MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trirn Structured version   Visualization version   GIF version

Theorem trirn 25252
Description: Triangle inequality in R^n. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 4-Jun-2014.)
Hypotheses
Ref Expression
csbrn.1 (𝜑𝐴 ∈ Fin)
csbrn.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
csbrn.3 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
Assertion
Ref Expression
trirn (𝜑 → (√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2)) ≤ ((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2))))
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem trirn
StepHypRef Expression
1 csbrn.1 . . . . 5 (𝜑𝐴 ∈ Fin)
2 csbrn.2 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
32resqcld 14088 . . . . . 6 ((𝜑𝑘𝐴) → (𝐵↑2) ∈ ℝ)
4 2re 12284 . . . . . . 7 2 ∈ ℝ
5 csbrn.3 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ)
62, 5remulcld 11242 . . . . . . 7 ((𝜑𝑘𝐴) → (𝐵 · 𝐶) ∈ ℝ)
7 remulcl 11192 . . . . . . 7 ((2 ∈ ℝ ∧ (𝐵 · 𝐶) ∈ ℝ) → (2 · (𝐵 · 𝐶)) ∈ ℝ)
84, 6, 7sylancr 586 . . . . . 6 ((𝜑𝑘𝐴) → (2 · (𝐵 · 𝐶)) ∈ ℝ)
93, 8readdcld 11241 . . . . 5 ((𝜑𝑘𝐴) → ((𝐵↑2) + (2 · (𝐵 · 𝐶))) ∈ ℝ)
101, 9fsumrecl 15678 . . . 4 (𝜑 → Σ𝑘𝐴 ((𝐵↑2) + (2 · (𝐵 · 𝐶))) ∈ ℝ)
111, 3fsumrecl 15678 . . . . 5 (𝜑 → Σ𝑘𝐴 (𝐵↑2) ∈ ℝ)
125resqcld 14088 . . . . . . . . 9 ((𝜑𝑘𝐴) → (𝐶↑2) ∈ ℝ)
131, 12fsumrecl 15678 . . . . . . . 8 (𝜑 → Σ𝑘𝐴 (𝐶↑2) ∈ ℝ)
1411, 13remulcld 11242 . . . . . . 7 (𝜑 → (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)) ∈ ℝ)
152sqge0d 14100 . . . . . . . . 9 ((𝜑𝑘𝐴) → 0 ≤ (𝐵↑2))
161, 3, 15fsumge0 15739 . . . . . . . 8 (𝜑 → 0 ≤ Σ𝑘𝐴 (𝐵↑2))
175sqge0d 14100 . . . . . . . . 9 ((𝜑𝑘𝐴) → 0 ≤ (𝐶↑2))
181, 12, 17fsumge0 15739 . . . . . . . 8 (𝜑 → 0 ≤ Σ𝑘𝐴 (𝐶↑2))
1911, 13, 16, 18mulge0d 11789 . . . . . . 7 (𝜑 → 0 ≤ (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))
2014, 19resqrtcld 15362 . . . . . 6 (𝜑 → (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) ∈ ℝ)
21 remulcl 11192 . . . . . 6 ((2 ∈ ℝ ∧ (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) ∈ ℝ) → (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))) ∈ ℝ)
224, 20, 21sylancr 586 . . . . 5 (𝜑 → (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))) ∈ ℝ)
2311, 22readdcld 11241 . . . 4 (𝜑 → (Σ𝑘𝐴 (𝐵↑2) + (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))) ∈ ℝ)
