MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnghmsscmap2 Structured version   Visualization version   GIF version

Theorem rnghmsscmap2 20564
Description: The non-unital ring homomorphisms between non-unital rings (in a universe) are a subcategory subset of the mappings between base sets of non-unital rings (in the same universe). (Contributed by AV, 6-Mar-2020.)
Hypotheses
Ref Expression
rnghmsscmap.u (𝜑𝑈𝑉)
rnghmsscmap.r (𝜑𝑅 = (Rng ∩ 𝑈))
Assertion
Ref Expression
rnghmsscmap2 (𝜑 → ( RngHom ↾ (𝑅 × 𝑅)) ⊆cat (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))))
Distinct variable group:   𝑥,𝑅,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem rnghmsscmap2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssidd 3996 . 2 (𝜑𝑅𝑅)
2 eqid 2725 . . . . . . 7 (Base‘𝑎) = (Base‘𝑎)
3 eqid 2725 . . . . . . 7 (Base‘𝑏) = (Base‘𝑏)
42, 3rnghmf 20389 . . . . . 6 ( ∈ (𝑎 RngHom 𝑏) → :(Base‘𝑎)⟶(Base‘𝑏))
5 simpr 483 . . . . . . . 8 (((𝜑 ∧ (𝑎𝑅𝑏𝑅)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → :(Base‘𝑎)⟶(Base‘𝑏))
6 fvex 6904 . . . . . . . . . 10 (Base‘𝑏) ∈ V
7 fvex 6904 . . . . . . . . . 10 (Base‘𝑎) ∈ V
86, 7pm3.2i 469 . . . . . . . . 9 ((Base‘𝑏) ∈ V ∧ (Base‘𝑎) ∈ V)
9 elmapg 8854 . . . . . . . . 9 (((Base‘𝑏) ∈ V ∧ (Base‘𝑎) ∈ V) → ( ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) ↔ :(Base‘𝑎)⟶(Base‘𝑏)))
108, 9mp1i 13 . . . . . . . 8 (((𝜑 ∧ (𝑎𝑅𝑏𝑅)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → ( ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) ↔ :(Base‘𝑎)⟶(Base‘𝑏)))
115, 10mpbird 256 . . . . . . 7 (((𝜑 ∧ (𝑎𝑅𝑏𝑅)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → ∈ ((Base‘𝑏) ↑m (Base‘𝑎)))
1211ex 411 . . . . . 6 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (:(Base‘𝑎)⟶(Base‘𝑏) → ∈ ((Base‘𝑏) ↑m (Base‘𝑎))))
134, 12syl5 34 . . . . 5 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → ( ∈ (𝑎 RngHom 𝑏) → ∈ ((Base‘𝑏) ↑m (Base‘𝑎))))
1413ssrdv 3978 . . . 4 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (𝑎 RngHom 𝑏) ⊆ ((Base‘𝑏) ↑m (Base‘𝑎)))
15 ovres 7583 . . . . 5 ((𝑎𝑅𝑏𝑅) → (𝑎( RngHom ↾ (𝑅 × 𝑅))𝑏) = (𝑎 RngHom 𝑏))
1615adantl 480 . . . 4 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (𝑎( RngHom ↾ (𝑅 × 𝑅))𝑏) = (𝑎 RngHom 𝑏))
17 eqidd 2726 . . . . . 6 ((𝑎𝑅𝑏𝑅) → (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) = (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))))
18 fveq2 6891 . . . . . . . 8 (𝑦 = 𝑏 → (Base‘𝑦) = (Base‘𝑏))
19 fveq2 6891 . . . . . . . 8 (𝑥 = 𝑎 → (Base‘𝑥) = (Base‘𝑎))
2018, 19oveqan12rd 7435 . . . . . . 7 ((𝑥 = 𝑎𝑦 = 𝑏) → ((Base‘𝑦) ↑m (Base‘𝑥)) = ((Base‘𝑏) ↑m (Base‘𝑎)))
2120adantl 480 . . . . . 6 (((𝑎𝑅𝑏𝑅) ∧ (𝑥 = 𝑎𝑦 = 𝑏)) → ((Base‘𝑦) ↑m (Base‘𝑥)) = ((Base‘𝑏) ↑m (Base‘𝑎)))
22 simpl 481 . . . . . 6 ((𝑎𝑅𝑏𝑅) → 𝑎𝑅)
23 simpr 483 . . . . . 6 ((𝑎𝑅𝑏𝑅) → 𝑏𝑅)
