MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxmetlem Structured version   Visualization version   GIF version

Theorem rrxmetlem 24011
Description: Lemma for rrxmet 24012. (Contributed by Thierry Arnoux, 5-Jul-2019.)
Hypotheses
Ref Expression
rrxmval.1 𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
rrxmval.d 𝐷 = (dist‘(ℝ^‘𝐼))
rrxmetlem.1 (𝜑𝐼𝑉)
rrxmetlem.2 (𝜑𝐹𝑋)
rrxmetlem.3 (𝜑𝐺𝑋)
rrxmetlem.4 (𝜑𝐴𝐼)
rrxmetlem.5 (𝜑𝐴 ∈ Fin)
rrxmetlem.6 (𝜑 → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐴)
Assertion
Ref Expression
rrxmetlem (𝜑 → Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2) = Σ𝑘𝐴 (((𝐹𝑘) − (𝐺𝑘))↑2))
Distinct variable groups:   𝐴,𝑘   ,𝐹,𝑘   ,𝐺,𝑘   ,𝐼,𝑘   ,𝑉,𝑘   𝑘,𝑋   𝜑,𝑘
Allowed substitution hints:   𝜑()   𝐴()   𝐷(,𝑘)   𝑋()

Proof of Theorem rrxmetlem
StepHypRef Expression
1 rrxmetlem.6 . 2 (𝜑 → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐴)
2 rrxmetlem.4 . . . . . . 7 (𝜑𝐴𝐼)
31, 2sstrd 3925 . . . . . 6 (𝜑 → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐼)
43sselda 3915 . . . . 5 ((𝜑𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → 𝑘𝐼)
5 rrxmval.1 . . . . . . . 8 𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
6 rrxmetlem.2 . . . . . . . 8 (𝜑𝐹𝑋)
75, 6rrxf 24005 . . . . . . 7 (𝜑𝐹:𝐼⟶ℝ)
87ffvelrnda 6828 . . . . . 6 ((𝜑𝑘𝐼) → (𝐹𝑘) ∈ ℝ)
98recnd 10658 . . . . 5 ((𝜑𝑘𝐼) → (𝐹𝑘) ∈ ℂ)
104, 9syldan 594 . . . 4 ((𝜑𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → (𝐹𝑘) ∈ ℂ)
11 rrxmetlem.3 . . . . . . . 8 (𝜑𝐺𝑋)
125, 11rrxf 24005 . . . . . . 7 (𝜑𝐺:𝐼⟶ℝ)
1312ffvelrnda 6828 . . . . . 6 ((𝜑𝑘𝐼) → (𝐺𝑘) ∈ ℝ)
1413recnd 10658 . . . . 5 ((𝜑𝑘𝐼) → (𝐺𝑘) ∈ ℂ)
154, 14syldan 594 . . . 4 ((𝜑𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → (𝐺𝑘) ∈ ℂ)
1610, 15subcld 10986 . . 3 ((𝜑𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → ((𝐹𝑘) − (𝐺𝑘)) ∈ ℂ)
1716sqcld 13504 . 2 ((𝜑𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℂ)
182ssdifd 4068 . . . 4 (𝜑 → (𝐴 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ⊆ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0))))
1918sselda 3915 . . 3 ((𝜑𝑘 ∈ (𝐴 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0))))
20 simpr 488 . . . . . . 7 ((𝜑𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0))))
2120eldifad 3893 . . . . . 6 ((𝜑𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝑘𝐼)
2221, 9syldan 594 . . . . 5 ((𝜑𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐹𝑘) ∈ ℂ)
23 ssun1 4099 . . . . . . . 8 (𝐹 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))
2423a1i 11 . . . . . . 7 (𝜑 → (𝐹 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
25 rrxmetlem.1 . . . . . . 7 (𝜑𝐼𝑉)
26 0red 10633 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
277, 24, 25, 26suppssr 7844 . . . . . 6 ((𝜑𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐹𝑘) = 0)
28 ssun2 4100 . . . . . . . 8 (𝐺 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))
2928a1i 11 . . . . . . 7 (𝜑 → (𝐺 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
3012, 29, 25, 26suppssr 7844 . . . . . 6 ((𝜑𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐺𝑘) = 0)
3127, 30eqtr4d 2836 . . . . 5 ((𝜑𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐹𝑘) = (𝐺𝑘))
3222, 31subeq0bd 11055 . . . 4 ((𝜑𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹𝑘) − (𝐺𝑘)) = 0)
3332sq0id 13553 . . 3 ((𝜑𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (((𝐹𝑘) − (𝐺𝑘))↑2) = 0)
3419, 33syldan 594 . 2 ((𝜑𝑘 ∈ (𝐴 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (((𝐹𝑘) − (𝐺𝑘))↑2) = 0)
35 rrxmetlem.5 . 2 (𝜑𝐴 ∈ Fin)
361, 17, 34, 35fsumss 15074 1 (𝜑 → Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2) = Σ𝑘𝐴 (((𝐹𝑘) − (𝐺𝑘))↑2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  {crab 3110  cdif 3878  cun 3879  wss 3881   class class class wbr 5030  cfv 6324  (class class class)co 7135   supp csupp 7813  m cmap 8389  Fincfn 8492   finSupp cfsupp 8817  cc 10524  cr 10525  0cc0 10526  cmin 10859  2c2 11680  cexp 13425  Σcsu 15034  distcds 16566  ℝ^crrx 23987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035
This theorem is referenced by:  rrxmet  24012
  Copyright terms: Public domain W3C validator