Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngolidm Structured version   Visualization version   GIF version

Theorem rngolidm 37299
Description: The unity element of a ring is an identity element for the multiplication. (Contributed by FL, 18-Apr-2010.) (New usage is discouraged.)
Hypotheses
Ref Expression
uridm.1 𝐻 = (2nd𝑅)
uridm.2 𝑋 = ran (1st𝑅)
uridm.3 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
rngolidm ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑈𝐻𝐴) = 𝐴)

Proof of Theorem rngolidm
StepHypRef Expression
1 uridm.1 . . 3 𝐻 = (2nd𝑅)
2 uridm.2 . . 3 𝑋 = ran (1st𝑅)
3 uridm.3 . . 3 𝑈 = (GId‘𝐻)
41, 2, 3rngoidmlem 37298 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴))
54simpld 494 1 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑈𝐻𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  ran crn 5668  cfv 6534  (class class class)co 7402  1st c1st 7967  2nd c2nd 7968  GIdcgi 30215  RingOpscrngo 37256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-fo 6540  df-fv 6542  df-riota 7358  df-ov 7405  df-1st 7969  df-2nd 7970  df-grpo 30218  df-gid 30219  df-ablo 30270  df-ass 37205  df-exid 37207  df-mgmOLD 37211  df-sgrOLD 37223  df-mndo 37229  df-rngo 37257
This theorem is referenced by:  rngonegmn1l  37303  zerdivemp1x  37309  isdrngo2  37320  1idl  37388  smprngopr  37414  prnc  37429
  Copyright terms: Public domain W3C validator