![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rrxmetlem | Structured version Visualization version GIF version |
Description: Lemma for rrxmet 23577. (Contributed by Thierry Arnoux, 5-Jul-2019.) |
Ref | Expression |
---|---|
rrxmval.1 | ⊢ 𝑋 = {ℎ ∈ (ℝ ↑𝑚 𝐼) ∣ ℎ finSupp 0} |
rrxmval.d | ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) |
rrxmetlem.1 | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
rrxmetlem.2 | ⊢ (𝜑 → 𝐹 ∈ 𝑋) |
rrxmetlem.3 | ⊢ (𝜑 → 𝐺 ∈ 𝑋) |
rrxmetlem.4 | ⊢ (𝜑 → 𝐴 ⊆ 𝐼) |
rrxmetlem.5 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
rrxmetlem.6 | ⊢ (𝜑 → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐴) |
Ref | Expression |
---|---|
rrxmetlem | ⊢ (𝜑 → Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2) = Σ𝑘 ∈ 𝐴 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxmetlem.6 | . 2 ⊢ (𝜑 → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐴) | |
2 | rrxmetlem.4 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ 𝐼) | |
3 | 1, 2 | sstrd 3838 | . . . . . 6 ⊢ (𝜑 → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐼) |
4 | 3 | sselda 3828 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → 𝑘 ∈ 𝐼) |
5 | rrxmval.1 | . . . . . . . 8 ⊢ 𝑋 = {ℎ ∈ (ℝ ↑𝑚 𝐼) ∣ ℎ finSupp 0} | |
6 | rrxmetlem.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ 𝑋) | |
7 | 5, 6 | rrxf 23570 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐼⟶ℝ) |
8 | 7 | ffvelrnda 6609 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝐹‘𝑘) ∈ ℝ) |
9 | 8 | recnd 10386 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝐹‘𝑘) ∈ ℂ) |
10 | 4, 9 | syldan 587 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → (𝐹‘𝑘) ∈ ℂ) |
11 | rrxmetlem.3 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ 𝑋) | |
12 | 5, 11 | rrxf 23570 | . . . . . . 7 ⊢ (𝜑 → 𝐺:𝐼⟶ℝ) |
13 | 12 | ffvelrnda 6609 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝐺‘𝑘) ∈ ℝ) |
14 | 13 | recnd 10386 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝐺‘𝑘) ∈ ℂ) |
15 | 4, 14 | syldan 587 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → (𝐺‘𝑘) ∈ ℂ) |
16 | 10, 15 | subcld 10714 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → ((𝐹‘𝑘) − (𝐺‘𝑘)) ∈ ℂ) |
17 | 16 | sqcld 13301 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → (((𝐹‘𝑘) − (𝐺‘𝑘))↑2) ∈ ℂ) |
18 | 2 | ssdifd 3974 | . . . 4 ⊢ (𝜑 → (𝐴 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ⊆ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) |
19 | 18 | sselda 3828 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) |
20 | simpr 479 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) | |
21 | 20 | eldifad 3811 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝑘 ∈ 𝐼) |
22 | 21, 9 | syldan 587 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐹‘𝑘) ∈ ℂ) |
23 | ssun1 4004 | . . . . . . . 8 ⊢ (𝐹 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)) | |
24 | 23 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (𝐹 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))) |
25 | rrxmetlem.1 | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
26 | 0red 10361 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ ℝ) | |
27 | 7, 24, 25, 26 | suppssr 7592 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐹‘𝑘) = 0) |
28 | ssun2 4005 | . . . . . . . 8 ⊢ (𝐺 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)) | |
29 | 28 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (𝐺 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))) |
30 | 12, 29, 25, 26 | suppssr 7592 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐺‘𝑘) = 0) |
31 | 27, 30 | eqtr4d 2865 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
32 | 22, 31 | subeq0bd 10781 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹‘𝑘) − (𝐺‘𝑘)) = 0) |
33 | 32 | sq0id 13252 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (((𝐹‘𝑘) − (𝐺‘𝑘))↑2) = 0) |
34 | 19, 33 | syldan 587 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (((𝐹‘𝑘) − (𝐺‘𝑘))↑2) = 0) |
35 | rrxmetlem.5 | . 2 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
36 | 1, 17, 34, 35 | fsumss 14834 | 1 ⊢ (𝜑 → Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2) = Σ𝑘 ∈ 𝐴 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 {crab 3122 ∖ cdif 3796 ∪ cun 3797 ⊆ wss 3799 class class class wbr 4874 ‘cfv 6124 (class class class)co 6906 supp csupp 7560 ↑𝑚 cmap 8123 Fincfn 8223 finSupp cfsupp 8545 ℂcc 10251 ℝcr 10252 0cc0 10253 − cmin 10586 2c2 11407 ↑cexp 13155 Σcsu 14794 distcds 16315 ℝ^crrx 23552 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-rep 4995 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 ax-inf2 8816 ax-cnex 10309 ax-resscn 10310 ax-1cn 10311 ax-icn 10312 ax-addcl 10313 ax-addrcl 10314 ax-mulcl 10315 ax-mulrcl 10316 ax-mulcom 10317 ax-addass 10318 ax-mulass 10319 ax-distr 10320 ax-i2m1 10321 ax-1ne0 10322 ax-1rid 10323 ax-rnegex 10324 ax-rrecex 10325 ax-cnre 10326 ax-pre-lttri 10327 ax-pre-lttrn 10328 ax-pre-ltadd 10329 ax-pre-mulgt0 10330 ax-pre-sup 10331 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-fal 1672 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-nel 3104 df-ral 3123 df-rex 3124 df-reu 3125 df-rmo 3126 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4660 df-int 4699 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-se 5303 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-ord 5967 df-on 5968 df-lim 5969 df-suc 5970 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-isom 6133 df-riota 6867 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-om 7328 df-1st 7429 df-2nd 7430 df-supp 7561 df-wrecs 7673 df-recs 7735 df-rdg 7773 df-1o 7827 df-oadd 7831 df-er 8010 df-map 8125 df-en 8224 df-dom 8225 df-sdom 8226 df-fin 8227 df-sup 8618 df-oi 8685 df-card 9079 df-pnf 10394 df-mnf 10395 df-xr 10396 df-ltxr 10397 df-le 10398 df-sub 10588 df-neg 10589 df-div 11011 df-nn 11352 df-2 11415 df-3 11416 df-n0 11620 df-z 11706 df-uz 11970 df-rp 12114 df-fz 12621 df-fzo 12762 df-seq 13097 df-exp 13156 df-hash 13412 df-cj 14217 df-re 14218 df-im 14219 df-sqrt 14353 df-abs 14354 df-clim 14597 df-sum 14795 |
This theorem is referenced by: rrxmet 23577 |
Copyright terms: Public domain | W3C validator |