Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngolidm Structured version   Visualization version   GIF version

Theorem rngolidm 35324
 Description: The unit of a ring is an identity element for the multiplication. (Contributed by FL, 18-Apr-2010.) (New usage is discouraged.)
Hypotheses
Ref Expression
uridm.1 𝐻 = (2nd𝑅)
uridm.2 𝑋 = ran (1st𝑅)
uridm.3 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
rngolidm ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑈𝐻𝐴) = 𝐴)

Proof of Theorem rngolidm
StepHypRef Expression
1 uridm.1 . . 3 𝐻 = (2nd𝑅)
2 uridm.2 . . 3 𝑋 = ran (1st𝑅)
3 uridm.3 . . 3 𝑈 = (GId‘𝐻)
41, 2, 3rngoidmlem 35323 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴))
54simpld 498 1 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑈𝐻𝐴) = 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2115  ran crn 5543  ‘cfv 6343  (class class class)co 7149  1st c1st 7682  2nd c2nd 7683  GIdcgi 28280  RingOpscrngo 35281 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-fo 6349  df-fv 6351  df-riota 7107  df-ov 7152  df-1st 7684  df-2nd 7685  df-grpo 28283  df-gid 28284  df-ablo 28335  df-ass 35230  df-exid 35232  df-mgmOLD 35236  df-sgrOLD 35248  df-mndo 35254  df-rngo 35282 This theorem is referenced by:  rngonegmn1l  35328  zerdivemp1x  35334  isdrngo2  35345  1idl  35413  smprngopr  35439  prnc  35454
 Copyright terms: Public domain W3C validator