Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnghmsscmap2 Structured version   Visualization version   GIF version

Theorem rnghmsscmap2 46861
Description: The non-unital ring homomorphisms between non-unital rings (in a universe) are a subcategory subset of the mappings between base sets of non-unital rings (in the same universe). (Contributed by AV, 6-Mar-2020.)
Hypotheses
Ref Expression
rnghmsscmap.u (𝜑𝑈𝑉)
rnghmsscmap.r (𝜑𝑅 = (Rng ∩ 𝑈))
Assertion
Ref Expression
rnghmsscmap2 (𝜑 → ( RngHomo ↾ (𝑅 × 𝑅)) ⊆cat (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))))
Distinct variable group:   𝑥,𝑅,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem rnghmsscmap2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssidd 4005 . 2 (𝜑𝑅𝑅)
2 eqid 2732 . . . . . . 7 (Base‘𝑎) = (Base‘𝑎)
3 eqid 2732 . . . . . . 7 (Base‘𝑏) = (Base‘𝑏)
42, 3rnghmf 46687 . . . . . 6 ( ∈ (𝑎 RngHomo 𝑏) → :(Base‘𝑎)⟶(Base‘𝑏))
5 simpr 485 . . . . . . . 8 (((𝜑 ∧ (𝑎𝑅𝑏𝑅)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → :(Base‘𝑎)⟶(Base‘𝑏))
6 fvex 6904 . . . . . . . . . 10 (Base‘𝑏) ∈ V
7 fvex 6904 . . . . . . . . . 10 (Base‘𝑎) ∈ V
86, 7pm3.2i 471 . . . . . . . . 9 ((Base‘𝑏) ∈ V ∧ (Base‘𝑎) ∈ V)
9 elmapg 8832 . . . . . . . . 9 (((Base‘𝑏) ∈ V ∧ (Base‘𝑎) ∈ V) → ( ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) ↔ :(Base‘𝑎)⟶(Base‘𝑏)))
108, 9mp1i 13 . . . . . . . 8 (((𝜑 ∧ (𝑎𝑅𝑏𝑅)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → ( ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) ↔ :(Base‘𝑎)⟶(Base‘𝑏)))
115, 10mpbird 256 . . . . . . 7 (((𝜑 ∧ (𝑎𝑅𝑏𝑅)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → ∈ ((Base‘𝑏) ↑m (Base‘𝑎)))
1211ex 413 . . . . . 6 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (:(Base‘𝑎)⟶(Base‘𝑏) → ∈ ((Base‘𝑏) ↑m (Base‘𝑎))))
134, 12syl5 34 . . . . 5 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → ( ∈ (𝑎 RngHomo 𝑏) → ∈ ((Base‘𝑏) ↑m (Base‘𝑎))))
1413ssrdv 3988 . . . 4 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (𝑎 RngHomo 𝑏) ⊆ ((Base‘𝑏) ↑m (Base‘𝑎)))
15 ovres 7572 . . . . 5 ((𝑎𝑅𝑏𝑅) → (𝑎( RngHomo ↾ (𝑅 × 𝑅))𝑏) = (𝑎 RngHomo 𝑏))
1615adantl 482 . . . 4 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (𝑎( RngHomo ↾ (𝑅 × 𝑅))𝑏) = (𝑎 RngHomo 𝑏))
17 eqidd 2733 . . . . . 6 ((𝑎𝑅𝑏𝑅) → (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) = (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))))
18 fveq2 6891 . . . . . . . 8 (𝑦 = 𝑏 → (Base‘𝑦) = (Base‘𝑏))
19 fveq2 6891 . . . . . . . 8 (𝑥 = 𝑎 → (Base‘𝑥) = (Base‘𝑎))
2018, 19oveqan12rd 7428 . . . . . . 7 ((𝑥 = 𝑎𝑦 = 𝑏) → ((Base‘𝑦) ↑m (Base‘𝑥)) = ((Base‘𝑏) ↑m (Base‘𝑎)))
2120adantl 482 . . . . . 6 (((𝑎𝑅𝑏𝑅) ∧ (𝑥 = 𝑎𝑦 = 𝑏)) → ((Base‘𝑦) ↑m (Base‘𝑥)) = ((Base‘𝑏) ↑m (Base‘𝑎)))
22 simpl 483 . . . . . 6 ((𝑎𝑅𝑏𝑅) → 𝑎𝑅)
23 simpr 485 . . . . . 6 ((𝑎𝑅𝑏𝑅) → 𝑏𝑅)
24 ovexd 7443 . . . . . 6 ((𝑎𝑅𝑏𝑅) → ((Base‘𝑏) ↑m (Base‘𝑎)) ∈ V)
2517, 21, 22, 23, 24ovmpod 7559 . . . . 5 ((𝑎𝑅𝑏𝑅) → (𝑎(𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏) = ((Base‘𝑏) ↑m (Base‘𝑎)))
2625adantl 482 . . . 4 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (𝑎(𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏) = ((Base‘𝑏) ↑m (Base‘𝑎)))
2714, 16, 263sstr4d 4029 . . 3 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (𝑎( RngHomo ↾ (𝑅 × 𝑅))𝑏) ⊆ (𝑎(𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏))
2827ralrimivva 3200 . 2 (𝜑 → ∀𝑎𝑅𝑏𝑅 (𝑎( RngHomo ↾ (𝑅 × 𝑅))𝑏) ⊆ (𝑎(𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏))
29 rnghmfn 46678 . . . . 5 RngHomo Fn (Rng × Rng)
3029a1i 11 . . . 4 (𝜑 → RngHomo Fn (Rng × Rng))
31 rnghmsscmap.r . . . . . 6 (𝜑𝑅 = (Rng ∩ 𝑈))
32 inss1 4228 . . . . . 6 (Rng ∩ 𝑈) ⊆ Rng
3331, 32eqsstrdi 4036 . . . . 5 (𝜑𝑅 ⊆ Rng)
34 xpss12 5691 . . . . 5 ((𝑅 ⊆ Rng ∧ 𝑅 ⊆ Rng) → (𝑅 × 𝑅) ⊆ (Rng × Rng))
3533, 33, 34syl2anc 584 . . . 4 (𝜑 → (𝑅 × 𝑅) ⊆ (Rng × Rng))
36 fnssres 6673 . . . 4 (( RngHomo Fn (Rng × Rng) ∧ (𝑅 × 𝑅) ⊆ (Rng × Rng)) → ( RngHomo ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅))
3730, 35, 36syl2anc 584 . . 3 (𝜑 → ( RngHomo ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅))
38 eqid 2732 . . . . 5 (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) = (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))
39 ovex 7441 . . . . 5 ((Base‘𝑦) ↑m (Base‘𝑥)) ∈ V
4038, 39fnmpoi 8055 . . . 4 (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) Fn (𝑅 × 𝑅)
4140a1i 11 . . 3 (𝜑 → (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) Fn (𝑅 × 𝑅))
42 incom 4201 . . . . 5 (Rng ∩ 𝑈) = (𝑈 ∩ Rng)
43 rnghmsscmap.u . . . . . 6 (𝜑𝑈𝑉)
44 inex1g 5319 . . . . . 6 (𝑈𝑉 → (𝑈 ∩ Rng) ∈ V)
4543, 44syl 17 . . . . 5 (𝜑 → (𝑈 ∩ Rng) ∈ V)
4642, 45eqeltrid 2837 . . . 4 (𝜑 → (Rng ∩ 𝑈) ∈ V)
4731, 46eqeltrd 2833 . . 3 (𝜑𝑅 ∈ V)
4837, 41, 47isssc 17766 . 2 (𝜑 → (( RngHomo ↾ (𝑅 × 𝑅)) ⊆cat (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) ↔ (𝑅𝑅 ∧ ∀𝑎𝑅𝑏𝑅 (𝑎( RngHomo ↾ (𝑅 × 𝑅))𝑏) ⊆ (𝑎(𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏))))
491, 28, 48mpbir2and 711 1 (𝜑 → ( RngHomo ↾ (𝑅 × 𝑅)) ⊆cat (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3061  Vcvv 3474  cin 3947  wss 3948   class class class wbr 5148   × cxp 5674  cres 5678   Fn wfn 6538  wf 6539  cfv 6543  (class class class)co 7408  cmpo 7410  m cmap 8819  Basecbs 17143  cat cssc 17753  Rngcrng 46638   RngHomo crngh 46673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-1st 7974  df-2nd 7975  df-map 8821  df-ixp 8891  df-ssc 17756  df-ghm 19089  df-abl 19650  df-rng 46639  df-rnghomo 46675
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator