MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnghmsscmap2 Structured version   Visualization version   GIF version

Theorem rnghmsscmap2 20537
Description: The non-unital ring homomorphisms between non-unital rings (in a universe) are a subcategory subset of the mappings between base sets of non-unital rings (in the same universe). (Contributed by AV, 6-Mar-2020.)
Hypotheses
Ref Expression
rnghmsscmap.u (𝜑𝑈𝑉)
rnghmsscmap.r (𝜑𝑅 = (Rng ∩ 𝑈))
Assertion
Ref Expression
rnghmsscmap2 (𝜑 → ( RngHom ↾ (𝑅 × 𝑅)) ⊆cat (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))))
Distinct variable group:   𝑥,𝑅,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem rnghmsscmap2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssidd 3956 . 2 (𝜑𝑅𝑅)
2 eqid 2730 . . . . . . 7 (Base‘𝑎) = (Base‘𝑎)
3 eqid 2730 . . . . . . 7 (Base‘𝑏) = (Base‘𝑏)
42, 3rnghmf 20359 . . . . . 6 ( ∈ (𝑎 RngHom 𝑏) → :(Base‘𝑎)⟶(Base‘𝑏))
5 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝑎𝑅𝑏𝑅)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → :(Base‘𝑎)⟶(Base‘𝑏))
6 fvex 6830 . . . . . . . . . 10 (Base‘𝑏) ∈ V
7 fvex 6830 . . . . . . . . . 10 (Base‘𝑎) ∈ V
86, 7pm3.2i 470 . . . . . . . . 9 ((Base‘𝑏) ∈ V ∧ (Base‘𝑎) ∈ V)
9 elmapg 8758 . . . . . . . . 9 (((Base‘𝑏) ∈ V ∧ (Base‘𝑎) ∈ V) → ( ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) ↔ :(Base‘𝑎)⟶(Base‘𝑏)))
108, 9mp1i 13 . . . . . . . 8 (((𝜑 ∧ (𝑎𝑅𝑏𝑅)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → ( ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) ↔ :(Base‘𝑎)⟶(Base‘𝑏)))
115, 10mpbird 257 . . . . . . 7 (((𝜑 ∧ (𝑎𝑅𝑏𝑅)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → ∈ ((Base‘𝑏) ↑m (Base‘𝑎)))
1211ex 412 . . . . . 6 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (:(Base‘𝑎)⟶(Base‘𝑏) → ∈ ((Base‘𝑏) ↑m (Base‘𝑎))))
134, 12syl5 34 . . . . 5 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → ( ∈ (𝑎 RngHom 𝑏) → ∈ ((Base‘𝑏) ↑m (Base‘𝑎))))
1413ssrdv 3938 . . . 4 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (𝑎 RngHom 𝑏) ⊆ ((Base‘𝑏) ↑m (Base‘𝑎)))
15 ovres 7507 . . . . 5 ((𝑎𝑅𝑏𝑅) → (𝑎( RngHom ↾ (𝑅 × 𝑅))𝑏) = (𝑎 RngHom 𝑏))
1615adantl 481 . . . 4 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (𝑎( RngHom ↾ (𝑅 × 𝑅))𝑏) = (𝑎 RngHom 𝑏))
17 eqidd 2731 . . . . . 6 ((𝑎𝑅𝑏𝑅) → (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) = (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))))
18 fveq2 6817 . . . . . . . 8 (𝑦 = 𝑏 → (Base‘𝑦) = (Base‘𝑏))
19 fveq2 6817 . . . . . . . 8 (𝑥 = 𝑎 → (Base‘𝑥) = (Base‘𝑎))
2018, 19oveqan12rd 7361 . . . . . . 7 ((𝑥 = 𝑎𝑦 = 𝑏) → ((Base‘𝑦) ↑m (Base‘𝑥)) = ((Base‘𝑏) ↑m (Base‘𝑎)))
2120adantl 481 . . . . . 6 (((𝑎𝑅𝑏𝑅) ∧ (𝑥 = 𝑎𝑦 = 𝑏)) → ((Base‘𝑦) ↑m (Base‘𝑥)) = ((Base‘𝑏) ↑m (Base‘𝑎)))
22 simpl 482 . . . . . 6 ((𝑎𝑅𝑏𝑅) → 𝑎𝑅)
