MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxmetlem Structured version   Visualization version   GIF version

Theorem rrxmetlem 23576
Description: Lemma for rrxmet 23577. (Contributed by Thierry Arnoux, 5-Jul-2019.)
Hypotheses
Ref Expression
rrxmval.1 𝑋 = { ∈ (ℝ ↑𝑚 𝐼) ∣ finSupp 0}
rrxmval.d 𝐷 = (dist‘(ℝ^‘𝐼))
rrxmetlem.1 (𝜑𝐼𝑉)
rrxmetlem.2 (𝜑𝐹𝑋)
rrxmetlem.3 (𝜑𝐺𝑋)
rrxmetlem.4 (𝜑𝐴𝐼)
rrxmetlem.5 (𝜑𝐴 ∈ Fin)
rrxmetlem.6 (𝜑 → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐴)
Assertion
Ref Expression
rrxmetlem (𝜑 → Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2) = Σ𝑘𝐴 (((𝐹𝑘) − (𝐺𝑘))↑2))
Distinct variable groups:   𝐴,𝑘   ,𝐹,𝑘   ,𝐺,𝑘   ,𝐼,𝑘   ,𝑉,𝑘   𝑘,𝑋   𝜑,𝑘
Allowed substitution hints:   𝜑()   𝐴()   𝐷(,𝑘)   𝑋()

Proof of Theorem rrxmetlem
StepHypRef Expression
1 rrxmetlem.6 . 2 (𝜑 → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐴)
2 rrxmetlem.4 . . . . . . 7 (𝜑𝐴𝐼)
31, 2sstrd 3838 . . . . . 6 (𝜑 → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐼)
43sselda 3828 . . . . 5 ((𝜑𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → 𝑘𝐼)
5 rrxmval.1 . . . . . . . 8 𝑋 = { ∈ (ℝ ↑𝑚 𝐼) ∣ finSupp 0}
6 rrxmetlem.2 . . . . . . . 8 (𝜑𝐹𝑋)
75, 6rrxf 23570 . . . . . . 7 (𝜑𝐹:𝐼⟶ℝ)
87ffvelrnda 6609 . . . . . 6 ((𝜑𝑘𝐼) → (𝐹𝑘) ∈ ℝ)
98recnd 10386 . . . . 5 ((𝜑𝑘𝐼) → (𝐹𝑘) ∈ ℂ)
104, 9syldan 587 . . . 4 ((𝜑𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → (𝐹𝑘) ∈ ℂ)
11 rrxmetlem.3 . . . . . . . 8 (𝜑𝐺𝑋)
125, 11rrxf 23570 . . . . . . 7 (𝜑𝐺:𝐼⟶ℝ)
1312ffvelrnda 6609 . . . . . 6 ((𝜑𝑘𝐼) → (𝐺𝑘) ∈ ℝ)
1413recnd 10386 . . . . 5 ((𝜑𝑘𝐼) → (𝐺𝑘) ∈ ℂ)
154, 14syldan 587 . . . 4 ((𝜑𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → (𝐺𝑘) ∈ ℂ)
1610, 15subcld 10714 . . 3 ((𝜑𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → ((𝐹𝑘) − (𝐺𝑘)) ∈ ℂ)
1716sqcld 13301 . 2 ((𝜑𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℂ)
182ssdifd 3974 . . . 4 (𝜑 → (𝐴 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ⊆ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0))))
1918sselda 3828 . . 3 ((𝜑𝑘 ∈ (𝐴 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0))))
20 simpr 479 . . . . . . 7 ((𝜑𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0))))
2120eldifad 3811 . . . . . 6 ((𝜑𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝑘𝐼)
2221, 9syldan 587 . . . . 5 ((𝜑𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐹𝑘) ∈ ℂ)
23 ssun1 4004 . . . . . . . 8 (𝐹 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))
2423a1i 11 . . . . . . 7 (𝜑 → (𝐹 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
25 rrxmetlem.1 . . . . . . 7 (𝜑𝐼𝑉)
26 0red 10361 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
277, 24, 25, 26suppssr 7592 . . . . . 6 ((𝜑𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐹𝑘) = 0)
28 ssun2 4005 . . . . . . . 8 (𝐺 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))
2928a1i 11 . . . . . . 7 (𝜑 → (𝐺 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
3012, 29, 25, 26suppssr 7592 . . . . . 6 ((𝜑𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐺𝑘) = 0)
3127, 30eqtr4d 2865 . . . . 5 ((𝜑𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐹𝑘) = (𝐺𝑘))
3222, 31subeq0bd 10781 . . . 4 ((𝜑𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹𝑘) − (𝐺𝑘)) = 0)
3332sq0id 13252 . . 3 ((𝜑𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (((𝐹𝑘) − (𝐺𝑘))↑2) = 0)
3419, 33syldan 587 . 2 ((𝜑𝑘 ∈ (𝐴 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (((𝐹𝑘) − (𝐺𝑘))↑2) = 0)
35 rrxmetlem.5 . 2 (𝜑𝐴 ∈ Fin)
361, 17, 34, 35fsumss 14834 1 (𝜑 → Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2) = Σ𝑘𝐴 (((𝐹𝑘) − (𝐺𝑘))↑2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1658  wcel 2166  {crab 3122  cdif 3796  cun 3797  wss 3799   class class class wbr 4874  cfv 6124  (class class class)co 6906   supp csupp 7560  𝑚 cmap 8123  Fincfn 8223   finSupp cfsupp 8545  cc 10251  cr 10252  0cc0 10253  cmin 10586  2c2 11407  cexp 13155  Σcsu 14794  distcds 16315  ℝ^crrx 23552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-inf2 8816  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330  ax-pre-sup 10331
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rmo 3126  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-int 4699  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-se 5303  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-isom 6133  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-om 7328  df-1st 7429  df-2nd 7430  df-supp 7561  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-1o 7827  df-oadd 7831  df-er 8010  df-map 8125  df-en 8224  df-dom 8225  df-sdom 8226  df-fin 8227  df-sup 8618  df-oi 8685  df-card 9079  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-div 11011  df-nn 11352  df-2 11415  df-3 11416  df-n0 11620  df-z 11706  df-uz 11970  df-rp 12114  df-fz 12621  df-fzo 12762  df-seq 13097  df-exp 13156  df-hash 13412  df-cj 14217  df-re 14218  df-im 14219  df-sqrt 14353  df-abs 14354  df-clim 14597  df-sum 14795
This theorem is referenced by:  rrxmet  23577
  Copyright terms: Public domain W3C validator