|   | Mathbox for Jeff Madsen | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngolidm | Structured version Visualization version GIF version | ||
| Description: The unity element of a ring is an identity element for the multiplication. (Contributed by FL, 18-Apr-2010.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| uridm.1 | ⊢ 𝐻 = (2nd ‘𝑅) | 
| uridm.2 | ⊢ 𝑋 = ran (1st ‘𝑅) | 
| uridm.3 | ⊢ 𝑈 = (GId‘𝐻) | 
| Ref | Expression | 
|---|---|
| rngolidm | ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑈𝐻𝐴) = 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | uridm.1 | . . 3 ⊢ 𝐻 = (2nd ‘𝑅) | |
| 2 | uridm.2 | . . 3 ⊢ 𝑋 = ran (1st ‘𝑅) | |
| 3 | uridm.3 | . . 3 ⊢ 𝑈 = (GId‘𝐻) | |
| 4 | 1, 2, 3 | rngoidmlem 37943 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) | 
| 5 | 4 | simpld 494 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑈𝐻𝐴) = 𝐴) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ran crn 5686 ‘cfv 6561 (class class class)co 7431 1st c1st 8012 2nd c2nd 8013 GIdcgi 30509 RingOpscrngo 37901 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fo 6567 df-fv 6569 df-riota 7388 df-ov 7434 df-1st 8014 df-2nd 8015 df-grpo 30512 df-gid 30513 df-ablo 30564 df-ass 37850 df-exid 37852 df-mgmOLD 37856 df-sgrOLD 37868 df-mndo 37874 df-rngo 37902 | 
| This theorem is referenced by: rngonegmn1l 37948 zerdivemp1x 37954 isdrngo2 37965 1idl 38033 smprngopr 38059 prnc 38074 | 
| Copyright terms: Public domain | W3C validator |