![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngoridm | Structured version Visualization version GIF version |
Description: The unity element of a ring is an identity element for the multiplication. (Contributed by FL, 18-Apr-2010.) (New usage is discouraged.) |
Ref | Expression |
---|---|
uridm.1 | ⊢ 𝐻 = (2nd ‘𝑅) |
uridm.2 | ⊢ 𝑋 = ran (1st ‘𝑅) |
uridm2.2 | ⊢ 𝑈 = (GId‘𝐻) |
Ref | Expression |
---|---|
rngoridm | ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝐴𝐻𝑈) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uridm.1 | . . 3 ⊢ 𝐻 = (2nd ‘𝑅) | |
2 | uridm.2 | . . 3 ⊢ 𝑋 = ran (1st ‘𝑅) | |
3 | uridm2.2 | . . 3 ⊢ 𝑈 = (GId‘𝐻) | |
4 | 1, 2, 3 | rngoidmlem 37409 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) |
5 | 4 | simprd 495 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝐴𝐻𝑈) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ran crn 5679 ‘cfv 6548 (class class class)co 7420 1st c1st 7991 2nd c2nd 7992 GIdcgi 30313 RingOpscrngo 37367 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-fo 6554 df-fv 6556 df-riota 7376 df-ov 7423 df-1st 7993 df-2nd 7994 df-grpo 30316 df-gid 30317 df-ablo 30368 df-ass 37316 df-exid 37318 df-mgmOLD 37322 df-sgrOLD 37334 df-mndo 37340 df-rngo 37368 |
This theorem is referenced by: rngoueqz 37413 rngonegmn1r 37415 |
Copyright terms: Public domain | W3C validator |