| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rrxmetlem | Structured version Visualization version GIF version | ||
| Description: Lemma for rrxmet 25365. (Contributed by Thierry Arnoux, 5-Jul-2019.) |
| Ref | Expression |
|---|---|
| rrxmval.1 | ⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} |
| rrxmval.d | ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) |
| rrxmetlem.1 | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| rrxmetlem.2 | ⊢ (𝜑 → 𝐹 ∈ 𝑋) |
| rrxmetlem.3 | ⊢ (𝜑 → 𝐺 ∈ 𝑋) |
| rrxmetlem.4 | ⊢ (𝜑 → 𝐴 ⊆ 𝐼) |
| rrxmetlem.5 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| rrxmetlem.6 | ⊢ (𝜑 → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| rrxmetlem | ⊢ (𝜑 → Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2) = Σ𝑘 ∈ 𝐴 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxmetlem.6 | . 2 ⊢ (𝜑 → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐴) | |
| 2 | rrxmetlem.4 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ 𝐼) | |
| 3 | 1, 2 | sstrd 3974 | . . . . . 6 ⊢ (𝜑 → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐼) |
| 4 | 3 | sselda 3963 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → 𝑘 ∈ 𝐼) |
| 5 | rrxmval.1 | . . . . . . . 8 ⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} | |
| 6 | rrxmetlem.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ 𝑋) | |
| 7 | 5, 6 | rrxf 25358 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐼⟶ℝ) |
| 8 | 7 | ffvelcdmda 7079 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝐹‘𝑘) ∈ ℝ) |
| 9 | 8 | recnd 11268 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝐹‘𝑘) ∈ ℂ) |
| 10 | 4, 9 | syldan 591 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → (𝐹‘𝑘) ∈ ℂ) |
| 11 | rrxmetlem.3 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ 𝑋) | |
| 12 | 5, 11 | rrxf 25358 | . . . . . . 7 ⊢ (𝜑 → 𝐺:𝐼⟶ℝ) |
| 13 | 12 | ffvelcdmda 7079 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝐺‘𝑘) ∈ ℝ) |
| 14 | 13 | recnd 11268 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝐺‘𝑘) ∈ ℂ) |
| 15 | 4, 14 | syldan 591 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → (𝐺‘𝑘) ∈ ℂ) |
| 16 | 10, 15 | subcld 11599 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → ((𝐹‘𝑘) − (𝐺‘𝑘)) ∈ ℂ) |
| 17 | 16 | sqcld 14167 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → (((𝐹‘𝑘) − (𝐺‘𝑘))↑2) ∈ ℂ) |
| 18 | 2 | ssdifd 4125 | . . . 4 ⊢ (𝜑 → (𝐴 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ⊆ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) |
| 19 | 18 | sselda 3963 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) |
| 20 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) | |
| 21 | 20 | eldifad 3943 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝑘 ∈ 𝐼) |
| 22 | 21, 9 | syldan 591 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐹‘𝑘) ∈ ℂ) |
| 23 | ssun1 4158 | . . . . . . . 8 ⊢ (𝐹 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)) | |
| 24 | 23 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (𝐹 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))) |
| 25 | rrxmetlem.1 | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 26 | 0red 11243 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ ℝ) | |
| 27 | 7, 24, 25, 26 | suppssr 8199 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐹‘𝑘) = 0) |
| 28 | ssun2 4159 | . . . . . . . 8 ⊢ (𝐺 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)) | |
| 29 | 28 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (𝐺 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))) |
| 30 | 12, 29, 25, 26 | suppssr 8199 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐺‘𝑘) = 0) |
| 31 | 27, 30 | eqtr4d 2774 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
| 32 | 22, 31 | subeq0bd 11668 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹‘𝑘) − (𝐺‘𝑘)) = 0) |
| 33 | 32 | sq0id 14217 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (((𝐹‘𝑘) − (𝐺‘𝑘))↑2) = 0) |
| 34 | 19, 33 | syldan 591 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (((𝐹‘𝑘) − (𝐺‘𝑘))↑2) = 0) |
| 35 | rrxmetlem.5 | . 2 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 36 | 1, 17, 34, 35 | fsumss 15746 | 1 ⊢ (𝜑 → Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2) = Σ𝑘 ∈ 𝐴 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3420 ∖ cdif 3928 ∪ cun 3929 ⊆ wss 3931 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 supp csupp 8164 ↑m cmap 8845 Fincfn 8964 finSupp cfsupp 9378 ℂcc 11132 ℝcr 11133 0cc0 11134 − cmin 11471 2c2 12300 ↑cexp 14084 Σcsu 15707 distcds 17285 ℝ^crrx 25340 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9459 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-fz 13530 df-fzo 13677 df-seq 14025 df-exp 14085 df-hash 14354 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-clim 15509 df-sum 15708 |
| This theorem is referenced by: rrxmet 25365 |
| Copyright terms: Public domain | W3C validator |