MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnghmsscmap2 Structured version   Visualization version   GIF version

Theorem rnghmsscmap2 20589
Description: The non-unital ring homomorphisms between non-unital rings (in a universe) are a subcategory subset of the mappings between base sets of non-unital rings (in the same universe). (Contributed by AV, 6-Mar-2020.)
Hypotheses
Ref Expression
rnghmsscmap.u (𝜑𝑈𝑉)
rnghmsscmap.r (𝜑𝑅 = (Rng ∩ 𝑈))
Assertion
Ref Expression
rnghmsscmap2 (𝜑 → ( RngHom ↾ (𝑅 × 𝑅)) ⊆cat (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))))
Distinct variable group:   𝑥,𝑅,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem rnghmsscmap2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssidd 3982 . 2 (𝜑𝑅𝑅)
2 eqid 2735 . . . . . . 7 (Base‘𝑎) = (Base‘𝑎)
3 eqid 2735 . . . . . . 7 (Base‘𝑏) = (Base‘𝑏)
42, 3rnghmf 20408 . . . . . 6 ( ∈ (𝑎 RngHom 𝑏) → :(Base‘𝑎)⟶(Base‘𝑏))
5 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝑎𝑅𝑏𝑅)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → :(Base‘𝑎)⟶(Base‘𝑏))
6 fvex 6889 . . . . . . . . . 10 (Base‘𝑏) ∈ V
7 fvex 6889 . . . . . . . . . 10 (Base‘𝑎) ∈ V
86, 7pm3.2i 470 . . . . . . . . 9 ((Base‘𝑏) ∈ V ∧ (Base‘𝑎) ∈ V)
9 elmapg 8853 . . . . . . . . 9 (((Base‘𝑏) ∈ V ∧ (Base‘𝑎) ∈ V) → ( ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) ↔ :(Base‘𝑎)⟶(Base‘𝑏)))
108, 9mp1i 13 . . . . . . . 8 (((𝜑 ∧ (𝑎𝑅𝑏𝑅)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → ( ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) ↔ :(Base‘𝑎)⟶(Base‘𝑏)))
115, 10mpbird 257 . . . . . . 7 (((𝜑 ∧ (𝑎𝑅𝑏𝑅)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → ∈ ((Base‘𝑏) ↑m (Base‘𝑎)))
1211ex 412 . . . . . 6 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (:(Base‘𝑎)⟶(Base‘𝑏) → ∈ ((Base‘𝑏) ↑m (Base‘𝑎))))
134, 12syl5 34 . . . . 5 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → ( ∈ (𝑎 RngHom 𝑏) → ∈ ((Base‘𝑏) ↑m (Base‘𝑎))))
1413ssrdv 3964 . . . 4 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (𝑎 RngHom 𝑏) ⊆ ((Base‘𝑏) ↑m (Base‘𝑎)))
15 ovres 7573 . . . . 5 ((𝑎𝑅𝑏𝑅) → (𝑎( RngHom ↾ (𝑅 × 𝑅))𝑏) = (𝑎 RngHom 𝑏))
1615adantl 481 . . . 4 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (𝑎( RngHom ↾ (𝑅 × 𝑅))𝑏) = (𝑎 RngHom 𝑏))
17 eqidd 2736 . . . . . 6 ((𝑎𝑅𝑏𝑅) → (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) = (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))))
18 fveq2 6876 . . . . . . . 8 (𝑦 = 𝑏 → (Base‘𝑦) = (Base‘𝑏))
19 fveq2 6876 . . . . . . . 8 (𝑥 = 𝑎 → (Base‘𝑥) = (Base‘𝑎))
2018, 19oveqan12rd 7425 . . . . . . 7 ((𝑥 = 𝑎𝑦 = 𝑏) → ((Base‘𝑦) ↑m (Base‘𝑥)) = ((Base‘𝑏) ↑m (Base‘𝑎)))
2120adantl 481 . . . . . 6 (((𝑎𝑅𝑏𝑅) ∧ (𝑥 = 𝑎𝑦 = 𝑏)) → ((Base‘𝑦) ↑m (Base‘𝑥)) = ((Base‘𝑏) ↑m (Base‘𝑎)))
