MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxmetlem Structured version   Visualization version   GIF version

Theorem rrxmetlem 25441
Description: Lemma for rrxmet 25442. (Contributed by Thierry Arnoux, 5-Jul-2019.)
Hypotheses
Ref Expression
rrxmval.1 𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
rrxmval.d 𝐷 = (dist‘(ℝ^‘𝐼))
rrxmetlem.1 (𝜑𝐼𝑉)
rrxmetlem.2 (𝜑𝐹𝑋)
rrxmetlem.3 (𝜑𝐺𝑋)
rrxmetlem.4 (𝜑𝐴𝐼)
rrxmetlem.5 (𝜑𝐴 ∈ Fin)
rrxmetlem.6 (𝜑 → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐴)
Assertion
Ref Expression
rrxmetlem (𝜑 → Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2) = Σ𝑘𝐴 (((𝐹𝑘) − (𝐺𝑘))↑2))
Distinct variable groups:   𝐴,𝑘   ,𝐹,𝑘   ,𝐺,𝑘   ,𝐼,𝑘   ,𝑉,𝑘   𝑘,𝑋   𝜑,𝑘
Allowed substitution hints:   𝜑()   𝐴()   𝐷(,𝑘)   𝑋()

Proof of Theorem rrxmetlem
StepHypRef Expression
1 rrxmetlem.6 . 2 (𝜑 → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐴)
2 rrxmetlem.4 . . . . . . 7 (𝜑𝐴𝐼)
31, 2sstrd 3994 . . . . . 6 (𝜑 → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐼)
43sselda 3983 . . . . 5 ((𝜑𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → 𝑘𝐼)
5 rrxmval.1 . . . . . . . 8 𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
6 rrxmetlem.2 . . . . . . . 8 (𝜑𝐹𝑋)
75, 6rrxf 25435 . . . . . . 7 (𝜑𝐹:𝐼⟶ℝ)
87ffvelcdmda 7104 . . . . . 6 ((𝜑𝑘𝐼) → (𝐹𝑘) ∈ ℝ)
98recnd 11289 . . . . 5 ((𝜑𝑘𝐼) → (𝐹𝑘) ∈ ℂ)
104, 9syldan 591 . . . 4 ((𝜑𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → (𝐹𝑘) ∈ ℂ)
11 rrxmetlem.3 . . . . . . . 8 (𝜑𝐺𝑋)
125, 11rrxf 25435 . . . . . . 7 (𝜑𝐺:𝐼⟶ℝ)
1312ffvelcdmda 7104 . . . . . 6 ((𝜑𝑘𝐼) → (𝐺𝑘) ∈ ℝ)
1413recnd 11289 . . . . 5 ((𝜑𝑘𝐼) → (𝐺𝑘) ∈ ℂ)
154, 14syldan 591 . . . 4 ((𝜑𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → (𝐺𝑘) ∈ ℂ)
1610, 15subcld 11620 . . 3 ((𝜑𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → ((𝐹𝑘) − (𝐺𝑘)) ∈ ℂ)
1716sqcld 14184 . 2 ((𝜑𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℂ)
182ssdifd 4145 . . . 4 (𝜑 → (𝐴 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ⊆ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0))))
1918sselda 3983 . . 3 ((𝜑𝑘 ∈ (𝐴 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0))))
20 simpr 484 . . . . . . 7 ((𝜑𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0))))
2120eldifad 3963 . . . . . 6 ((𝜑𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝑘𝐼)
2221, 9syldan 591 . . . . 5 ((𝜑𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐹𝑘) ∈ ℂ)
23 ssun1 4178 . . . . . . . 8 (𝐹 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))
2423a1i 11 . . . . . . 7 (𝜑 → (𝐹 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
25 rrxmetlem.1 . . . . . . 7 (𝜑𝐼𝑉)
26 0red 11264 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
277, 24, 25, 26suppssr 8220 . . . . . 6 ((𝜑𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐹𝑘) = 0)
28 ssun2 4179 . . . . . . . 8 (𝐺 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))
2928a1i 11 . . . . . . 7 (𝜑 → (𝐺 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
3012, 29, 25, 26suppssr 8220 . . . . . 6 ((𝜑𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐺𝑘) = 0)
3127, 30eqtr4d 2780 . . . . 5 ((𝜑𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐹𝑘) = (𝐺𝑘))
3222, 31subeq0bd 11689 . . . 4 ((𝜑𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹𝑘) − (𝐺𝑘)) = 0)
3332sq0id 14233 . . 3 ((𝜑𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (((𝐹𝑘) − (𝐺𝑘))↑2) = 0)
3419, 33syldan 591 . 2 ((𝜑𝑘 ∈ (𝐴 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (((𝐹𝑘) − (𝐺𝑘))↑2) = 0)
35 rrxmetlem.5 . 2 (𝜑𝐴 ∈ Fin)
361, 17, 34, 35fsumss 15761 1 (𝜑 → Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2) = Σ𝑘𝐴 (((𝐹𝑘) − (𝐺𝑘))↑2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {crab 3436  cdif 3948  cun 3949  wss 3951   class class class wbr 5143  cfv 6561  (class class class)co 7431   supp csupp 8185  m cmap 8866  Fincfn 8985   finSupp cfsupp 9401  cc 11153  cr 11154  0cc0 11155  cmin 11492  2c2 12321  cexp 14102  Σcsu 15722  distcds 17306  ℝ^crrx 25417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723
This theorem is referenced by:  rrxmet  25442
  Copyright terms: Public domain W3C validator