243recnd 11240 . . . . . 6 ((𝜑𝑘𝐴) → (𝐵↑2) ∈ ℂ)
258recnd 11240 . . . . . 6 ((𝜑𝑘𝐴) → (2 · (𝐵 · 𝐶)) ∈ ℂ)
261, 24, 25fsumadd 15684 . . . . 5 (𝜑 → Σ𝑘𝐴 ((𝐵↑2) + (2 · (𝐵 · 𝐶))) = (Σ𝑘𝐴 (𝐵↑2) + Σ𝑘𝐴 (2 · (𝐵 · 𝐶))))
271, 8fsumrecl 15678 . . . . . 6 (𝜑 → Σ𝑘𝐴 (2 · (𝐵 · 𝐶)) ∈ ℝ)
28 2cnd 12288 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
296recnd 11240 . . . . . . . 8 ((𝜑𝑘𝐴) → (𝐵 · 𝐶) ∈ ℂ)
301, 28, 29fsummulc2 15728 . . . . . . 7 (𝜑 → (2 · Σ𝑘𝐴 (𝐵 · 𝐶)) = Σ𝑘𝐴 (2 · (𝐵 · 𝐶)))
311, 6fsumrecl 15678 . . . . . . . . 9 (𝜑 → Σ𝑘𝐴 (𝐵 · 𝐶) ∈ ℝ)
3231recnd 11240 . . . . . . . . . 10 (𝜑 → Σ𝑘𝐴 (𝐵 · 𝐶) ∈ ℂ)
3332abscld 15381 . . . . . . . . 9 (𝜑 → (abs‘Σ𝑘𝐴 (𝐵 · 𝐶)) ∈ ℝ)
3431leabsd 15359 . . . . . . . . 9 (𝜑 → Σ𝑘𝐴 (𝐵 · 𝐶) ≤ (abs‘Σ𝑘𝐴 (𝐵 · 𝐶)))
351, 2, 5csbren 25251 . . . . . . . . . . 11 (𝜑 → (Σ𝑘𝐴 (𝐵 · 𝐶)↑2) ≤ (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))
36 absresq 15247 . . . . . . . . . . . 12 𝑘𝐴 (𝐵 · 𝐶) ∈ ℝ → ((abs‘Σ𝑘𝐴 (𝐵 · 𝐶))↑2) = (Σ𝑘𝐴 (𝐵 · 𝐶)↑2))
3731, 36syl 17 . . . . . . . . . . 11 (𝜑 → ((abs‘Σ𝑘𝐴 (𝐵 · 𝐶))↑2) = (Σ𝑘𝐴 (𝐵 · 𝐶)↑2))
38 resqrtth 15200 . . . . . . . . . . . 12 (((Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)) ∈ ℝ ∧ 0 ≤ (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) → ((√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))↑2) = (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))
3914, 19, 38syl2anc 583 . . . . . . . . . . 11 (𝜑 → ((√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))↑2) = (Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))
4035, 37, 393brtr4d 5171 . . . . . . . . . 10 (𝜑 → ((abs‘Σ𝑘𝐴 (𝐵 · 𝐶))↑2) ≤ ((√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))↑2))
4132absge0d 15389 . . . . . . . . . . 11 (𝜑 → 0 ≤ (abs‘Σ𝑘𝐴 (𝐵 · 𝐶)))
4214, 19sqrtge0d 15365 . . . . . . . . . . 11 (𝜑 → 0 ≤ (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))
4333, 20, 41, 42le2sqd 14218 . . . . . . . . . 10 (𝜑 → ((abs‘Σ𝑘𝐴 (𝐵 · 𝐶)) ≤ (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) ↔ ((abs‘Σ𝑘𝐴 (𝐵 · 𝐶))↑2) ≤ ((√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))↑2)))
4440, 43mpbird 257 . . . . . . . . 9 (𝜑 → (abs‘Σ𝑘𝐴 (𝐵 · 𝐶)) ≤ (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))
4531, 33, 20, 34, 44letrd 11369 . . . . . . . 8 (𝜑 → Σ𝑘𝐴 (𝐵 · 𝐶) ≤ (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))
