MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trirn Structured version   Visualization version   GIF version

Theorem trirn 24004
Description: Triangle inequality in R^n. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 4-Jun-2014.)
Hypotheses
Ref Expression
csbrn.1 (𝜑𝐴 ∈ Fin)
csbrn.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
csbrn.3 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
Assertion
Ref Expression
trirn (𝜑 → (√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2)) ≤ ((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2))))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem trirn
StepHypRef Expression
1 csbrn.1 . . . . 5 (𝜑𝐴 ∈ Fin)
2 csbrn.2 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
32resqcld 13607 . . . . . 6 ((𝜑𝑘𝐴) → (𝐵↑2) ∈ ℝ)
4 2re 11699 . . . . . . 7 2 ∈ ℝ
5 csbrn.3 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
62, 5remulcld 10660 . . . . . . 7 ((𝜑𝑘𝐴) → (𝐵 · 𝐶) ∈ ℝ)
7 remulcl 10611 . . . . . . 7 ((2 ∈ ℝ ∧ (𝐵 · 𝐶) ∈ ℝ) → (2 · (𝐵 · 𝐶)) ∈ ℝ)
84, 6, 7sylancr 590 . . . . . 6 ((𝜑𝑘𝐴) → (2 · (𝐵 · 𝐶)) ∈ ℝ)
93, 8readdcld 10659 . . . . 5 ((𝜑𝑘𝐴) → ((𝐵↑2) + (2 · (𝐵 · 𝐶))) ∈ ℝ)
101, 9fsumrecl 15083 . . . 4 (𝜑 → Σ𝑘𝐴 ((𝐵↑2) + (2 · (𝐵 · 𝐶))) ∈ ℝ)
111, 3fsumrecl 15083 . . . . 5 (𝜑 → Σ𝑘𝐴 (𝐵↑2) ∈ ℝ)
125resqcld 13607 . . . . . . . . 9 ((𝜑𝑘𝐴) → (𝐶↑2) ∈ ℝ)
131, 12fsumrecl 15083 . . . . . . . 8 (𝜑 → Σ𝑘𝐴 (𝐶↑2) ∈ ℝ)
1411, 13remulcld 10660 . . . . . . 7 (𝜑 → (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)) ∈ ℝ)
152sqge0d 13608 . . . . . . . . 9 ((𝜑𝑘𝐴) → 0 ≤ (𝐵↑2))
161, 3, 15fsumge0 15142 . . . . . . . 8 (𝜑 → 0 ≤ Σ𝑘𝐴 (𝐵↑2))
175sqge0d 13608 . . . . . . . . 9 ((𝜑𝑘𝐴) → 0 ≤ (𝐶↑2))
181, 12, 17fsumge0 15142 . . . . . . . 8 (𝜑 → 0 ≤ Σ𝑘𝐴 (𝐶↑2))
1911, 13, 16, 18mulge0d 11206 . . . . . . 7 (𝜑 → 0 ≤ (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))
2014, 19resqrtcld 14769 . . . . . 6 (𝜑 → (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) ∈ ℝ)
21 remulcl 10611 . . . . . 6 ((2 ∈ ℝ ∧ (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) ∈ ℝ) → (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))) ∈ ℝ)
224, 20, 21sylancr 590 . . . . 5 (𝜑 → (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))) ∈ ℝ)
2311, 22readdcld 10659 . . . 4 (𝜑 → (Σ𝑘𝐴 (𝐵↑2) + (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))) ∈ ℝ)
243recnd 10658 . . . . . 6 ((𝜑𝑘𝐴) → (𝐵↑2) ∈ ℂ)
258recnd 10658 . . . . . 6 ((𝜑𝑘𝐴) → (2 · (𝐵 · 𝐶)) ∈ ℂ)
261, 24, 25fsumadd 15088 . . . . 5 (𝜑 → Σ𝑘𝐴 ((𝐵↑2) + (2 · (𝐵 · 𝐶))) = (Σ𝑘𝐴 (𝐵↑2) + Σ𝑘𝐴 (2 · (𝐵 · 𝐶))))
271, 8fsumrecl 15083 . . . . . 6 (𝜑 → Σ𝑘𝐴 (2 · (𝐵 · 𝐶)) ∈ ℝ)
28 2cnd 11703 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
296recnd 10658 . . . . . . . 8 ((𝜑𝑘𝐴) → (𝐵 · 𝐶) ∈ ℂ)