24 ovexd 7450 . . . . . 6 ((𝑎𝑅𝑏𝑅) → ((Base‘𝑏) ↑m (Base‘𝑎)) ∈ V)
2517, 21, 22, 23, 24ovmpod 7569 . . . . 5 ((𝑎𝑅𝑏𝑅) → (𝑎(𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏) = ((Base‘𝑏) ↑m (Base‘𝑎)))
2625adantl 480 . . . 4 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (𝑎(𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏) = ((Base‘𝑏) ↑m (Base‘𝑎)))
2714, 16, 263sstr4d 4020 . . 3 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (𝑎( RngHom ↾ (𝑅 × 𝑅))𝑏) ⊆ (𝑎(𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏))
2827ralrimivva 3191 . 2 (𝜑 → ∀𝑎𝑅𝑏𝑅 (𝑎( RngHom ↾ (𝑅 × 𝑅))𝑏) ⊆ (𝑎(𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏))
29 rnghmfn 20380 . . . . 5 RngHom Fn (Rng × Rng)
3029a1i 11 . . . 4 (𝜑 → RngHom Fn (Rng × Rng))
31 rnghmsscmap.r . . . . . 6 (𝜑𝑅 = (Rng ∩ 𝑈))
32 inss1 4223 . . . . . 6 (Rng ∩ 𝑈) ⊆ Rng
3331, 32eqsstrdi 4027 . . . . 5 (𝜑𝑅 ⊆ Rng)
34 xpss12 5687 . . . . 5 ((𝑅 ⊆ Rng ∧ 𝑅 ⊆ Rng) → (𝑅 × 𝑅) ⊆ (Rng × Rng))
3533, 33, 34syl2anc 582 . . . 4 (𝜑 → (𝑅 × 𝑅) ⊆ (Rng × Rng))
36 fnssres 6672 . . . 4 (( RngHom Fn (Rng × Rng) ∧ (𝑅 × 𝑅) ⊆ (Rng × Rng)) → ( RngHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅))
3730, 35, 36syl2anc 582 . . 3 (𝜑 → ( RngHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅))
38 eqid 2725 . . . . 5 (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) = (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))
39 ovex 7448 . . . . 5 ((Base‘𝑦) ↑m (Base‘𝑥)) ∈ V
4038, 39fnmpoi 8070 . . . 4 (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) Fn (𝑅 × 𝑅)
4140a1i 11 . . 3 (𝜑 → (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) Fn (𝑅 × 𝑅))
42 incom 4195 . . . . 5 (Rng ∩ 𝑈) = (𝑈 ∩ Rng)
43 rnghmsscmap.u . . . . . 6 (𝜑𝑈𝑉)
44 inex1g 5314 . . . . . 6 (𝑈𝑉 → (𝑈 ∩ Rng) ∈ V)
4543, 44syl 17 . . . . 5 (𝜑 → (𝑈 ∩ Rng) ∈ V)
4642, 45eqeltrid 2829 . . . 4 (𝜑 → (Rng ∩ 𝑈) ∈ V)
4731, 46eqeltrd 2825 . . 3 (𝜑𝑅 ∈ V)
4837, 41, 47isssc 17800 . 2 (𝜑 → (( RngHom ↾ (𝑅 × 𝑅)) ⊆cat (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) ↔ (𝑅𝑅 ∧ ∀𝑎𝑅𝑏𝑅 (𝑎( RngHom ↾ (𝑅 × 𝑅))𝑏) ⊆ (𝑎(𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏))))
491, 28, 48mpbir2and 711 1 (𝜑 → ( RngHom ↾ (𝑅 × 𝑅)) ⊆cat (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wral 3051  Vcvv 3463  cin 3939  wss 3940   class class class wbr 5143   × cxp 5670  cres 5674   Fn wfn 6537  wf 6538  cfv 6542  (class class class)co 7415  cmpo 7417  m cmap 8841  Basecbs 17177  cat cssc 17787  Rngcrng 20094   RngHom crnghm 20375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7418  df-oprab 7419  df-mpo 7420  df-1st 7989  df-2nd 7990  df-map 8843  df-ixp 8913  df-ssc 17790  df-ghm 19170  df-abl 19740  df-rng 20095  df-rnghm 20377
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator