MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trirn Structured version   Visualization version   GIF version

Theorem trirn 25300
Description: Triangle inequality in R^n. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 4-Jun-2014.)
Hypotheses
Ref Expression
csbrn.1 (𝜑𝐴 ∈ Fin)
csbrn.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
csbrn.3 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
Assertion
Ref Expression
trirn (𝜑 → (√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2)) ≤ ((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2))))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem trirn
StepHypRef Expression
1 csbrn.1 . . . . 5 (𝜑𝐴 ∈ Fin)
2 csbrn.2 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
32resqcld 14090 . . . . . 6 ((𝜑𝑘𝐴) → (𝐵↑2) ∈ ℝ)
4 2re 12260 . . . . . . 7 2 ∈ ℝ
5 csbrn.3 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
62, 5remulcld 11204 . . . . . . 7 ((𝜑𝑘𝐴) → (𝐵 · 𝐶) ∈ ℝ)
7 remulcl 11153 . . . . . . 7 ((2 ∈ ℝ ∧ (𝐵 · 𝐶) ∈ ℝ) → (2 · (𝐵 · 𝐶)) ∈ ℝ)
84, 6, 7sylancr 587 . . . . . 6 ((𝜑𝑘𝐴) → (2 · (𝐵 · 𝐶)) ∈ ℝ)
93, 8readdcld 11203 . . . . 5 ((𝜑𝑘𝐴) → ((𝐵↑2) + (2 · (𝐵 · 𝐶))) ∈ ℝ)
101, 9fsumrecl 15700 . . . 4 (𝜑 → Σ𝑘𝐴 ((𝐵↑2) + (2 · (𝐵 · 𝐶))) ∈ ℝ)
111, 3fsumrecl 15700 . . . . 5 (𝜑 → Σ𝑘𝐴 (𝐵↑2) ∈ ℝ)
125resqcld 14090 . . . . . . . . 9 ((𝜑𝑘𝐴) → (𝐶↑2) ∈ ℝ)
131, 12fsumrecl 15700 . . . . . . . 8 (𝜑 → Σ𝑘𝐴 (𝐶↑2) ∈ ℝ)
1411, 13remulcld 11204 . . . . . . 7 (𝜑 → (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)) ∈ ℝ)
152sqge0d 14102 . . . . . . . . 9 ((𝜑𝑘𝐴) → 0 ≤ (𝐵↑2))
161, 3, 15fsumge0 15761 . . . . . . . 8 (𝜑 → 0 ≤ Σ𝑘𝐴 (𝐵↑2))
175sqge0d 14102 . . . . . . . . 9 ((𝜑𝑘𝐴) → 0 ≤ (𝐶↑2))
181, 12, 17fsumge0 15761 . . . . . . . 8 (𝜑 → 0 ≤ Σ𝑘𝐴 (𝐶↑2))
1911, 13, 16, 18mulge0d 11755 . . . . . . 7 (𝜑 → 0 ≤ (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))
2014, 19resqrtcld 15384 . . . . . 6 (𝜑 → (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) ∈ ℝ)
21 remulcl 11153 . . . . . 6 ((2 ∈ ℝ ∧ (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) ∈ ℝ) → (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))) ∈ ℝ)
224, 20, 21sylancr 587 . . . . 5 (𝜑 → (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))) ∈ ℝ)
2311, 22readdcld 11203 . . . 4 (𝜑 → (Σ𝑘𝐴 (𝐵↑2) + (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))) ∈ ℝ)
243recnd 11202 . . . . . 6 ((𝜑𝑘𝐴) → (𝐵↑2) ∈ ℂ)
258recnd 11202 . . . . . 6 ((𝜑𝑘𝐴) → (2 · (𝐵 · 𝐶)) ∈ ℂ)
261, 24, 25fsumadd 15706 . . . . 5 (𝜑 → Σ𝑘𝐴 ((𝐵↑2) + (2 · (𝐵 · 𝐶))) = (Σ𝑘𝐴 (𝐵↑2) + Σ𝑘𝐴 (2 · (𝐵 · 𝐶))))
271, 8fsumrecl 15700 . . . . . 6 (𝜑 → Σ𝑘𝐴 (2 · (𝐵 · 𝐶)) ∈ ℝ)
28 2cnd 12264 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
296recnd 11202 . . . . . . . 8 ((𝜑𝑘𝐴) → (𝐵 · 𝐶) ∈ ℂ)
301, 28, 29fsummulc2 15750 . . . . . . 7 (𝜑 → (2 · Σ𝑘𝐴 (𝐵 · 𝐶)) = Σ𝑘𝐴 (2 · (𝐵 · 𝐶)))
311, 6fsumrecl 15700 . . . . . . . . 9 (𝜑 → Σ𝑘𝐴 (𝐵 · 𝐶) ∈ ℝ)
3231recnd 11202 . . . . . . . . . 10 (𝜑 → Σ𝑘𝐴 (𝐵 · 𝐶) ∈ ℂ)
3332abscld 15405 . . . . . . . . 9 (𝜑 → (abs‘Σ𝑘𝐴 (𝐵 · 𝐶)) ∈ ℝ)
3431leabsd 15381 . . . . . . . . 9 (𝜑 → Σ𝑘𝐴 (𝐵 · 𝐶) ≤ (abs‘Σ𝑘𝐴 (𝐵 · 𝐶)))
351, 2, 5csbren 25299 . . . . . . . . . . 11 (𝜑 → (Σ𝑘𝐴 (𝐵 · 𝐶)↑2) ≤ (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))
36 absresq 15268 . . . . . . . . . . . 12 𝑘𝐴 (𝐵 · 𝐶) ∈ ℝ → ((abs‘Σ𝑘𝐴 (𝐵 · 𝐶))↑2) = (Σ𝑘𝐴 (𝐵 · 𝐶)↑2))
3731, 36syl 17 . . . . . . . . . . 11 (𝜑 → ((abs‘Σ𝑘𝐴 (𝐵 · 𝐶))↑2) = (Σ𝑘𝐴 (𝐵 · 𝐶)↑2))
38 resqrtth 15221 . . . . . . . . . . . 12 (((Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)) ∈ ℝ ∧ 0 ≤ (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) → ((√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))↑2) = (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))
3914, 19, 38syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))↑2) = (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))
4035, 37, 393brtr4d 5139 . . . . . . . . . 10 (𝜑 → ((abs‘Σ𝑘𝐴 (𝐵 · 𝐶))↑2) ≤ ((√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))↑2))
4132absge0d 15413 . . . . . . . . . . 11 (𝜑 → 0 ≤ (abs‘Σ𝑘𝐴 (𝐵 · 𝐶)))
4214, 19sqrtge0d 15387 . . . . . . . . . . 11 (𝜑 → 0 ≤ (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))
4333, 20, 41, 42le2sqd 14222 . . . . . . . . . 10 (𝜑 → ((abs‘Σ𝑘𝐴 (𝐵 · 𝐶)) ≤ (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) ↔ ((abs‘Σ𝑘𝐴 (𝐵 · 𝐶))↑2) ≤ ((√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))↑2)))
4440, 43mpbird 257 . . . . . . . . 9 (𝜑 → (abs‘Σ𝑘𝐴 (𝐵 · 𝐶)) ≤ (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))
4531, 33, 20, 34, 44letrd 11331 . . . . . . . 8 (𝜑 → Σ𝑘𝐴 (𝐵 · 𝐶) ≤ (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))
464a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℝ)
47 2pos 12289 . . . . . . . . . 10 0 < 2
4847a1i 11 . . . . . . . . 9 (𝜑 → 0 < 2)
49 lemul2 12035 . . . . . . . . 9 ((Σ𝑘𝐴 (𝐵 · 𝐶) ∈ ℝ ∧ (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (Σ𝑘𝐴 (𝐵 · 𝐶) ≤ (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) ↔ (2 · Σ𝑘𝐴 (𝐵 · 𝐶)) ≤ (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))))
5031, 20, 46, 48, 49syl112anc 1376 . . . . . . . 8 (𝜑 → (Σ𝑘𝐴 (𝐵 · 𝐶) ≤ (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) ↔ (2 · Σ𝑘𝐴 (𝐵 · 𝐶)) ≤ (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))))
5145, 50mpbid 232 . . . . . . 7 (𝜑 → (2 · Σ𝑘𝐴 (𝐵 · 𝐶)) ≤ (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))))
5230, 51eqbrtrrd 5131 . . . . . 6 (𝜑 → Σ𝑘𝐴 (2 · (𝐵 · 𝐶)) ≤ (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))))
5327, 22, 11, 52leadd2dd 11793 . . . . 5 (𝜑 → (Σ𝑘𝐴 (𝐵↑2) + Σ𝑘𝐴 (2 · (𝐵 · 𝐶))) ≤ (Σ𝑘𝐴 (𝐵↑2) + (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))))
5426, 53eqbrtrd 5129 . . . 4 (𝜑 → Σ𝑘𝐴 ((𝐵↑2) + (2 · (𝐵 · 𝐶))) ≤ (Σ𝑘𝐴 (𝐵↑2) + (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))))
5510, 23, 13, 54leadd1dd 11792 . . 3 (𝜑 → (Σ𝑘𝐴 ((𝐵↑2) + (2 · (𝐵 · 𝐶))) + Σ𝑘𝐴 (𝐶↑2)) ≤ ((Σ𝑘𝐴 (𝐵↑2) + (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))) + Σ𝑘𝐴 (𝐶↑2)))
562, 5readdcld 11203 . . . . . . 7 ((𝜑𝑘𝐴) → (𝐵 + 𝐶) ∈ ℝ)
5756resqcld 14090 . . . . . 6 ((𝜑𝑘𝐴) → ((𝐵 + 𝐶)↑2) ∈ ℝ)
581, 57fsumrecl 15700 . . . . 5 (𝜑 → Σ𝑘𝐴 ((𝐵 + 𝐶)↑2) ∈ ℝ)
5956sqge0d 14102 . . . . . 6 ((𝜑𝑘𝐴) → 0 ≤ ((𝐵 + 𝐶)↑2))
601, 57, 59fsumge0 15761 . . . . 5 (𝜑 → 0 ≤ Σ𝑘𝐴 ((𝐵 + 𝐶)↑2))
61 resqrtth 15221 . . . . 5 ((Σ𝑘𝐴 ((𝐵 + 𝐶)↑2) ∈ ℝ ∧ 0 ≤ Σ𝑘𝐴 ((𝐵 + 𝐶)↑2)) → ((√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2))↑2) = Σ𝑘𝐴 ((𝐵 + 𝐶)↑2))
6258, 60, 61syl2anc 584 . . . 4 (𝜑 → ((√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2))↑2) = Σ𝑘𝐴 ((𝐵 + 𝐶)↑2))
632recnd 11202 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
645recnd 11202 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
65 binom2 14182 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵 + 𝐶)↑2) = (((𝐵↑2) + (2 · (𝐵 · 𝐶))) + (𝐶↑2)))
6663, 64, 65syl2anc 584 . . . . . 6 ((𝜑𝑘𝐴) → ((𝐵 + 𝐶)↑2) = (((𝐵↑2) + (2 · (𝐵 · 𝐶))) + (𝐶↑2)))
6766sumeq2dv 15668 . . . . 5 (𝜑 → Σ𝑘𝐴 ((𝐵 + 𝐶)↑2) = Σ𝑘𝐴 (((𝐵↑2) + (2 · (𝐵 · 𝐶))) + (𝐶↑2)))
689recnd 11202 . . . . . 6 ((𝜑𝑘𝐴) → ((𝐵↑2) + (2 · (𝐵 · 𝐶))) ∈ ℂ)
6912recnd 11202 . . . . . 6 ((𝜑𝑘𝐴) → (𝐶↑2) ∈ ℂ)
701, 68, 69fsumadd 15706 . . . . 5 (𝜑 → Σ𝑘𝐴 (((𝐵↑2) + (2 · (𝐵 · 𝐶))) + (𝐶↑2)) = (Σ𝑘𝐴 ((𝐵↑2) + (2 · (𝐵 · 𝐶))) + Σ𝑘𝐴 (𝐶↑2)))
7167, 70eqtrd 2764 . . . 4 (𝜑 → Σ𝑘𝐴 ((𝐵 + 𝐶)↑2) = (Σ𝑘𝐴 ((𝐵↑2) + (2 · (𝐵 · 𝐶))) + Σ𝑘𝐴 (𝐶↑2)))
7262, 71eqtrd 2764 . . 3 (𝜑 → ((√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2))↑2) = (Σ𝑘𝐴 ((𝐵↑2) + (2 · (𝐵 · 𝐶))) + Σ𝑘𝐴 (𝐶↑2)))
7311, 16resqrtcld 15384 . . . . . 6 (𝜑 → (√‘Σ𝑘𝐴 (𝐵↑2)) ∈ ℝ)
7473recnd 11202 . . . . 5 (𝜑 → (√‘Σ𝑘𝐴 (𝐵↑2)) ∈ ℂ)
7513, 18resqrtcld 15384 . . . . . 6 (𝜑 → (√‘Σ𝑘𝐴 (𝐶↑2)) ∈ ℝ)
7675recnd 11202 . . . . 5 (𝜑 → (√‘Σ𝑘𝐴 (𝐶↑2)) ∈ ℂ)
77 binom2 14182 . . . . 5 (((√‘Σ𝑘𝐴 (𝐵↑2)) ∈ ℂ ∧ (√‘Σ𝑘𝐴 (𝐶↑2)) ∈ ℂ) → (((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2)))↑2) = ((((√‘Σ𝑘𝐴 (𝐵↑2))↑2) + (2 · ((√‘Σ𝑘𝐴 (𝐵↑2)) · (√‘Σ𝑘𝐴 (𝐶↑2))))) + ((√‘Σ𝑘𝐴 (𝐶↑2))↑2)))
7874, 76, 77syl2anc 584 . . . 4 (𝜑 → (((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2)))↑2) = ((((√‘Σ𝑘𝐴 (𝐵↑2))↑2) + (2 · ((√‘Σ𝑘𝐴 (𝐵↑2)) · (√‘Σ𝑘𝐴 (𝐶↑2))))) + ((√‘Σ𝑘𝐴 (𝐶↑2))↑2)))
79 resqrtth 15221 . . . . . . 7 ((Σ𝑘𝐴 (𝐵↑2) ∈ ℝ ∧ 0 ≤ Σ𝑘𝐴 (𝐵↑2)) → ((√‘Σ𝑘𝐴 (𝐵↑2))↑2) = Σ𝑘𝐴 (𝐵↑2))
8011, 16, 79syl2anc 584 . . . . . 6 (𝜑 → ((√‘Σ𝑘𝐴 (𝐵↑2))↑2) = Σ𝑘𝐴 (𝐵↑2))
8111, 16, 13, 18sqrtmuld 15391 . . . . . . . 8 (𝜑 → (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) = ((√‘Σ𝑘𝐴 (𝐵↑2)) · (√‘Σ𝑘𝐴 (𝐶↑2))))
8281eqcomd 2735 . . . . . . 7 (𝜑 → ((√‘Σ𝑘𝐴 (𝐵↑2)) · (√‘Σ𝑘𝐴 (𝐶↑2))) = (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))
8382oveq2d 7403 . . . . . 6 (𝜑 → (2 · ((√‘Σ𝑘𝐴 (𝐵↑2)) · (√‘Σ𝑘𝐴 (𝐶↑2)))) = (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))))
8480, 83oveq12d 7405 . . . . 5 (𝜑 → (((√‘Σ𝑘𝐴 (𝐵↑2))↑2) + (2 · ((√‘Σ𝑘𝐴 (𝐵↑2)) · (√‘Σ𝑘𝐴 (𝐶↑2))))) = (Σ𝑘𝐴 (𝐵↑2) + (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))))
85 resqrtth 15221 . . . . . 6 ((Σ𝑘𝐴 (𝐶↑2) ∈ ℝ ∧ 0 ≤ Σ𝑘𝐴 (𝐶↑2)) → ((√‘Σ𝑘𝐴 (𝐶↑2))↑2) = Σ𝑘𝐴 (𝐶↑2))
8613, 18, 85syl2anc 584 . . . . 5 (𝜑 → ((√‘Σ𝑘𝐴 (𝐶↑2))↑2) = Σ𝑘𝐴 (𝐶↑2))
8784, 86oveq12d 7405 . . . 4 (𝜑 → ((((√‘Σ𝑘𝐴 (𝐵↑2))↑2) + (2 · ((√‘Σ𝑘𝐴 (𝐵↑2)) · (√‘Σ𝑘𝐴 (𝐶↑2))))) + ((√‘Σ𝑘𝐴 (𝐶↑2))↑2)) = ((Σ𝑘𝐴 (𝐵↑2) + (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))) + Σ𝑘𝐴 (𝐶↑2)))
8878, 87eqtrd 2764 . . 3 (𝜑 → (((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2)))↑2) = ((Σ𝑘𝐴 (𝐵↑2) + (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))) + Σ𝑘𝐴 (𝐶↑2)))
8955, 72, 883brtr4d 5139 . 2 (𝜑 → ((√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2))↑2) ≤ (((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2)))↑2))
9058, 60resqrtcld 15384 . . 3 (𝜑 → (√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2)) ∈ ℝ)
9173, 75readdcld 11203 . . 3 (𝜑 → ((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2))) ∈ ℝ)
9258, 60sqrtge0d 15387 . . 3 (𝜑 → 0 ≤ (√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2)))
9311, 16sqrtge0d 15387 . . . 4 (𝜑 → 0 ≤ (√‘Σ𝑘𝐴 (𝐵↑2)))
9413, 18sqrtge0d 15387 . . . 4 (𝜑 → 0 ≤ (√‘Σ𝑘𝐴 (𝐶↑2)))
9573, 75, 93, 94addge0d 11754 . . 3 (𝜑 → 0 ≤ ((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2))))
9690, 91, 92, 95le2sqd 14222 . 2 (𝜑 → ((√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2)) ≤ ((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2))) ↔ ((√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2))↑2) ≤ (((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2)))↑2)))
9789, 96mpbird 257 1 (𝜑 → (√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2)) ≤ ((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5107  cfv 6511  (class class class)co 7387  Fincfn 8918  cc 11066  cr 11067  0cc0 11068   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  2c2 12241  cexp 14026  csqrt 15199  abscabs 15200  Σcsu 15652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-ico 13312  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653
This theorem is referenced by:  rrxmet  25308  rrnmet  37823
  Copyright terms: Public domain W3C validator