MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trirn Structured version   Visualization version   GIF version

Theorem trirn 24469
Description: Triangle inequality in R^n. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 4-Jun-2014.)
Hypotheses
Ref Expression
csbrn.1 (𝜑𝐴 ∈ Fin)
csbrn.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
csbrn.3 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
Assertion
Ref Expression
trirn (𝜑 → (√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2)) ≤ ((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2))))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem trirn
StepHypRef Expression
1 csbrn.1 . . . . 5 (𝜑𝐴 ∈ Fin)
2 csbrn.2 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
32resqcld 13893 . . . . . 6 ((𝜑𝑘𝐴) → (𝐵↑2) ∈ ℝ)
4 2re 11977 . . . . . . 7 2 ∈ ℝ
5 csbrn.3 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
62, 5remulcld 10936 . . . . . . 7 ((𝜑𝑘𝐴) → (𝐵 · 𝐶) ∈ ℝ)
7 remulcl 10887 . . . . . . 7 ((2 ∈ ℝ ∧ (𝐵 · 𝐶) ∈ ℝ) → (2 · (𝐵 · 𝐶)) ∈ ℝ)
84, 6, 7sylancr 586 . . . . . 6 ((𝜑𝑘𝐴) → (2 · (𝐵 · 𝐶)) ∈ ℝ)
93, 8readdcld 10935 . . . . 5 ((𝜑𝑘𝐴) → ((𝐵↑2) + (2 · (𝐵 · 𝐶))) ∈ ℝ)
101, 9fsumrecl 15374 . . . 4 (𝜑 → Σ𝑘𝐴 ((𝐵↑2) + (2 · (𝐵 · 𝐶))) ∈ ℝ)
111, 3fsumrecl 15374 . . . . 5 (𝜑 → Σ𝑘𝐴 (𝐵↑2) ∈ ℝ)
125resqcld 13893 . . . . . . . . 9 ((𝜑𝑘𝐴) → (𝐶↑2) ∈ ℝ)
131, 12fsumrecl 15374 . . . . . . . 8 (𝜑 → Σ𝑘𝐴 (𝐶↑2) ∈ ℝ)
1411, 13remulcld 10936 . . . . . . 7 (𝜑 → (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)) ∈ ℝ)
152sqge0d 13894 . . . . . . . . 9 ((𝜑𝑘𝐴) → 0 ≤ (𝐵↑2))
161, 3, 15fsumge0 15435 . . . . . . . 8 (𝜑 → 0 ≤ Σ𝑘𝐴 (𝐵↑2))
175sqge0d 13894 . . . . . . . . 9 ((𝜑𝑘𝐴) → 0 ≤ (𝐶↑2))
181, 12, 17fsumge0 15435 . . . . . . . 8 (𝜑 → 0 ≤ Σ𝑘𝐴 (𝐶↑2))
1911, 13, 16, 18mulge0d 11482 . . . . . . 7 (𝜑 → 0 ≤ (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))
2014, 19resqrtcld 15057 . . . . . 6 (𝜑 → (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) ∈ ℝ)
21 remulcl 10887 . . . . . 6 ((2 ∈ ℝ ∧ (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) ∈ ℝ) → (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))) ∈ ℝ)
224, 20, 21sylancr 586 . . . . 5 (𝜑 → (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))) ∈ ℝ)
2311, 22readdcld 10935 . . . 4 (𝜑 → (Σ𝑘𝐴 (𝐵↑2) + (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))) ∈ ℝ)
243recnd 10934 . . . . . 6 ((𝜑𝑘𝐴) → (𝐵↑2) ∈ ℂ)
258recnd 10934 . . . . . 6 ((𝜑𝑘𝐴) → (2 · (𝐵 · 𝐶)) ∈ ℂ)
261, 24, 25fsumadd 15380 . . . . 5 (𝜑 → Σ𝑘𝐴 ((𝐵↑2) + (2 · (𝐵 · 𝐶))) = (Σ𝑘𝐴 (𝐵↑2) + Σ𝑘𝐴 (2 · (𝐵 · 𝐶))))
271, 8fsumrecl 15374 . . . . . 6 (𝜑 → Σ𝑘𝐴 (2 · (𝐵 · 𝐶)) ∈ ℝ)
28 2cnd 11981 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
296recnd 10934 . . . . . . . 8 ((𝜑𝑘𝐴) → (𝐵 · 𝐶) ∈ ℂ)
301, 28, 29fsummulc2 15424 . . . . . . 7 (𝜑 → (2 · Σ𝑘𝐴 (𝐵 · 𝐶)) = Σ𝑘𝐴 (2 · (𝐵 · 𝐶)))
311, 6fsumrecl 15374 . . . . . . . . 9 (𝜑 → Σ𝑘𝐴 (𝐵 · 𝐶) ∈ ℝ)
3231recnd 10934 . . . . . . . . . 10 (𝜑 → Σ𝑘𝐴 (𝐵 · 𝐶) ∈ ℂ)
3332abscld 15076 . . . . . . . . 9 (𝜑 → (abs‘Σ𝑘𝐴 (𝐵 · 𝐶)) ∈ ℝ)
3431leabsd 15054 . . . . . . . . 9 (𝜑 → Σ𝑘𝐴 (𝐵 · 𝐶) ≤ (abs‘Σ𝑘𝐴 (𝐵 · 𝐶)))
351, 2, 5csbren 24468 . . . . . . . . . . 11 (𝜑 → (Σ𝑘𝐴 (𝐵 · 𝐶)↑2) ≤ (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))
36 absresq 14942 . . . . . . . . . . . 12 𝑘𝐴 (𝐵 · 𝐶) ∈ ℝ → ((abs‘Σ𝑘𝐴 (𝐵 · 𝐶))↑2) = (Σ𝑘𝐴 (𝐵 · 𝐶)↑2))
3731, 36syl 17 . . . . . . . . . . 11 (𝜑 → ((abs‘Σ𝑘𝐴 (𝐵 · 𝐶))↑2) = (Σ𝑘𝐴 (𝐵 · 𝐶)↑2))
38 resqrtth 14895 . . . . . . . . . . . 12 (((Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)) ∈ ℝ ∧ 0 ≤ (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) → ((√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))↑2) = (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))
3914, 19, 38syl2anc 583 . . . . . . . . . . 11 (𝜑 → ((√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))↑2) = (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))
4035, 37, 393brtr4d 5102 . . . . . . . . . 10 (𝜑 → ((abs‘Σ𝑘𝐴 (𝐵 · 𝐶))↑2) ≤ ((√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))↑2))
4132absge0d 15084 . . . . . . . . . . 11 (𝜑 → 0 ≤ (abs‘Σ𝑘𝐴 (𝐵 · 𝐶)))
4214, 19sqrtge0d 15060 . . . . . . . . . . 11 (𝜑 → 0 ≤ (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))
4333, 20, 41, 42le2sqd 13902 . . . . . . . . . 10 (𝜑 → ((abs‘Σ𝑘𝐴 (𝐵 · 𝐶)) ≤ (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) ↔ ((abs‘Σ𝑘𝐴 (𝐵 · 𝐶))↑2) ≤ ((√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))↑2)))
4440, 43mpbird 256 . . . . . . . . 9 (𝜑 → (abs‘Σ𝑘𝐴 (𝐵 · 𝐶)) ≤ (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))
4531, 33, 20, 34, 44letrd 11062 . . . . . . . 8 (𝜑 → Σ𝑘𝐴 (𝐵 · 𝐶) ≤ (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))
464a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℝ)
47 2pos 12006 . . . . . . . . . 10 0 < 2
4847a1i 11 . . . . . . . . 9 (𝜑 → 0 < 2)
49 lemul2 11758 . . . . . . . . 9 ((Σ𝑘𝐴 (𝐵 · 𝐶) ∈ ℝ ∧ (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (Σ𝑘𝐴 (𝐵 · 𝐶) ≤ (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) ↔ (2 · Σ𝑘𝐴 (𝐵 · 𝐶)) ≤ (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))))
5031, 20, 46, 48, 49syl112anc 1372 . . . . . . . 8 (𝜑 → (Σ𝑘𝐴 (𝐵 · 𝐶) ≤ (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) ↔ (2 · Σ𝑘𝐴 (𝐵 · 𝐶)) ≤ (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))))
5145, 50mpbid 231 . . . . . . 7 (𝜑 → (2 · Σ𝑘𝐴 (𝐵 · 𝐶)) ≤ (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))))
5230, 51eqbrtrrd 5094 . . . . . 6 (𝜑 → Σ𝑘𝐴 (2 · (𝐵 · 𝐶)) ≤ (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))))
5327, 22, 11, 52leadd2dd 11520 . . . . 5 (𝜑 → (Σ𝑘𝐴 (𝐵↑2) + Σ𝑘𝐴 (2 · (𝐵 · 𝐶))) ≤ (Σ𝑘𝐴 (𝐵↑2) + (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))))
5426, 53eqbrtrd 5092 . . . 4 (𝜑 → Σ𝑘𝐴 ((𝐵↑2) + (2 · (𝐵 · 𝐶))) ≤ (Σ𝑘𝐴 (𝐵↑2) + (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))))
5510, 23, 13, 54leadd1dd 11519 . . 3 (𝜑 → (Σ𝑘𝐴 ((𝐵↑2) + (2 · (𝐵 · 𝐶))) + Σ𝑘𝐴 (𝐶↑2)) ≤ ((Σ𝑘𝐴 (𝐵↑2) + (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))) + Σ𝑘𝐴 (𝐶↑2)))
562, 5readdcld 10935 . . . . . . 7 ((𝜑𝑘𝐴) → (𝐵 + 𝐶) ∈ ℝ)
5756resqcld 13893 . . . . . 6 ((𝜑𝑘𝐴) → ((𝐵 + 𝐶)↑2) ∈ ℝ)
581, 57fsumrecl 15374 . . . . 5 (𝜑 → Σ𝑘𝐴 ((𝐵 + 𝐶)↑2) ∈ ℝ)
5956sqge0d 13894 . . . . . 6 ((𝜑𝑘𝐴) → 0 ≤ ((𝐵 + 𝐶)↑2))
601, 57, 59fsumge0 15435 . . . . 5 (𝜑 → 0 ≤ Σ𝑘𝐴 ((𝐵 + 𝐶)↑2))
61 resqrtth 14895 . . . . 5 ((Σ𝑘𝐴 ((𝐵 + 𝐶)↑2) ∈ ℝ ∧ 0 ≤ Σ𝑘𝐴 ((𝐵 + 𝐶)↑2)) → ((√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2))↑2) = Σ𝑘𝐴 ((𝐵 + 𝐶)↑2))
6258, 60, 61syl2anc 583 . . . 4 (𝜑 → ((√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2))↑2) = Σ𝑘𝐴 ((𝐵 + 𝐶)↑2))
632recnd 10934 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
645recnd 10934 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
65 binom2 13861 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵 + 𝐶)↑2) = (((𝐵↑2) + (2 · (𝐵 · 𝐶))) + (𝐶↑2)))
6663, 64, 65syl2anc 583 . . . . . 6 ((𝜑𝑘𝐴) → ((𝐵 + 𝐶)↑2) = (((𝐵↑2) + (2 · (𝐵 · 𝐶))) + (𝐶↑2)))
6766sumeq2dv 15343 . . . . 5 (𝜑 → Σ𝑘𝐴 ((𝐵 + 𝐶)↑2) = Σ𝑘𝐴 (((𝐵↑2) + (2 · (𝐵 · 𝐶))) + (𝐶↑2)))
689recnd 10934 . . . . . 6 ((𝜑𝑘𝐴) → ((𝐵↑2) + (2 · (𝐵 · 𝐶))) ∈ ℂ)
6912recnd 10934 . . . . . 6 ((𝜑𝑘𝐴) → (𝐶↑2) ∈ ℂ)
701, 68, 69fsumadd 15380 . . . . 5 (𝜑 → Σ𝑘𝐴 (((𝐵↑2) + (2 · (𝐵 · 𝐶))) + (𝐶↑2)) = (Σ𝑘𝐴 ((𝐵↑2) + (2 · (𝐵 · 𝐶))) + Σ𝑘𝐴 (𝐶↑2)))
7167, 70eqtrd 2778 . . . 4 (𝜑 → Σ𝑘𝐴 ((𝐵 + 𝐶)↑2) = (Σ𝑘𝐴 ((𝐵↑2) + (2 · (𝐵 · 𝐶))) + Σ𝑘𝐴 (𝐶↑2)))
7262, 71eqtrd 2778 . . 3 (𝜑 → ((√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2))↑2) = (Σ𝑘𝐴 ((𝐵↑2) + (2 · (𝐵 · 𝐶))) + Σ𝑘𝐴 (𝐶↑2)))
7311, 16resqrtcld 15057 . . . . . 6 (𝜑 → (√‘Σ𝑘𝐴 (𝐵↑2)) ∈ ℝ)
7473recnd 10934 . . . . 5 (𝜑 → (√‘Σ𝑘𝐴 (𝐵↑2)) ∈ ℂ)
7513, 18resqrtcld 15057 . . . . . 6 (𝜑 → (√‘Σ𝑘𝐴 (𝐶↑2)) ∈ ℝ)
7675recnd 10934 . . . . 5 (𝜑 → (√‘Σ𝑘𝐴 (𝐶↑2)) ∈ ℂ)
77 binom2 13861 . . . . 5 (((√‘Σ𝑘𝐴 (𝐵↑2)) ∈ ℂ ∧ (√‘Σ𝑘𝐴 (𝐶↑2)) ∈ ℂ) → (((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2)))↑2) = ((((√‘Σ𝑘𝐴 (𝐵↑2))↑2) + (2 · ((√‘Σ𝑘𝐴 (𝐵↑2)) · (√‘Σ𝑘𝐴 (𝐶↑2))))) + ((√‘Σ𝑘𝐴 (𝐶↑2))↑2)))
7874, 76, 77syl2anc 583 . . . 4 (𝜑 → (((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2)))↑2) = ((((√‘Σ𝑘𝐴 (𝐵↑2))↑2) + (2 · ((√‘Σ𝑘𝐴 (𝐵↑2)) · (√‘Σ𝑘𝐴 (𝐶↑2))))) + ((√‘Σ𝑘𝐴 (𝐶↑2))↑2)))
79 resqrtth 14895 . . . . . . 7 ((Σ𝑘𝐴 (𝐵↑2) ∈ ℝ ∧ 0 ≤ Σ𝑘𝐴 (𝐵↑2)) → ((√‘Σ𝑘𝐴 (𝐵↑2))↑2) = Σ𝑘𝐴 (𝐵↑2))
8011, 16, 79syl2anc 583 . . . . . 6 (𝜑 → ((√‘Σ𝑘𝐴 (𝐵↑2))↑2) = Σ𝑘𝐴 (𝐵↑2))
8111, 16, 13, 18sqrtmuld 15064 . . . . . . . 8 (𝜑 → (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) = ((√‘Σ𝑘𝐴 (𝐵↑2)) · (√‘Σ𝑘𝐴 (𝐶↑2))))
8281eqcomd 2744 . . . . . . 7 (𝜑 → ((√‘Σ𝑘𝐴 (𝐵↑2)) · (√‘Σ𝑘𝐴 (𝐶↑2))) = (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))
8382oveq2d 7271 . . . . . 6 (𝜑 → (2 · ((√‘Σ𝑘𝐴 (𝐵↑2)) · (√‘Σ𝑘𝐴 (𝐶↑2)))) = (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))))
8480, 83oveq12d 7273 . . . . 5 (𝜑 → (((√‘Σ𝑘𝐴 (𝐵↑2))↑2) + (2 · ((√‘Σ𝑘𝐴 (𝐵↑2)) · (√‘Σ𝑘𝐴 (𝐶↑2))))) = (Σ𝑘𝐴 (𝐵↑2) + (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))))
85 resqrtth 14895 . . . . . 6 ((Σ𝑘𝐴 (𝐶↑2) ∈ ℝ ∧ 0 ≤ Σ𝑘𝐴 (𝐶↑2)) → ((√‘Σ𝑘𝐴 (𝐶↑2))↑2) = Σ𝑘𝐴 (𝐶↑2))
8613, 18, 85syl2anc 583 . . . . 5 (𝜑 → ((√‘Σ𝑘𝐴 (𝐶↑2))↑2) = Σ𝑘𝐴 (𝐶↑2))
8784, 86oveq12d 7273 . . . 4 (𝜑 → ((((√‘Σ𝑘𝐴 (𝐵↑2))↑2) + (2 · ((√‘Σ𝑘𝐴 (𝐵↑2)) · (√‘Σ𝑘𝐴 (𝐶↑2))))) + ((√‘Σ𝑘𝐴 (𝐶↑2))↑2)) = ((Σ𝑘𝐴 (𝐵↑2) + (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))) + Σ𝑘𝐴 (𝐶↑2)))
8878, 87eqtrd 2778 . . 3 (𝜑 → (((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2)))↑2) = ((Σ𝑘𝐴 (𝐵↑2) + (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))) + Σ𝑘𝐴 (𝐶↑2)))
8955, 72, 883brtr4d 5102 . 2 (𝜑 → ((√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2))↑2) ≤ (((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2)))↑2))
9058, 60resqrtcld 15057 . . 3 (𝜑 → (√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2)) ∈ ℝ)
9173, 75readdcld 10935 . . 3 (𝜑 → ((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2))) ∈ ℝ)
9258, 60sqrtge0d 15060 . . 3 (𝜑 → 0 ≤ (√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2)))
9311, 16sqrtge0d 15060 . . . 4 (𝜑 → 0 ≤ (√‘Σ𝑘𝐴 (𝐵↑2)))
9413, 18sqrtge0d 15060 . . . 4 (𝜑 → 0 ≤ (√‘Σ𝑘𝐴 (𝐶↑2)))
9573, 75, 93, 94addge0d 11481 . . 3 (𝜑 → 0 ≤ ((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2))))
9690, 91, 92, 95le2sqd 13902 . 2 (𝜑 → ((√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2)) ≤ ((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2))) ↔ ((√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2))↑2) ≤ (((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2)))↑2)))
9789, 96mpbird 256 1 (𝜑 → (√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2)) ≤ ((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  (class class class)co 7255  Fincfn 8691  cc 10800  cr 10801  0cc0 10802   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  2c2 11958  cexp 13710  csqrt 14872  abscabs 14873  Σcsu 15325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ico 13014  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326
This theorem is referenced by:  rrxmet  24477  rrnmet  35914
  Copyright terms: Public domain W3C validator