MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxmetlem Structured version   Visualization version   GIF version

Theorem rrxmetlem 24476
Description: Lemma for rrxmet 24477. (Contributed by Thierry Arnoux, 5-Jul-2019.)
Hypotheses
Ref Expression
rrxmval.1 𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
rrxmval.d 𝐷 = (dist‘(ℝ^‘𝐼))
rrxmetlem.1 (𝜑𝐼𝑉)
rrxmetlem.2 (𝜑𝐹𝑋)
rrxmetlem.3 (𝜑𝐺𝑋)
rrxmetlem.4 (𝜑𝐴𝐼)
rrxmetlem.5 (𝜑𝐴 ∈ Fin)
rrxmetlem.6 (𝜑 → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐴)
Assertion
Ref Expression
rrxmetlem (𝜑 → Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2) = Σ𝑘𝐴 (((𝐹𝑘) − (𝐺𝑘))↑2))
Distinct variable groups:   𝐴,𝑘   ,𝐹,𝑘   ,𝐺,𝑘   ,𝐼,𝑘   ,𝑉,𝑘   𝑘,𝑋   𝜑,𝑘
Allowed substitution hints:   𝜑()   𝐴()   𝐷(,𝑘)   𝑋()

Proof of Theorem rrxmetlem
StepHypRef Expression
1 rrxmetlem.6 . 2 (𝜑 → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐴)
2 rrxmetlem.4 . . . . . . 7 (𝜑𝐴𝐼)
31, 2sstrd 3927 . . . . . 6 (𝜑 → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐼)
43sselda 3917 . . . . 5 ((𝜑𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → 𝑘𝐼)
5 rrxmval.1 . . . . . . . 8 𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
6 rrxmetlem.2 . . . . . . . 8 (𝜑𝐹𝑋)
75, 6rrxf 24470 . . . . . . 7 (𝜑𝐹:𝐼⟶ℝ)
87ffvelrnda 6943 . . . . . 6 ((𝜑𝑘𝐼) → (𝐹𝑘) ∈ ℝ)
98recnd 10934 . . . . 5 ((𝜑𝑘𝐼) → (𝐹𝑘) ∈ ℂ)
104, 9syldan 590 . . . 4 ((𝜑𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → (𝐹𝑘) ∈ ℂ)
11 rrxmetlem.3 . . . . . . . 8 (𝜑𝐺𝑋)
125, 11rrxf 24470 . . . . . . 7 (𝜑𝐺:𝐼⟶ℝ)
1312ffvelrnda 6943 . . . . . 6 ((𝜑𝑘𝐼) → (𝐺𝑘) ∈ ℝ)
1413recnd 10934 . . . . 5 ((𝜑𝑘𝐼) → (𝐺𝑘) ∈ ℂ)
154, 14syldan 590 . . . 4 ((𝜑𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → (𝐺𝑘) ∈ ℂ)
1610, 15subcld 11262 . . 3 ((𝜑𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → ((𝐹𝑘) − (𝐺𝑘)) ∈ ℂ)
1716sqcld 13790 . 2 ((𝜑𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℂ)
182ssdifd 4071 . . . 4 (𝜑 → (𝐴 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ⊆ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0))))
1918sselda 3917 . . 3 ((𝜑𝑘 ∈ (𝐴 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0))))
20 simpr 484 . . . . . . 7 ((𝜑𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0))))
2120eldifad 3895 . . . . . 6 ((𝜑𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝑘𝐼)
2221, 9syldan 590 . . . . 5 ((𝜑𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐹𝑘) ∈ ℂ)
23 ssun1 4102 . . . . . . . 8 (𝐹 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))
2423a1i 11 . . . . . . 7 (𝜑 → (𝐹 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
25 rrxmetlem.1 . . . . . . 7 (𝜑𝐼𝑉)
26 0red 10909 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
277, 24, 25, 26suppssr 7983 . . . . . 6 ((𝜑𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐹𝑘) = 0)
28 ssun2 4103 . . . . . . . 8 (𝐺 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))
2928a1i 11 . . . . . . 7 (𝜑 → (𝐺 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
3012, 29, 25, 26suppssr 7983 . . . . . 6 ((𝜑𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐺𝑘) = 0)
3127, 30eqtr4d 2781 . . . . 5 ((𝜑𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐹𝑘) = (𝐺𝑘))
3222, 31subeq0bd 11331 . . . 4 ((𝜑𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹𝑘) − (𝐺𝑘)) = 0)
3332sq0id 13839 . . 3 ((𝜑𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (((𝐹𝑘) − (𝐺𝑘))↑2) = 0)
3419, 33syldan 590 . 2 ((𝜑𝑘 ∈ (𝐴 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (((𝐹𝑘) − (𝐺𝑘))↑2) = 0)
35 rrxmetlem.5 . 2 (𝜑𝐴 ∈ Fin)
361, 17, 34, 35fsumss 15365 1 (𝜑 → Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2) = Σ𝑘𝐴 (((𝐹𝑘) − (𝐺𝑘))↑2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {crab 3067  cdif 3880  cun 3881  wss 3883   class class class wbr 5070  cfv 6418  (class class class)co 7255   supp csupp 7948  m cmap 8573  Fincfn 8691   finSupp cfsupp 9058  cc 10800  cr 10801  0cc0 10802  cmin 11135  2c2 11958  cexp 13710  Σcsu 15325  distcds 16897  ℝ^crrx 24452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326
This theorem is referenced by:  rrxmet  24477
  Copyright terms: Public domain W3C validator