MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxmetlem Structured version   Visualization version   GIF version

Theorem rrxmetlem 24009
Description: Lemma for rrxmet 24010. (Contributed by Thierry Arnoux, 5-Jul-2019.)
Hypotheses
Ref Expression
rrxmval.1 𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
rrxmval.d 𝐷 = (dist‘(ℝ^‘𝐼))
rrxmetlem.1 (𝜑𝐼𝑉)
rrxmetlem.2 (𝜑𝐹𝑋)
rrxmetlem.3 (𝜑𝐺𝑋)
rrxmetlem.4 (𝜑𝐴𝐼)
rrxmetlem.5 (𝜑𝐴 ∈ Fin)
rrxmetlem.6 (𝜑 → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐴)
Assertion
Ref Expression
rrxmetlem (𝜑 → Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2) = Σ𝑘𝐴 (((𝐹𝑘) − (𝐺𝑘))↑2))
Distinct variable groups:   𝐴,𝑘   ,𝐹,𝑘   ,𝐺,𝑘   ,𝐼,𝑘   ,𝑉,𝑘   𝑘,𝑋   𝜑,𝑘
Allowed substitution hints:   𝜑()   𝐴()   𝐷(,𝑘)   𝑋()

Proof of Theorem rrxmetlem
StepHypRef Expression
1 rrxmetlem.6 . 2 (𝜑 → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐴)
2 rrxmetlem.4 . . . . . . 7 (𝜑𝐴𝐼)
31, 2sstrd 3976 . . . . . 6 (𝜑 → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐼)
43sselda 3966 . . . . 5 ((𝜑𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → 𝑘𝐼)
5 rrxmval.1 . . . . . . . 8 𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
6 rrxmetlem.2 . . . . . . . 8 (𝜑𝐹𝑋)
75, 6rrxf 24003 . . . . . . 7 (𝜑𝐹:𝐼⟶ℝ)
87ffvelrnda 6850 . . . . . 6 ((𝜑𝑘𝐼) → (𝐹𝑘) ∈ ℝ)
98recnd 10668 . . . . 5 ((𝜑𝑘𝐼) → (𝐹𝑘) ∈ ℂ)
104, 9syldan 593 . . . 4 ((𝜑𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → (𝐹𝑘) ∈ ℂ)
11 rrxmetlem.3 . . . . . . . 8 (𝜑𝐺𝑋)
125, 11rrxf 24003 . . . . . . 7 (𝜑𝐺:𝐼⟶ℝ)
1312ffvelrnda 6850 . . . . . 6 ((𝜑𝑘𝐼) → (𝐺𝑘) ∈ ℝ)
1413recnd 10668 . . . . 5 ((𝜑𝑘𝐼) → (𝐺𝑘) ∈ ℂ)
154, 14syldan 593 . . . 4 ((𝜑𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → (𝐺𝑘) ∈ ℂ)
1610, 15subcld 10996 . . 3 ((𝜑𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → ((𝐹𝑘) − (𝐺𝑘)) ∈ ℂ)
1716sqcld 13507 . 2 ((𝜑𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℂ)
182ssdifd 4116 . . . 4 (𝜑 → (𝐴 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ⊆ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0))))
1918sselda 3966 . . 3 ((𝜑𝑘 ∈ (𝐴 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0))))
20 simpr 487 . . . . . . 7 ((𝜑𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0))))
2120eldifad 3947 . . . . . 6 ((𝜑𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝑘𝐼)
2221, 9syldan 593 . . . . 5 ((𝜑𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐹𝑘) ∈ ℂ)
23 ssun1 4147 . . . . . . . 8 (𝐹 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))
2423a1i 11 . . . . . . 7 (𝜑 → (𝐹 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
25 rrxmetlem.1 . . . . . . 7 (𝜑𝐼𝑉)
26 0red 10643 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
277, 24, 25, 26suppssr 7860 . . . . . 6 ((𝜑𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐹𝑘) = 0)
28 ssun2 4148 . . . . . . . 8 (𝐺 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))
2928a1i 11 . . . . . . 7 (𝜑 → (𝐺 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
3012, 29, 25, 26suppssr 7860 . . . . . 6 ((𝜑𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐺𝑘) = 0)
3127, 30eqtr4d 2859 . . . . 5 ((𝜑𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐹𝑘) = (𝐺𝑘))
3222, 31subeq0bd 11065 . . . 4 ((𝜑𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹𝑘) − (𝐺𝑘)) = 0)
3332sq0id 13556 . . 3 ((𝜑𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (((𝐹𝑘) − (𝐺𝑘))↑2) = 0)
3419, 33syldan 593 . 2 ((𝜑𝑘 ∈ (𝐴 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (((𝐹𝑘) − (𝐺𝑘))↑2) = 0)
35 rrxmetlem.5 . 2 (𝜑𝐴 ∈ Fin)
361, 17, 34, 35fsumss 15081 1 (𝜑 → Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2) = Σ𝑘𝐴 (((𝐹𝑘) − (𝐺𝑘))↑2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  {crab 3142  cdif 3932  cun 3933  wss 3935   class class class wbr 5065  cfv 6354  (class class class)co 7155   supp csupp 7829  m cmap 8405  Fincfn 8508   finSupp cfsupp 8832  cc 10534  cr 10535  0cc0 10536  cmin 10869  2c2 11691  cexp 13428  Σcsu 15041  distcds 16573  ℝ^crrx 23985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-supp 7830  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-sup 8905  df-oi 8973  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-fz 12892  df-fzo 13033  df-seq 13369  df-exp 13429  df-hash 13690  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-clim 14844  df-sum 15042
This theorem is referenced by:  rrxmet  24010
  Copyright terms: Public domain W3C validator