| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngolidm | Structured version Visualization version GIF version | ||
| Description: The unity element of a ring is an identity element for the multiplication. (Contributed by FL, 18-Apr-2010.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| uridm.1 | ⊢ 𝐻 = (2nd ‘𝑅) |
| uridm.2 | ⊢ 𝑋 = ran (1st ‘𝑅) |
| uridm.3 | ⊢ 𝑈 = (GId‘𝐻) |
| Ref | Expression |
|---|---|
| rngolidm | ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑈𝐻𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uridm.1 | . . 3 ⊢ 𝐻 = (2nd ‘𝑅) | |
| 2 | uridm.2 | . . 3 ⊢ 𝑋 = ran (1st ‘𝑅) | |
| 3 | uridm.3 | . . 3 ⊢ 𝑈 = (GId‘𝐻) | |
| 4 | 1, 2, 3 | rngoidmlem 37920 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) |
| 5 | 4 | simpld 494 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑈𝐻𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ran crn 5620 ‘cfv 6482 (class class class)co 7349 1st c1st 7922 2nd c2nd 7923 GIdcgi 30434 RingOpscrngo 37878 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fo 6488 df-fv 6490 df-riota 7306 df-ov 7352 df-1st 7924 df-2nd 7925 df-grpo 30437 df-gid 30438 df-ablo 30489 df-ass 37827 df-exid 37829 df-mgmOLD 37833 df-sgrOLD 37845 df-mndo 37851 df-rngo 37879 |
| This theorem is referenced by: rngonegmn1l 37925 zerdivemp1x 37931 isdrngo2 37942 1idl 38010 smprngopr 38036 prnc 38051 |
| Copyright terms: Public domain | W3C validator |