23 simpr 484 . . . . . 6 ((𝑎𝑅𝑏𝑅) → 𝑏𝑅)
24 ovexd 7376 . . . . . 6 ((𝑎𝑅𝑏𝑅) → ((Base‘𝑏) ↑m (Base‘𝑎)) ∈ V)
2517, 21, 22, 23, 24ovmpod 7493 . . . . 5 ((𝑎𝑅𝑏𝑅) → (𝑎(𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏) = ((Base‘𝑏) ↑m (Base‘𝑎)))
2625adantl 481 . . . 4 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (𝑎(𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏) = ((Base‘𝑏) ↑m (Base‘𝑎)))
2714, 16, 263sstr4d 3988 . . 3 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (𝑎( RngHom ↾ (𝑅 × 𝑅))𝑏) ⊆ (𝑎(𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏))
2827ralrimivva 3173 . 2 (𝜑 → ∀𝑎𝑅𝑏𝑅 (𝑎( RngHom ↾ (𝑅 × 𝑅))𝑏) ⊆ (𝑎(𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏))
29 rnghmfn 20350 . . . . 5 RngHom Fn (Rng × Rng)
3029a1i 11 . . . 4 (𝜑 → RngHom Fn (Rng × Rng))
31 rnghmsscmap.r . . . . . 6 (𝜑𝑅 = (Rng ∩ 𝑈))
32 inss1 4185 . . . . . 6 (Rng ∩ 𝑈) ⊆ Rng
3331, 32eqsstrdi 3977 . . . . 5 (𝜑𝑅 ⊆ Rng)
34 xpss12 5629 . . . . 5 ((𝑅 ⊆ Rng ∧ 𝑅 ⊆ Rng) → (𝑅 × 𝑅) ⊆ (Rng × Rng))
3533, 33, 34syl2anc 584 . . . 4 (𝜑 → (𝑅 × 𝑅) ⊆ (Rng × Rng))
36 fnssres 6600 . . . 4 (( RngHom Fn (Rng × Rng) ∧ (𝑅 × 𝑅) ⊆ (Rng × Rng)) → ( RngHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅))
3730, 35, 36syl2anc 584 . . 3 (𝜑 → ( RngHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅))
38 eqid 2730 . . . . 5 (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) = (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))
39 ovex 7374 . . . . 5 ((Base‘𝑦) ↑m (Base‘𝑥)) ∈ V
4038, 39fnmpoi 7997 . . . 4 (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) Fn (𝑅 × 𝑅)
4140a1i 11 . . 3 (𝜑 → (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) Fn (𝑅 × 𝑅))
42 incom 4157 . . . . 5 (Rng ∩ 𝑈) = (𝑈 ∩ Rng)
43 rnghmsscmap.u . . . . . 6 (𝜑𝑈𝑉)
44 inex1g 5255 . . . . . 6 (𝑈𝑉 → (𝑈 ∩ Rng) ∈ V)
4543, 44syl 17 . . . . 5 (𝜑 → (𝑈 ∩ Rng) ∈ V)
4642, 45eqeltrid 2833 . . . 4 (𝜑 → (Rng ∩ 𝑈) ∈ V)
4731, 46eqeltrd 2829 . . 3 (𝜑𝑅 ∈ V)
4837, 41, 47isssc 17719 . 2 (𝜑 → (( RngHom ↾ (𝑅 × 𝑅)) ⊆cat (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) ↔ (𝑅𝑅 ∧ ∀𝑎𝑅𝑏𝑅 (𝑎( RngHom ↾ (𝑅 × 𝑅))𝑏) ⊆ (𝑎(𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏))))
491, 28, 48mpbir2and 713 1 (𝜑 → ( RngHom ↾ (𝑅 × 𝑅)) ⊆cat (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  wral 3045  Vcvv 3434  cin 3899  wss 3900   class class class wbr 5089   × cxp 5612  cres 5616   Fn wfn 6472  wf 6473  cfv 6477  (class class class)co 7341  cmpo 7343  m cmap 8745  Basecbs 17112  cat cssc 17706  Rngcrng 20063   RngHom crnghm 20345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-map 8747  df-ixp 8817  df-ssc 17709  df-ghm 19118  df-abl 19688  df-rng 20064  df-rnghm 20347
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator