![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngolidm | Structured version Visualization version GIF version |
Description: The unity element of a ring is an identity element for the multiplication. (Contributed by FL, 18-Apr-2010.) (New usage is discouraged.) |
Ref | Expression |
---|---|
uridm.1 | ⊢ 𝐻 = (2nd ‘𝑅) |
uridm.2 | ⊢ 𝑋 = ran (1st ‘𝑅) |
uridm.3 | ⊢ 𝑈 = (GId‘𝐻) |
Ref | Expression |
---|---|
rngolidm | ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑈𝐻𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uridm.1 | . . 3 ⊢ 𝐻 = (2nd ‘𝑅) | |
2 | uridm.2 | . . 3 ⊢ 𝑋 = ran (1st ‘𝑅) | |
3 | uridm.3 | . . 3 ⊢ 𝑈 = (GId‘𝐻) | |
4 | 1, 2, 3 | rngoidmlem 37260 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ((𝑈𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑈) = 𝐴)) |
5 | 4 | simpld 494 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑈𝐻𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ran crn 5667 ‘cfv 6533 (class class class)co 7401 1st c1st 7966 2nd c2nd 7967 GIdcgi 30167 RingOpscrngo 37218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-fo 6539 df-fv 6541 df-riota 7357 df-ov 7404 df-1st 7968 df-2nd 7969 df-grpo 30170 df-gid 30171 df-ablo 30222 df-ass 37167 df-exid 37169 df-mgmOLD 37173 df-sgrOLD 37185 df-mndo 37191 df-rngo 37219 |
This theorem is referenced by: rngonegmn1l 37265 zerdivemp1x 37271 isdrngo2 37282 1idl 37350 smprngopr 37376 prnc 37391 |
Copyright terms: Public domain | W3C validator |