22 simpl 482 . . . . . 6 ((𝑎𝑅𝑏𝑅) → 𝑎𝑅)
23 simpr 484 . . . . . 6 ((𝑎𝑅𝑏𝑅) → 𝑏𝑅)
24 ovexd 7440 . . . . . 6 ((𝑎𝑅𝑏𝑅) → ((Base‘𝑏) ↑m (Base‘𝑎)) ∈ V)
2517, 21, 22, 23, 24ovmpod 7559 . . . . 5 ((𝑎𝑅𝑏𝑅) → (𝑎(𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏) = ((Base‘𝑏) ↑m (Base‘𝑎)))
2625adantl 481 . . . 4 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (𝑎(𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏) = ((Base‘𝑏) ↑m (Base‘𝑎)))
2714, 16, 263sstr4d 4014 . . 3 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (𝑎( RngHom ↾ (𝑅 × 𝑅))𝑏) ⊆ (𝑎(𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏))
2827ralrimivva 3187 . 2 (𝜑 → ∀𝑎𝑅𝑏𝑅 (𝑎( RngHom ↾ (𝑅 × 𝑅))𝑏) ⊆ (𝑎(𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏))
29 rnghmfn 20399 . . . . 5 RngHom Fn (Rng × Rng)
3029a1i 11 . . . 4 (𝜑 → RngHom Fn (Rng × Rng))
31 rnghmsscmap.r . . . . . 6 (𝜑𝑅 = (Rng ∩ 𝑈))
32 inss1 4212 . . . . . 6 (Rng ∩ 𝑈) ⊆ Rng
3331, 32eqsstrdi 4003 . . . . 5 (𝜑𝑅 ⊆ Rng)
34 xpss12 5669 . . . . 5 ((𝑅 ⊆ Rng ∧ 𝑅 ⊆ Rng) → (𝑅 × 𝑅) ⊆ (Rng × Rng))
3533, 33, 34syl2anc 584 . . . 4 (𝜑 → (𝑅 × 𝑅) ⊆ (Rng × Rng))
36 fnssres 6661 . . . 4 (( RngHom Fn (Rng × Rng) ∧ (𝑅 × 𝑅) ⊆ (Rng × Rng)) → ( RngHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅))
3730, 35, 36syl2anc 584 . . 3 (𝜑 → ( RngHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅))
38 eqid 2735 . . . . 5 (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) = (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))
39 ovex 7438 . . . . 5 ((Base‘𝑦) ↑m (Base‘𝑥)) ∈ V
4038, 39fnmpoi 8069 . . . 4 (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) Fn (𝑅 × 𝑅)
4140a1i 11 . . 3 (𝜑 → (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) Fn (𝑅 × 𝑅))
42 incom 4184 . . . . 5 (Rng ∩ 𝑈) = (𝑈 ∩ Rng)
43 rnghmsscmap.u . . . . . 6 (𝜑𝑈𝑉)
44 inex1g 5289 . . . . . 6 (𝑈𝑉 → (𝑈 ∩ Rng) ∈ V)
4543, 44syl 17 . . . . 5 (𝜑 → (𝑈 ∩ Rng) ∈ V)
4642, 45eqeltrid 2838 . . . 4 (𝜑 → (Rng ∩ 𝑈) ∈ V)
4731, 46eqeltrd 2834 . . 3 (𝜑𝑅 ∈ V)
4837, 41, 47isssc 17833 . 2 (𝜑 → (( RngHom ↾ (𝑅 × 𝑅)) ⊆cat (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) ↔ (𝑅𝑅 ∧ ∀𝑎𝑅𝑏𝑅 (𝑎( RngHom ↾ (𝑅 × 𝑅))𝑏) ⊆ (𝑎(𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏))))
491, 28, 48mpbir2and 713 1 (𝜑 → ( RngHom ↾ (𝑅 × 𝑅)) ⊆cat (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459  cin 3925  wss 3926   class class class wbr 5119   × cxp 5652  cres 5656   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  cmpo 7407  m cmap 8840  Basecbs 17228  cat cssc 17820  Rngcrng 20112   RngHom crnghm 20394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-map 8842  df-ixp 8912  df-ssc 17823  df-ghm 19196  df-abl 19764  df-rng 20113  df-rnghm 20396
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator