MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trirn Structured version   Visualization version   GIF version

Theorem trirn 23568
Description: Triangle inequality in R^n. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 4-Jun-2014.)
Hypotheses
Ref Expression
csbrn.1 (𝜑𝐴 ∈ Fin)
csbrn.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
csbrn.3 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
Assertion
Ref Expression
trirn (𝜑 → (√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2)) ≤ ((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2))))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem trirn
StepHypRef Expression
1 csbrn.1 . . . . 5 (𝜑𝐴 ∈ Fin)
2 csbrn.2 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
32resqcld 13331 . . . . . 6 ((𝜑𝑘𝐴) → (𝐵↑2) ∈ ℝ)
4 2re 11425 . . . . . . 7 2 ∈ ℝ
5 csbrn.3 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
62, 5remulcld 10387 . . . . . . 7 ((𝜑𝑘𝐴) → (𝐵 · 𝐶) ∈ ℝ)
7 remulcl 10337 . . . . . . 7 ((2 ∈ ℝ ∧ (𝐵 · 𝐶) ∈ ℝ) → (2 · (𝐵 · 𝐶)) ∈ ℝ)
84, 6, 7sylancr 581 . . . . . 6 ((𝜑𝑘𝐴) → (2 · (𝐵 · 𝐶)) ∈ ℝ)
93, 8readdcld 10386 . . . . 5 ((𝜑𝑘𝐴) → ((𝐵↑2) + (2 · (𝐵 · 𝐶))) ∈ ℝ)
101, 9fsumrecl 14842 . . . 4 (𝜑 → Σ𝑘𝐴 ((𝐵↑2) + (2 · (𝐵 · 𝐶))) ∈ ℝ)
111, 3fsumrecl 14842 . . . . 5 (𝜑 → Σ𝑘𝐴 (𝐵↑2) ∈ ℝ)
125resqcld 13331 . . . . . . . . 9 ((𝜑𝑘𝐴) → (𝐶↑2) ∈ ℝ)
131, 12fsumrecl 14842 . . . . . . . 8 (𝜑 → Σ𝑘𝐴 (𝐶↑2) ∈ ℝ)
1411, 13remulcld 10387 . . . . . . 7 (𝜑 → (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)) ∈ ℝ)
152sqge0d 13332 . . . . . . . . 9 ((𝜑𝑘𝐴) → 0 ≤ (𝐵↑2))
161, 3, 15fsumge0 14901 . . . . . . . 8 (𝜑 → 0 ≤ Σ𝑘𝐴 (𝐵↑2))
175sqge0d 13332 . . . . . . . . 9 ((𝜑𝑘𝐴) → 0 ≤ (𝐶↑2))
181, 12, 17fsumge0 14901 . . . . . . . 8 (𝜑 → 0 ≤ Σ𝑘𝐴 (𝐶↑2))
1911, 13, 16, 18mulge0d 10929 . . . . . . 7 (𝜑 → 0 ≤ (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))
2014, 19resqrtcld 14533 . . . . . 6 (𝜑 → (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) ∈ ℝ)
21 remulcl 10337 . . . . . 6 ((2 ∈ ℝ ∧ (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) ∈ ℝ) → (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))) ∈ ℝ)
224, 20, 21sylancr 581 . . . . 5 (𝜑 → (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))) ∈ ℝ)
2311, 22readdcld 10386 . . . 4 (𝜑 → (Σ𝑘𝐴 (𝐵↑2) + (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))) ∈ ℝ)
243recnd 10385 . . . . . 6 ((𝜑𝑘𝐴) → (𝐵↑2) ∈ ℂ)
258recnd 10385 . . . . . 6 ((𝜑𝑘𝐴) → (2 · (𝐵 · 𝐶)) ∈ ℂ)
261, 24, 25fsumadd 14847 . . . . 5 (𝜑 → Σ𝑘𝐴 ((𝐵↑2) + (2 · (𝐵 · 𝐶))) = (Σ𝑘𝐴 (𝐵↑2) + Σ𝑘𝐴 (2 · (𝐵 · 𝐶))))
271, 8fsumrecl 14842 . . . . . 6 (𝜑 → Σ𝑘𝐴 (2 · (𝐵 · 𝐶)) ∈ ℝ)
28 2cnd 11429 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
296recnd 10385 . . . . . . . 8 ((𝜑𝑘𝐴) → (𝐵 · 𝐶) ∈ ℂ)
301, 28, 29fsummulc2 14890 . . . . . . 7 (𝜑 → (2 · Σ𝑘𝐴 (𝐵 · 𝐶)) = Σ𝑘𝐴 (2 · (𝐵 · 𝐶)))
311, 6fsumrecl 14842 . . . . . . . . 9 (𝜑 → Σ𝑘𝐴 (𝐵 · 𝐶) ∈ ℝ)
3231recnd 10385 . . . . . . . . . 10 (𝜑 → Σ𝑘𝐴 (𝐵 · 𝐶) ∈ ℂ)
3332abscld 14552 . . . . . . . . 9 (𝜑 → (abs‘Σ𝑘𝐴 (𝐵 · 𝐶)) ∈ ℝ)
3431leabsd 14530 . . . . . . . . 9 (𝜑 → Σ𝑘𝐴 (𝐵 · 𝐶) ≤ (abs‘Σ𝑘𝐴 (𝐵 · 𝐶)))
351, 2, 5csbren 23567 . . . . . . . . . . 11 (𝜑 → (Σ𝑘𝐴 (𝐵 · 𝐶)↑2) ≤ (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))
36 absresq 14419 . . . . . . . . . . . 12 𝑘𝐴 (𝐵 · 𝐶) ∈ ℝ → ((abs‘Σ𝑘𝐴 (𝐵 · 𝐶))↑2) = (Σ𝑘𝐴 (𝐵 · 𝐶)↑2))
3731, 36syl 17 . . . . . . . . . . 11 (𝜑 → ((abs‘Σ𝑘𝐴 (𝐵 · 𝐶))↑2) = (Σ𝑘𝐴 (𝐵 · 𝐶)↑2))
38 resqrtth 14373 . . . . . . . . . . . 12 (((Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)) ∈ ℝ ∧ 0 ≤ (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) → ((√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))↑2) = (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))
3914, 19, 38syl2anc 579 . . . . . . . . . . 11 (𝜑 → ((√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))↑2) = (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))
4035, 37, 393brtr4d 4905 . . . . . . . . . 10 (𝜑 → ((abs‘Σ𝑘𝐴 (𝐵 · 𝐶))↑2) ≤ ((√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))↑2))
4132absge0d 14560 . . . . . . . . . . 11 (𝜑 → 0 ≤ (abs‘Σ𝑘𝐴 (𝐵 · 𝐶)))
4214, 19sqrtge0d 14536 . . . . . . . . . . 11 (𝜑 → 0 ≤ (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))
4333, 20, 41, 42le2sqd 13340 . . . . . . . . . 10 (𝜑 → ((abs‘Σ𝑘𝐴 (𝐵 · 𝐶)) ≤ (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) ↔ ((abs‘Σ𝑘𝐴 (𝐵 · 𝐶))↑2) ≤ ((√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))↑2)))
4440, 43mpbird 249 . . . . . . . . 9 (𝜑 → (abs‘Σ𝑘𝐴 (𝐵 · 𝐶)) ≤ (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))
4531, 33, 20, 34, 44letrd 10513 . . . . . . . 8 (𝜑 → Σ𝑘𝐴 (𝐵 · 𝐶) ≤ (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))
464a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℝ)
47 2pos 11461 . . . . . . . . . 10 0 < 2
4847a1i 11 . . . . . . . . 9 (𝜑 → 0 < 2)
49 lemul2 11206 . . . . . . . . 9 ((Σ𝑘𝐴 (𝐵 · 𝐶) ∈ ℝ ∧ (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (Σ𝑘𝐴 (𝐵 · 𝐶) ≤ (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) ↔ (2 · Σ𝑘𝐴 (𝐵 · 𝐶)) ≤ (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))))
5031, 20, 46, 48, 49syl112anc 1497 . . . . . . . 8 (𝜑 → (Σ𝑘𝐴 (𝐵 · 𝐶) ≤ (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) ↔ (2 · Σ𝑘𝐴 (𝐵 · 𝐶)) ≤ (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))))
5145, 50mpbid 224 . . . . . . 7 (𝜑 → (2 · Σ𝑘𝐴 (𝐵 · 𝐶)) ≤ (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))))
5230, 51eqbrtrrd 4897 . . . . . 6 (𝜑 → Σ𝑘𝐴 (2 · (𝐵 · 𝐶)) ≤ (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))))
5327, 22, 11, 52leadd2dd 10967 . . . . 5 (𝜑 → (Σ𝑘𝐴 (𝐵↑2) + Σ𝑘𝐴 (2 · (𝐵 · 𝐶))) ≤ (Σ𝑘𝐴 (𝐵↑2) + (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))))
5426, 53eqbrtrd 4895 . . . 4 (𝜑 → Σ𝑘𝐴 ((𝐵↑2) + (2 · (𝐵 · 𝐶))) ≤ (Σ𝑘𝐴 (𝐵↑2) + (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))))
5510, 23, 13, 54leadd1dd 10966 . . 3 (𝜑 → (Σ𝑘𝐴 ((𝐵↑2) + (2 · (𝐵 · 𝐶))) + Σ𝑘𝐴 (𝐶↑2)) ≤ ((Σ𝑘𝐴 (𝐵↑2) + (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))) + Σ𝑘𝐴 (𝐶↑2)))
562, 5readdcld 10386 . . . . . . 7 ((𝜑𝑘𝐴) → (𝐵 + 𝐶) ∈ ℝ)
5756resqcld 13331 . . . . . 6 ((𝜑𝑘𝐴) → ((𝐵 + 𝐶)↑2) ∈ ℝ)
581, 57fsumrecl 14842 . . . . 5 (𝜑 → Σ𝑘𝐴 ((𝐵 + 𝐶)↑2) ∈ ℝ)
5956sqge0d 13332 . . . . . 6 ((𝜑𝑘𝐴) → 0 ≤ ((𝐵 + 𝐶)↑2))
601, 57, 59fsumge0 14901 . . . . 5 (𝜑 → 0 ≤ Σ𝑘𝐴 ((𝐵 + 𝐶)↑2))
61 resqrtth 14373 . . . . 5 ((Σ𝑘𝐴 ((𝐵 + 𝐶)↑2) ∈ ℝ ∧ 0 ≤ Σ𝑘𝐴 ((𝐵 + 𝐶)↑2)) → ((√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2))↑2) = Σ𝑘𝐴 ((𝐵 + 𝐶)↑2))
6258, 60, 61syl2anc 579 . . . 4 (𝜑 → ((√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2))↑2) = Σ𝑘𝐴 ((𝐵 + 𝐶)↑2))
632recnd 10385 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
645recnd 10385 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
65 binom2 13273 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵 + 𝐶)↑2) = (((𝐵↑2) + (2 · (𝐵 · 𝐶))) + (𝐶↑2)))
6663, 64, 65syl2anc 579 . . . . . 6 ((𝜑𝑘𝐴) → ((𝐵 + 𝐶)↑2) = (((𝐵↑2) + (2 · (𝐵 · 𝐶))) + (𝐶↑2)))
6766sumeq2dv 14810 . . . . 5 (𝜑 → Σ𝑘𝐴 ((𝐵 + 𝐶)↑2) = Σ𝑘𝐴 (((𝐵↑2) + (2 · (𝐵 · 𝐶))) + (𝐶↑2)))
689recnd 10385 . . . . . 6 ((𝜑𝑘𝐴) → ((𝐵↑2) + (2 · (𝐵 · 𝐶))) ∈ ℂ)
6912recnd 10385 . . . . . 6 ((𝜑𝑘𝐴) → (𝐶↑2) ∈ ℂ)
701, 68, 69fsumadd 14847 . . . . 5 (𝜑 → Σ𝑘𝐴 (((𝐵↑2) + (2 · (𝐵 · 𝐶))) + (𝐶↑2)) = (Σ𝑘𝐴 ((𝐵↑2) + (2 · (𝐵 · 𝐶))) + Σ𝑘𝐴 (𝐶↑2)))
7167, 70eqtrd 2861 . . . 4 (𝜑 → Σ𝑘𝐴 ((𝐵 + 𝐶)↑2) = (Σ𝑘𝐴 ((𝐵↑2) + (2 · (𝐵 · 𝐶))) + Σ𝑘𝐴 (𝐶↑2)))
7262, 71eqtrd 2861 . . 3 (𝜑 → ((√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2))↑2) = (Σ𝑘𝐴 ((𝐵↑2) + (2 · (𝐵 · 𝐶))) + Σ𝑘𝐴 (𝐶↑2)))
7311, 16resqrtcld 14533 . . . . . 6 (𝜑 → (√‘Σ𝑘𝐴 (𝐵↑2)) ∈ ℝ)
7473recnd 10385 . . . . 5 (𝜑 → (√‘Σ𝑘𝐴 (𝐵↑2)) ∈ ℂ)
7513, 18resqrtcld 14533 . . . . . 6 (𝜑 → (√‘Σ𝑘𝐴 (𝐶↑2)) ∈ ℝ)
7675recnd 10385 . . . . 5 (𝜑 → (√‘Σ𝑘𝐴 (𝐶↑2)) ∈ ℂ)
77 binom2 13273 . . . . 5 (((√‘Σ𝑘𝐴 (𝐵↑2)) ∈ ℂ ∧ (√‘Σ𝑘𝐴 (𝐶↑2)) ∈ ℂ) → (((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2)))↑2) = ((((√‘Σ𝑘𝐴 (𝐵↑2))↑2) + (2 · ((√‘Σ𝑘𝐴 (𝐵↑2)) · (√‘Σ𝑘𝐴 (𝐶↑2))))) + ((√‘Σ𝑘𝐴 (𝐶↑2))↑2)))
7874, 76, 77syl2anc 579 . . . 4 (𝜑 → (((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2)))↑2) = ((((√‘Σ𝑘𝐴 (𝐵↑2))↑2) + (2 · ((√‘Σ𝑘𝐴 (𝐵↑2)) · (√‘Σ𝑘𝐴 (𝐶↑2))))) + ((√‘Σ𝑘𝐴 (𝐶↑2))↑2)))
79 resqrtth 14373 . . . . . . 7 ((Σ𝑘𝐴 (𝐵↑2) ∈ ℝ ∧ 0 ≤ Σ𝑘𝐴 (𝐵↑2)) → ((√‘Σ𝑘𝐴 (𝐵↑2))↑2) = Σ𝑘𝐴 (𝐵↑2))
8011, 16, 79syl2anc 579 . . . . . 6 (𝜑 → ((√‘Σ𝑘𝐴 (𝐵↑2))↑2) = Σ𝑘𝐴 (𝐵↑2))
8111, 16, 13, 18sqrtmuld 14540 . . . . . . . 8 (𝜑 → (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) = ((√‘Σ𝑘𝐴 (𝐵↑2)) · (√‘Σ𝑘𝐴 (𝐶↑2))))
8281eqcomd 2831 . . . . . . 7 (𝜑 → ((√‘Σ𝑘𝐴 (𝐵↑2)) · (√‘Σ𝑘𝐴 (𝐶↑2))) = (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))
8382oveq2d 6921 . . . . . 6 (𝜑 → (2 · ((√‘Σ𝑘𝐴 (𝐵↑2)) · (√‘Σ𝑘𝐴 (𝐶↑2)))) = (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))))
8480, 83oveq12d 6923 . . . . 5 (𝜑 → (((√‘Σ𝑘𝐴 (𝐵↑2))↑2) + (2 · ((√‘Σ𝑘𝐴 (𝐵↑2)) · (√‘Σ𝑘𝐴 (𝐶↑2))))) = (Σ𝑘𝐴 (𝐵↑2) + (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))))
85 resqrtth 14373 . . . . . 6 ((Σ𝑘𝐴 (𝐶↑2) ∈ ℝ ∧ 0 ≤ Σ𝑘𝐴 (𝐶↑2)) → ((√‘Σ𝑘𝐴 (𝐶↑2))↑2) = Σ𝑘𝐴 (𝐶↑2))
8613, 18, 85syl2anc 579 . . . . 5 (𝜑 → ((√‘Σ𝑘𝐴 (𝐶↑2))↑2) = Σ𝑘𝐴 (𝐶↑2))
8784, 86oveq12d 6923 . . . 4 (𝜑 → ((((√‘Σ𝑘𝐴 (𝐵↑2))↑2) + (2 · ((√‘Σ𝑘𝐴 (𝐵↑2)) · (√‘Σ𝑘𝐴 (𝐶↑2))))) + ((√‘Σ𝑘𝐴 (𝐶↑2))↑2)) = ((Σ𝑘𝐴 (𝐵↑2) + (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))) + Σ𝑘𝐴 (𝐶↑2)))
8878, 87eqtrd 2861 . . 3 (𝜑 → (((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2)))↑2) = ((Σ𝑘𝐴 (𝐵↑2) + (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))) + Σ𝑘𝐴 (𝐶↑2)))
8955, 72, 883brtr4d 4905 . 2 (𝜑 → ((√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2))↑2) ≤ (((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2)))↑2))
9058, 60resqrtcld 14533 . . 3 (𝜑 → (√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2)) ∈ ℝ)
9173, 75readdcld 10386 . . 3 (𝜑 → ((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2))) ∈ ℝ)
9258, 60sqrtge0d 14536 . . 3 (𝜑 → 0 ≤ (√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2)))
9311, 16sqrtge0d 14536 . . . 4 (𝜑 → 0 ≤ (√‘Σ𝑘𝐴 (𝐵↑2)))
9413, 18sqrtge0d 14536 . . . 4 (𝜑 → 0 ≤ (√‘Σ𝑘𝐴 (𝐶↑2)))
9573, 75, 93, 94addge0d 10928 . . 3 (𝜑 → 0 ≤ ((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2))))
9690, 91, 92, 95le2sqd 13340 . 2 (𝜑 → ((√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2)) ≤ ((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2))) ↔ ((√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2))↑2) ≤ (((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2)))↑2)))
9789, 96mpbird 249 1 (𝜑 → (√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2)) ≤ ((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1656  wcel 2164   class class class wbr 4873  cfv 6123  (class class class)co 6905  Fincfn 8222  cc 10250  cr 10251  0cc0 10252   + caddc 10255   · cmul 10257   < clt 10391  cle 10392  2c2 11406  cexp 13154  csqrt 14350  abscabs 14351  Σcsu 14793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-sup 8617  df-oi 8684  df-card 9078  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-n0 11619  df-z 11705  df-uz 11969  df-rp 12113  df-ico 12469  df-fz 12620  df-fzo 12761  df-seq 13096  df-exp 13155  df-hash 13411  df-cj 14216  df-re 14217  df-im 14218  df-sqrt 14352  df-abs 14353  df-clim 14596  df-sum 14794
This theorem is referenced by:  rrxmet  23576  rrnmet  34163
  Copyright terms: Public domain W3C validator