301, 28, 29fsummulc2 15131 . . . . . . 7 (𝜑 → (2 · Σ𝑘𝐴 (𝐵 · 𝐶)) = Σ𝑘𝐴 (2 · (𝐵 · 𝐶)))
311, 6fsumrecl 15083 . . . . . . . . 9 (𝜑 → Σ𝑘𝐴 (𝐵 · 𝐶) ∈ ℝ)
3231recnd 10658 . . . . . . . . . 10 (𝜑 → Σ𝑘𝐴 (𝐵 · 𝐶) ∈ ℂ)
3332abscld 14788 . . . . . . . . 9 (𝜑 → (abs‘Σ𝑘𝐴 (𝐵 · 𝐶)) ∈ ℝ)
3431leabsd 14766 . . . . . . . . 9 (𝜑 → Σ𝑘𝐴 (𝐵 · 𝐶) ≤ (abs‘Σ𝑘𝐴 (𝐵 · 𝐶)))
351, 2, 5csbren 24003 . . . . . . . . . . 11 (𝜑 → (Σ𝑘𝐴 (𝐵 · 𝐶)↑2) ≤ (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))
36 absresq 14654 . . . . . . . . . . . 12 𝑘𝐴 (𝐵 · 𝐶) ∈ ℝ → ((abs‘Σ𝑘𝐴 (𝐵 · 𝐶))↑2) = (Σ𝑘𝐴 (𝐵 · 𝐶)↑2))
3731, 36syl 17 . . . . . . . . . . 11 (𝜑 → ((abs‘Σ𝑘𝐴 (𝐵 · 𝐶))↑2) = (Σ𝑘𝐴 (𝐵 · 𝐶)↑2))
38 resqrtth 14607 . . . . . . . . . . . 12 (((Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)) ∈ ℝ ∧ 0 ≤ (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) → ((√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))↑2) = (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))
3914, 19, 38syl2anc 587 . . . . . . . . . . 11 (𝜑 → ((√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))↑2) = (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))
4035, 37, 393brtr4d 5062 . . . . . . . . . 10 (𝜑 → ((abs‘Σ𝑘𝐴 (𝐵 · 𝐶))↑2) ≤ ((√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))↑2))
4132absge0d 14796 . . . . . . . . . . 11 (𝜑 → 0 ≤ (abs‘Σ𝑘𝐴 (𝐵 · 𝐶)))
4214, 19sqrtge0d 14772 . . . . . . . . . . 11 (𝜑 → 0 ≤ (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))
4333, 20, 41, 42le2sqd 13616 . . . . . . . . . 10 (𝜑 → ((abs‘Σ𝑘𝐴 (𝐵 · 𝐶)) ≤ (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) ↔ ((abs‘Σ𝑘𝐴 (𝐵 · 𝐶))↑2) ≤ ((√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))↑2)))
4440, 43mpbird 260 . . . . . . . . 9 (𝜑 → (abs‘Σ𝑘𝐴 (𝐵 · 𝐶)) ≤ (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))
4531, 33, 20, 34, 44letrd 10786 . . . . . . . 8 (𝜑 → Σ𝑘𝐴 (𝐵 · 𝐶) ≤ (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))
464a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℝ)
47 2pos 11728 . . . . . . . . . 10 0 < 2
4847a1i 11 . . . . . . . . 9 (𝜑 → 0 < 2)
49 lemul2 11482 . . . . . . . . 9 ((Σ𝑘𝐴 (𝐵 · 𝐶) ∈ ℝ ∧ (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (Σ𝑘𝐴 (𝐵 · 𝐶) ≤ (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) ↔ (2 · Σ𝑘𝐴 (𝐵 · 𝐶)) ≤ (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))))
5031, 20, 46, 48, 49syl112anc 1371 . . . . . . . 8 (𝜑 → (Σ𝑘𝐴 (𝐵 · 𝐶) ≤ (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) ↔ (2 · Σ𝑘𝐴 (𝐵 · 𝐶)) ≤ (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))))
5145, 50mpbid 235 . . . . . . 7 (𝜑 → (2 · Σ𝑘𝐴 (𝐵 · 𝐶)) ≤ (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))))
5230, 51eqbrtrrd 5054 . . . . . 6 (𝜑 → Σ𝑘𝐴 (2 · (𝐵 · 𝐶)) ≤ (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))))
5327, 22, 11, 52leadd2dd 11244 . . . . 5 (𝜑 → (Σ𝑘𝐴 (𝐵↑2) + Σ𝑘𝐴 (2 · (𝐵 · 𝐶))) ≤ (Σ𝑘𝐴 (𝐵↑2) + (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))))
5426, 53eqbrtrd 5052 . . . 4 (𝜑 → Σ𝑘𝐴 ((𝐵↑2) + (2 · (𝐵 · 𝐶))) ≤ (Σ𝑘𝐴 (𝐵↑2) + (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))))
5510, 23, 13, 54leadd1dd 11243 . . 3 (𝜑 → (Σ𝑘𝐴 ((𝐵↑2) + (2 · (𝐵 · 𝐶))) + Σ𝑘𝐴 (𝐶↑2)) ≤ ((Σ𝑘𝐴 (𝐵↑2) + (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))) + Σ𝑘𝐴 (𝐶↑2)))
562, 5readdcld 10659 . . . . . . 7 ((𝜑𝑘𝐴) → (𝐵 + 𝐶) ∈ ℝ)
5756resqcld 13607 . . . . . 6 ((𝜑𝑘𝐴) → ((𝐵 + 𝐶)↑2) ∈ ℝ)
581, 57fsumrecl 15083 . . . . 5 (𝜑 → Σ𝑘𝐴 ((𝐵 + 𝐶)↑2) ∈ ℝ)
5956sqge0d 13608 . . . . . 6 ((𝜑𝑘𝐴) → 0 ≤ ((𝐵 + 𝐶)↑2))
601, 57, 59fsumge0 15142 . . . . 5 (𝜑 → 0 ≤ Σ𝑘𝐴 ((𝐵 + 𝐶)↑2))
61 resqrtth 14607 . . . . 5 ((Σ𝑘𝐴 ((𝐵 + 𝐶)↑2) ∈ ℝ ∧ 0 ≤ Σ𝑘𝐴 ((𝐵 + 𝐶)↑2)) → ((√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2))↑2) = Σ𝑘𝐴 ((𝐵 + 𝐶)↑2))
6258, 60, 61syl2anc 587 . . . 4 (𝜑 → ((√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2))↑2) = Σ𝑘𝐴 ((𝐵 + 𝐶)↑2))
632recnd 10658 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
645recnd 10658 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
65 binom2 13575 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵 + 𝐶)↑2) = (((𝐵↑2) + (2 · (𝐵 · 𝐶))) + (𝐶↑2)))
6663, 64, 65syl2anc 587 . . . . . 6 ((𝜑𝑘𝐴) → ((𝐵 + 𝐶)↑2) = (((𝐵↑2) + (2 · (𝐵 · 𝐶))) + (𝐶↑2)))
6766sumeq2dv 15052 . . . . 5 (𝜑 → Σ𝑘𝐴 ((𝐵 + 𝐶)↑2) = Σ𝑘𝐴 (((𝐵↑2) + (2 · (𝐵 · 𝐶))) + (𝐶↑2)))
689recnd 10658 . . . . . 6 ((𝜑𝑘𝐴) → ((𝐵↑2) + (2 · (𝐵 · 𝐶))) ∈ ℂ)
6912recnd 10658 . . . . . 6 ((𝜑𝑘𝐴) → (𝐶↑2) ∈ ℂ)
701, 68, 69fsumadd 15088 . . . . 5 (𝜑 → Σ𝑘𝐴 (((𝐵↑2) + (2 · (𝐵 · 𝐶))) + (𝐶↑2)) = (Σ𝑘𝐴 ((𝐵↑2) + (2 · (𝐵 · 𝐶))) + Σ𝑘𝐴 (𝐶↑2)))
7167, 70eqtrd 2833 . . . 4 (𝜑 → Σ𝑘𝐴 ((𝐵 + 𝐶)↑2) = (Σ𝑘𝐴 ((𝐵↑2) + (2 · (𝐵 · 𝐶))) + Σ𝑘𝐴 (𝐶↑2)))
7262, 71eqtrd 2833 . . 3 (𝜑 → ((√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2))↑2) = (Σ𝑘𝐴 ((𝐵↑2) + (2 · (𝐵 · 𝐶))) + Σ𝑘𝐴 (𝐶↑2)))
7311, 16resqrtcld 14769 . . . . . 6 (𝜑 → (√‘Σ𝑘𝐴 (𝐵↑2)) ∈ ℝ)
7473recnd 10658 . . . . 5 (𝜑 → (√‘Σ𝑘𝐴 (𝐵↑2)) ∈ ℂ)
7513, 18resqrtcld 14769 . . . . . 6 (𝜑 → (√‘Σ𝑘𝐴 (𝐶↑2)) ∈ ℝ)
7675recnd 10658 . . . . 5 (𝜑 → (√‘Σ𝑘𝐴 (𝐶↑2)) ∈ ℂ)
77 binom2 13575 . . . . 5 (((√‘Σ𝑘𝐴 (𝐵↑2)) ∈ ℂ ∧ (√‘Σ𝑘𝐴 (𝐶↑2)) ∈ ℂ) → (((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2)))↑2) = ((((√‘Σ𝑘𝐴 (𝐵↑2))↑2) + (2 · ((√‘Σ𝑘𝐴 (𝐵↑2)) · (√‘Σ𝑘𝐴 (𝐶↑2))))) + ((√‘Σ𝑘𝐴 (𝐶↑2))↑2)))
7874, 76, 77syl2anc 587 . . . 4 (𝜑 → (((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2)))↑2) = ((((√‘Σ𝑘𝐴 (𝐵↑2))↑2) + (2 · ((√‘Σ𝑘𝐴 (𝐵↑2)) · (√‘Σ𝑘𝐴 (𝐶↑2))))) + ((√‘Σ𝑘𝐴 (𝐶↑2))↑2)))
79 resqrtth 14607 . . . . . . 7 ((Σ𝑘𝐴 (𝐵↑2) ∈ ℝ ∧ 0 ≤ Σ𝑘𝐴 (𝐵↑2)) → ((√‘Σ𝑘𝐴 (𝐵↑2))↑2) = Σ𝑘𝐴 (𝐵↑2))
8011, 16, 79syl2anc 587 . . . . . 6 (𝜑 → ((√‘Σ𝑘𝐴 (𝐵↑2))↑2) = Σ𝑘𝐴 (𝐵↑2))
8111, 16, 13, 18sqrtmuld 14776 . . . . . . . 8 (𝜑 → (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) = ((√‘Σ𝑘𝐴 (𝐵↑2)) · (√‘Σ𝑘𝐴 (𝐶↑2))))
8281eqcomd 2804 . . . . . . 7 (𝜑 → ((√‘Σ𝑘𝐴 (𝐵↑2)) · (√‘Σ𝑘𝐴 (𝐶↑2))) = (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))
8382oveq2d 7151 . . . . . 6 (𝜑 → (2 · ((√‘Σ𝑘𝐴 (𝐵↑2)) · (√‘Σ𝑘𝐴 (𝐶↑2)))) = (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))))
8480, 83oveq12d 7153 . . . . 5 (𝜑 → (((√‘Σ𝑘𝐴 (𝐵↑2))↑2) + (2 · ((√‘Σ𝑘𝐴 (𝐵↑2)) · (√‘Σ𝑘𝐴 (𝐶↑2))))) = (Σ𝑘𝐴 (𝐵↑2) + (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))))
85 resqrtth 14607 . . . . . 6 ((Σ𝑘𝐴 (𝐶↑2) ∈ ℝ ∧ 0 ≤ Σ𝑘𝐴 (𝐶↑2)) → ((√‘Σ𝑘𝐴 (𝐶↑2))↑2) = Σ𝑘𝐴 (𝐶↑2))
8613, 18, 85syl2anc 587 . . . . 5 (𝜑 → ((√‘Σ𝑘𝐴 (𝐶↑2))↑2) = Σ𝑘𝐴 (𝐶↑2))
8784, 86oveq12d 7153 . . . 4 (𝜑 → ((((√‘Σ𝑘𝐴 (𝐵↑2))↑2) + (2 · ((√‘Σ𝑘𝐴 (𝐵↑2)) · (√‘Σ𝑘𝐴 (𝐶↑2))))) + ((√‘Σ𝑘𝐴 (𝐶↑2))↑2)) = ((Σ𝑘𝐴 (𝐵↑2) + (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))) + Σ𝑘𝐴 (𝐶↑2)))
8878, 87eqtrd 2833 . . 3 (𝜑 → (((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2)))↑2) = ((Σ𝑘𝐴 (𝐵↑2) + (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))) + Σ𝑘𝐴 (𝐶↑2)))
8955, 72, 883brtr4d 5062 . 2 (𝜑 → ((√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2))↑2) ≤ (((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2)))↑2))
9058, 60resqrtcld 14769 . . 3 (𝜑 → (√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2)) ∈ ℝ)
9173, 75readdcld 10659 . . 3 (𝜑 → ((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2))) ∈ ℝ)
9258, 60sqrtge0d 14772 . . 3 (𝜑 → 0 ≤ (√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2)))
9311, 16sqrtge0d 14772 . . . 4 (𝜑 → 0 ≤ (√‘Σ𝑘𝐴 (𝐵↑2)))
9413, 18sqrtge0d 14772 . . . 4 (𝜑 → 0 ≤ (√‘Σ𝑘𝐴 (𝐶↑2)))
9573, 75, 93, 94addge0d 11205 . . 3 (𝜑 → 0 ≤ ((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2))))
9690, 91, 92, 95le2sqd 13616 . 2 (𝜑 → ((√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2)) ≤ ((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2))) ↔ ((√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2))↑2) ≤ (((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2)))↑2)))
9789, 96mpbird 260 1 (𝜑 → (√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2)) ≤ ((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111   class class class wbr 5030  cfv 6324  (class class class)co 7135  Fincfn 8492  cc 10524  cr 10525  0cc0 10526   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  2c2 11680  cexp 13425  csqrt 14584  abscabs 14585  Σcsu 15034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-ico 12732  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035
This theorem is referenced by:  rrxmet  24012  rrnmet  35267
  Copyright terms: Public domain W3C validator