464a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℝ)
47 2pos 12313 . . . . . . . . . 10 0 < 2
4847a1i 11 . . . . . . . . 9 (𝜑 → 0 < 2)
49 lemul2 12065 . . . . . . . . 9 ((Σ𝑘𝐴 (𝐵 · 𝐶) ∈ ℝ ∧ (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (Σ𝑘𝐴 (𝐵 · 𝐶) ≤ (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) ↔ (2 · Σ𝑘𝐴 (𝐵 · 𝐶)) ≤ (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))))
5031, 20, 46, 48, 49syl112anc 1371 . . . . . . . 8 (𝜑 → (Σ𝑘𝐴 (𝐵 · 𝐶) ≤ (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) ↔ (2 · Σ𝑘𝐴 (𝐵 · 𝐶)) ≤ (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))))
5145, 50mpbid 231 . . . . . . 7 (𝜑 → (2 · Σ𝑘𝐴 (𝐵 · 𝐶)) ≤ (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))))
5230, 51eqbrtrrd 5163 . . . . . 6 (𝜑 → Σ𝑘𝐴 (2 · (𝐵 · 𝐶)) ≤ (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))))
5327, 22, 11, 52leadd2dd 11827 . . . . 5 (𝜑 → (Σ𝑘𝐴 (𝐵↑2) + Σ𝑘𝐴 (2 · (𝐵 · 𝐶))) ≤ (Σ𝑘𝐴 (𝐵↑2) + (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))))
5426, 53eqbrtrd 5161 . . . 4 (𝜑 → Σ𝑘𝐴 ((𝐵↑2) + (2 · (𝐵 · 𝐶))) ≤ (Σ𝑘𝐴 (𝐵↑2) + (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))))
5510, 23, 13, 54leadd1dd 11826 . . 3 (𝜑 → (Σ𝑘𝐴 ((𝐵↑2) + (2 · (𝐵 · 𝐶))) + Σ𝑘𝐴 (𝐶↑2)) ≤ ((Σ𝑘𝐴 (𝐵↑2) + (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))) + Σ𝑘𝐴 (𝐶↑2)))
562, 5readdcld 11241 . . . . . . 7 ((𝜑𝑘𝐴) → (𝐵 + 𝐶) ∈ ℝ)
5756resqcld 14088 . . . . . 6 ((𝜑𝑘𝐴) → ((𝐵 + 𝐶)↑2) ∈ ℝ)
581, 57fsumrecl 15678 . . . . 5 (𝜑 → Σ𝑘𝐴 ((𝐵 + 𝐶)↑2) ∈ ℝ)
5956sqge0d 14100 . . . . . 6 ((𝜑𝑘𝐴) → 0 ≤ ((𝐵 + 𝐶)↑2))
601, 57, 59fsumge0 15739 . . . . 5 (𝜑 → 0 ≤ Σ𝑘𝐴 ((𝐵 + 𝐶)↑2))
61 resqrtth 15200 . . . . 5 ((Σ𝑘𝐴 ((𝐵 + 𝐶)↑2) ∈ ℝ ∧ 0 ≤ Σ𝑘𝐴 ((𝐵 + 𝐶)↑2)) → ((√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2))↑2) = Σ𝑘𝐴 ((𝐵 + 𝐶)↑2))
6258, 60, 61syl2anc 583 . . . 4 (𝜑 → ((√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2))↑2) = Σ𝑘𝐴 ((𝐵 + 𝐶)↑2))
632recnd 11240 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
645recnd 11240 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
65 binom2 14179 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵 + 𝐶)↑2) = (((𝐵↑2) + (2 · (𝐵 · 𝐶))) + (𝐶↑2)))
6663, 64, 65syl2anc 583 . . . . . 6 ((𝜑𝑘𝐴) → ((𝐵 + 𝐶)↑2) = (((𝐵↑2) + (2 · (𝐵 · 𝐶))) + (𝐶↑2)))
