢ (𝜑 → (𝐶 ↾cat 𝐻) = (RingCat‘𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∩ cin 3913 {ctp 4593 〈cop 4595 × cxp 5636 ↾ cres 5640 Fun wfun 6505 Fn wfn 6506 ‘cfv 6511 (class class class)co 7387 sSet csts 17133 ndxcnx 17163 Basecbs 17179 ↾s cress 17200 Hom chom 17231 compcco 17232 ↾cat cresc 17770 ExtStrCatcestrc 18083 Rngcrng 20061 Ringcrg 20142 RngHom crnghm 20343 RingHom crh 20378 RngCatcrngc 20525 RingCatcringc 20554 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-hom 17244 df-cco 17245 df-0g 17404 df-resc 17773 df-estrc 18084 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-grp 18868 df-minusg 18869 df-ghm 19145 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-rnghm 20345 df-rhm 20381 df-rngc 20526 df-ringc 20555 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |