| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rrxmetlem | Structured version Visualization version GIF version | ||
| Description: Lemma for rrxmet 25315. (Contributed by Thierry Arnoux, 5-Jul-2019.) |
| Ref | Expression |
|---|---|
| rrxmval.1 | ⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} |
| rrxmval.d | ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) |
| rrxmetlem.1 | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| rrxmetlem.2 | ⊢ (𝜑 → 𝐹 ∈ 𝑋) |
| rrxmetlem.3 | ⊢ (𝜑 → 𝐺 ∈ 𝑋) |
| rrxmetlem.4 | ⊢ (𝜑 → 𝐴 ⊆ 𝐼) |
| rrxmetlem.5 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| rrxmetlem.6 | ⊢ (𝜑 → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| rrxmetlem | ⊢ (𝜑 → Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2) = Σ𝑘 ∈ 𝐴 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxmetlem.6 | . 2 ⊢ (𝜑 → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐴) | |
| 2 | rrxmetlem.4 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ 𝐼) | |
| 3 | 1, 2 | sstrd 3960 | . . . . . 6 ⊢ (𝜑 → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐼) |
| 4 | 3 | sselda 3949 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → 𝑘 ∈ 𝐼) |
| 5 | rrxmval.1 | . . . . . . . 8 ⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} | |
| 6 | rrxmetlem.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ 𝑋) | |
| 7 | 5, 6 | rrxf 25308 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐼⟶ℝ) |
| 8 | 7 | ffvelcdmda 7059 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝐹‘𝑘) ∈ ℝ) |
| 9 | 8 | recnd 11209 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝐹‘𝑘) ∈ ℂ) |
| 10 | 4, 9 | syldan 591 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → (𝐹‘𝑘) ∈ ℂ) |
| 11 | rrxmetlem.3 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ 𝑋) | |
| 12 | 5, 11 | rrxf 25308 | . . . . . . 7 ⊢ (𝜑 → 𝐺:𝐼⟶ℝ) |
| 13 | 12 | ffvelcdmda 7059 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝐺‘𝑘) ∈ ℝ) |
| 14 | 13 | recnd 11209 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝐺‘𝑘) ∈ ℂ) |
| 15 | 4, 14 | syldan 591 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → (𝐺‘𝑘) ∈ ℂ) |
| 16 | 10, 15 | subcld 11540 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → ((𝐹‘𝑘) − (𝐺‘𝑘)) ∈ ℂ) |
| 17 | 16 | sqcld 14116 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → (((𝐹‘𝑘) − (𝐺‘𝑘))↑2) ∈ ℂ) |
| 18 | 2 | ssdifd 4111 | . . . 4 ⊢ (𝜑 → (𝐴 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ⊆ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) |
| 19 | 18 | sselda 3949 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) |
| 20 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) | |
| 21 | 20 | eldifad 3929 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝑘 ∈ 𝐼) |
| 22 | 21, 9 | syldan 591 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐹‘𝑘) ∈ ℂ) |
| 23 | ssun1 4144 | . . . . . . . 8 ⊢ (𝐹 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)) | |
| 24 | 23 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (𝐹 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))) |
| 25 | rrxmetlem.1 | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 26 | 0red 11184 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ ℝ) | |
| 27 | 7, 24, 25, 26 | suppssr 8177 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐹‘𝑘) = 0) |
| 28 | ssun2 4145 | . . . . . . . 8 ⊢ (𝐺 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)) | |
| 29 | 28 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (𝐺 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))) |
| 30 | 12, 29, 25, 26 | suppssr 8177 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐺‘𝑘) = 0) |
| 31 | 27, 30 | eqtr4d 2768 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
| 32 | 22, 31 | subeq0bd 11611 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹‘𝑘) − (𝐺‘𝑘)) = 0) |
| 33 | 32 | sq0id 14166 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (((𝐹‘𝑘) − (𝐺‘𝑘))↑2) = 0) |
| 34 | 19, 33 | syldan 591 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (((𝐹‘𝑘) − (𝐺‘𝑘))↑2) = 0) |
| 35 | rrxmetlem.5 | . 2 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 36 | 1, 17, 34, 35 | fsumss 15698 | 1 ⊢ (𝜑 → Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2) = Σ𝑘 ∈ 𝐴 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3408 ∖ cdif 3914 ∪ cun 3915 ⊆ wss 3917 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 supp csupp 8142 ↑m cmap 8802 Fincfn 8921 finSupp cfsupp 9319 ℂcc 11073 ℝcr 11074 0cc0 11075 − cmin 11412 2c2 12248 ↑cexp 14033 Σcsu 15659 distcds 17236 ℝ^crrx 25290 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-fz 13476 df-fzo 13623 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-sum 15660 |
| This theorem is referenced by: rrxmet 25315 |
| Copyright terms: Public domain | W3C validator |