6766sumeq2dv 15647 . . . . 5 (𝜑 → Σ𝑘𝐴 ((𝐵 + 𝐶)↑2) = Σ𝑘𝐴 (((𝐵↑2) + (2 · (𝐵 · 𝐶))) + (𝐶↑2)))
689recnd 11240 . . . . . 6 ((𝜑𝑘𝐴) → ((𝐵↑2) + (2 · (𝐵 · 𝐶))) ∈ ℂ)
6912recnd 11240 . . . . . 6 ((𝜑𝑘𝐴) → (𝐶↑2) ∈ ℂ)
701, 68, 69fsumadd 15684 . . . . 5 (𝜑 → Σ𝑘𝐴 (((𝐵↑2) + (2 · (𝐵 · 𝐶))) + (𝐶↑2)) = (Σ𝑘𝐴 ((𝐵↑2) + (2 · (𝐵 · 𝐶))) + Σ𝑘𝐴 (𝐶↑2)))
7167, 70eqtrd 2764 . . . 4 (𝜑 → Σ𝑘𝐴 ((𝐵 + 𝐶)↑2) = (Σ𝑘𝐴 ((𝐵↑2) + (2 · (𝐵 · 𝐶))) + Σ𝑘𝐴 (𝐶↑2)))
7262, 71eqtrd 2764 . . 3 (𝜑 → ((√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2))↑2) = (Σ𝑘𝐴 ((𝐵↑2) + (2 · (𝐵 · 𝐶))) + Σ𝑘𝐴 (𝐶↑2)))
7311, 16resqrtcld 15362 . . . . . 6 (𝜑 → (√‘Σ𝑘𝐴 (𝐵↑2)) ∈ ℝ)
7473recnd 11240 . . . . 5 (𝜑 → (√‘Σ𝑘𝐴 (𝐵↑2)) ∈ ℂ)
7513, 18resqrtcld 15362 . . . . . 6 (𝜑 → (√‘Σ𝑘𝐴 (𝐶↑2)) ∈ ℝ)
7675recnd 11240 . . . . 5 (𝜑 → (√‘Σ𝑘𝐴 (𝐶↑2)) ∈ ℂ)
77 binom2 14179 . . . . 5 (((√‘Σ𝑘𝐴 (𝐵↑2)) ∈ ℂ ∧ (√‘Σ𝑘𝐴 (𝐶↑2)) ∈ ℂ) → (((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2)))↑2) = ((((√‘Σ𝑘𝐴 (𝐵↑2))↑2) + (2 · ((√‘Σ𝑘𝐴 (𝐵↑2)) · (√‘Σ𝑘𝐴 (𝐶↑2))))) + ((√‘Σ𝑘𝐴 (𝐶↑2))↑2)))
7874, 76, 77syl2anc 583 . . . 4 (𝜑 → (((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2)))↑2) = ((((√‘Σ𝑘𝐴 (𝐵↑2))↑2) + (2 · ((√‘Σ𝑘𝐴 (𝐵↑2)) · (√‘Σ𝑘𝐴 (𝐶↑2))))) + ((√‘Σ𝑘𝐴 (𝐶↑2))↑2)))
79 resqrtth 15200 . . . . . . 7 ((Σ𝑘𝐴 (𝐵↑2) ∈ ℝ ∧ 0 ≤ Σ𝑘𝐴 (𝐵↑2)) → ((√‘Σ𝑘𝐴 (𝐵↑2))↑2) = Σ𝑘𝐴 (𝐵↑2))
8011, 16, 79syl2anc 583 . . . . . 6 (𝜑 → ((√‘Σ𝑘𝐴 (𝐵↑2))↑2) = Σ𝑘𝐴 (𝐵↑2))
8111, 16, 13, 18sqrtmuld 15369 . . . . . . . 8 (𝜑 → (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))) = ((√‘Σ𝑘𝐴 (𝐵↑2)) · (√‘Σ𝑘𝐴 (𝐶↑2))))
8281eqcomd 2730 . . . . . . 7 (𝜑 → ((√‘Σ𝑘𝐴 (𝐵↑2)) · (√‘Σ𝑘𝐴 (𝐶↑2))) = (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))
8382oveq2d 7418 . . . . . 6 (𝜑 → (2 · ((√‘Σ𝑘𝐴 (𝐵↑2)) · (√‘Σ𝑘𝐴 (𝐶↑2)))) = (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2)))))
8480, 83oveq12d 7420 . . . . 5 (𝜑 → (((√‘Σ𝑘𝐴 (𝐵↑2))↑2) + (2 · ((√‘Σ𝑘𝐴 (𝐵↑2)) · (√‘Σ𝑘𝐴 (𝐶↑2))))) = (Σ𝑘𝐴 (𝐵↑2) + (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))))
85 resqrtth 15200 . . . . . 6 ((Σ𝑘𝐴 (𝐶↑2) ∈ ℝ ∧ 0 ≤ Σ𝑘𝐴 (𝐶↑2)) → ((√‘Σ𝑘𝐴 (𝐶↑2))↑2) = Σ𝑘𝐴 (𝐶↑2))
8613, 18, 85syl2anc 583 . . . . 5 (𝜑 → ((√‘Σ𝑘𝐴 (𝐶↑2))↑2) = Σ𝑘𝐴 (𝐶↑2))
8784, 86oveq12d 7420 . . . 4 (𝜑 → ((((√‘Σ𝑘𝐴 (𝐵↑2))↑2) + (2 · ((√‘Σ𝑘𝐴 (𝐵↑2)) · (√‘Σ𝑘𝐴 (𝐶↑2))))) + ((√‘Σ𝑘𝐴 (𝐶↑2))↑2)) = ((Σ𝑘𝐴 (𝐵↑2) + (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))) + Σ𝑘𝐴 (𝐶↑2)))
8878, 87eqtrd 2764 . . 3 (𝜑 → (((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2)))↑2) = ((Σ𝑘𝐴 (𝐵↑2) + (2 · (√‘(Σ𝑘𝐴 (𝐵↑2) · Σ𝑘𝐴 (𝐶↑2))))) + Σ𝑘𝐴 (𝐶↑2)))
8955, 72, 883brtr4d 5171 . 2 (𝜑 → ((√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2))↑2) ≤ (((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2)))↑2))
9058, 60resqrtcld 15362 . . 3 (𝜑 → (√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2)) ∈ ℝ)
9173, 75readdcld 11241 . . 3 (𝜑 → ((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2))) ∈ ℝ)
9258, 60sqrtge0d 15365 . . 3 (𝜑 → 0 ≤ (√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2)))
9311, 16sqrtge0d 15365 . . . 4 (𝜑 → 0 ≤ (√‘Σ𝑘𝐴 (𝐵↑2)))
9413, 18sqrtge0d 15365 . . . 4 (𝜑 → 0 ≤ (√‘Σ𝑘𝐴 (𝐶↑2)))
9573, 75, 93, 94addge0d 11788 . . 3 (𝜑 → 0 ≤ ((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2))))
9690, 91, 92, 95le2sqd 14218 . 2 (𝜑 → ((√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2)) ≤ ((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2))) ↔ ((√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2))↑2) ≤ (((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2)))↑2)))
9789, 96mpbird 257 1 (𝜑 → (√‘Σ𝑘𝐴 ((𝐵 + 𝐶)↑2)) ≤ ((√‘Σ𝑘𝐴 (𝐵↑2)) + (√‘Σ𝑘𝐴 (𝐶↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098   class class class wbr 5139  cfv 6534  (class class class)co 7402  Fincfn 8936  cc 11105  cr 11106  0cc0 11107   + caddc 11110   · cmul 11112   < clt 11246  cle 11247  2c2 12265  cexp 14025  csqrt 15178  abscabs 15179  Σcsu 15630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-inf2 9633  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-se 5623  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-isom 6543  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-sup 9434  df-oi 9502  df-card 9931  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-div 11870  df-nn 12211  df-2 12273  df-3 12274  df-4 12275  df-n0 12471  df-z 12557  df-uz 12821  df-rp 12973  df-ico 13328  df-fz 13483  df-fzo 13626  df-seq 13965  df-exp 14026  df-hash 14289  df-cj 15044  df-re 15045  df-im 15046  df-sqrt 15180  df-abs 15181  df-clim 15430  df-sum 15631
This theorem is referenced by:  rrxmet  25260  rrnmet  37191
  Copyright terms: Public domain W3C validator