![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rrxmetlem | Structured version Visualization version GIF version |
Description: Lemma for rrxmet 25380. (Contributed by Thierry Arnoux, 5-Jul-2019.) |
Ref | Expression |
---|---|
rrxmval.1 | ⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} |
rrxmval.d | ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) |
rrxmetlem.1 | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
rrxmetlem.2 | ⊢ (𝜑 → 𝐹 ∈ 𝑋) |
rrxmetlem.3 | ⊢ (𝜑 → 𝐺 ∈ 𝑋) |
rrxmetlem.4 | ⊢ (𝜑 → 𝐴 ⊆ 𝐼) |
rrxmetlem.5 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
rrxmetlem.6 | ⊢ (𝜑 → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐴) |
Ref | Expression |
---|---|
rrxmetlem | ⊢ (𝜑 → Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2) = Σ𝑘 ∈ 𝐴 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxmetlem.6 | . 2 ⊢ (𝜑 → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐴) | |
2 | rrxmetlem.4 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ 𝐼) | |
3 | 1, 2 | sstrd 3987 | . . . . . 6 ⊢ (𝜑 → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐼) |
4 | 3 | sselda 3976 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → 𝑘 ∈ 𝐼) |
5 | rrxmval.1 | . . . . . . . 8 ⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} | |
6 | rrxmetlem.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ 𝑋) | |
7 | 5, 6 | rrxf 25373 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐼⟶ℝ) |
8 | 7 | ffvelcdmda 7093 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝐹‘𝑘) ∈ ℝ) |
9 | 8 | recnd 11274 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝐹‘𝑘) ∈ ℂ) |
10 | 4, 9 | syldan 589 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → (𝐹‘𝑘) ∈ ℂ) |
11 | rrxmetlem.3 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ 𝑋) | |
12 | 5, 11 | rrxf 25373 | . . . . . . 7 ⊢ (𝜑 → 𝐺:𝐼⟶ℝ) |
13 | 12 | ffvelcdmda 7093 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝐺‘𝑘) ∈ ℝ) |
14 | 13 | recnd 11274 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝐺‘𝑘) ∈ ℂ) |
15 | 4, 14 | syldan 589 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → (𝐺‘𝑘) ∈ ℂ) |
16 | 10, 15 | subcld 11603 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → ((𝐹‘𝑘) − (𝐺‘𝑘)) ∈ ℂ) |
17 | 16 | sqcld 14144 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → (((𝐹‘𝑘) − (𝐺‘𝑘))↑2) ∈ ℂ) |
18 | 2 | ssdifd 4137 | . . . 4 ⊢ (𝜑 → (𝐴 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0))) ⊆ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) |
19 | 18 | sselda 3976 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) |
20 | simpr 483 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) | |
21 | 20 | eldifad 3956 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → 𝑘 ∈ 𝐼) |
22 | 21, 9 | syldan 589 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐹‘𝑘) ∈ ℂ) |
23 | ssun1 4170 | . . . . . . . 8 ⊢ (𝐹 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)) | |
24 | 23 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (𝐹 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))) |
25 | rrxmetlem.1 | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
26 | 0red 11249 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ ℝ) | |
27 | 7, 24, 25, 26 | suppssr 8201 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐹‘𝑘) = 0) |
28 | ssun2 4171 | . . . . . . . 8 ⊢ (𝐺 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)) | |
29 | 28 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (𝐺 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))) |
30 | 12, 29, 25, 26 | suppssr 8201 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐺‘𝑘) = 0) |
31 | 27, 30 | eqtr4d 2768 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
32 | 22, 31 | subeq0bd 11672 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹‘𝑘) − (𝐺‘𝑘)) = 0) |
33 | 32 | sq0id 14193 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (((𝐹‘𝑘) − (𝐺‘𝑘))↑2) = 0) |
34 | 19, 33 | syldan 589 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (((𝐹‘𝑘) − (𝐺‘𝑘))↑2) = 0) |
35 | rrxmetlem.5 | . 2 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
36 | 1, 17, 34, 35 | fsumss 15707 | 1 ⊢ (𝜑 → Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2) = Σ𝑘 ∈ 𝐴 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {crab 3418 ∖ cdif 3941 ∪ cun 3942 ⊆ wss 3944 class class class wbr 5149 ‘cfv 6549 (class class class)co 7419 supp csupp 8165 ↑m cmap 8845 Fincfn 8964 finSupp cfsupp 9387 ℂcc 11138 ℝcr 11139 0cc0 11140 − cmin 11476 2c2 12300 ↑cexp 14062 Σcsu 15668 distcds 17245 ℝ^crrx 25355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-inf2 9666 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-pre-sup 11218 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-supp 8166 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9467 df-oi 9535 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-div 11904 df-nn 12246 df-2 12308 df-3 12309 df-n0 12506 df-z 12592 df-uz 12856 df-rp 13010 df-fz 13520 df-fzo 13663 df-seq 14003 df-exp 14063 df-hash 14326 df-cj 15082 df-re 15083 df-im 15084 df-sqrt 15218 df-abs 15219 df-clim 15468 df-sum 15669 |
This theorem is referenced by: rrxmet 25380 |
Copyright terms: Public domain | W3C validator |