Proof of Theorem lmodfopne
| Step | Hyp | Ref
| Expression |
| 1 | | lmodfopne.t |
. . . . . 6
⊢ · = (
·sf ‘𝑊) |
| 2 | | lmodfopne.a |
. . . . . 6
⊢ + =
(+𝑓‘𝑊) |
| 3 | | lmodfopne.v |
. . . . . 6
⊢ 𝑉 = (Base‘𝑊) |
| 4 | | lmodfopne.s |
. . . . . 6
⊢ 𝑆 = (Scalar‘𝑊) |
| 5 | | lmodfopne.k |
. . . . . 6
⊢ 𝐾 = (Base‘𝑆) |
| 6 | | lmodfopne.0 |
. . . . . 6
⊢ 0 =
(0g‘𝑆) |
| 7 | | lmodfopne.1 |
. . . . . 6
⊢ 1 =
(1r‘𝑆) |
| 8 | 1, 2, 3, 4, 5, 6, 7 | lmodfopnelem2 20897 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ + = · )
→ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉)) |
| 9 | | simpl 482 |
. . . . . . . 8
⊢ (( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉) → 0 ∈ 𝑉) |
| 10 | | eqid 2737 |
. . . . . . . . . 10
⊢
(0g‘𝑊) = (0g‘𝑊) |
| 11 | 3, 10 | lmod0vcl 20889 |
. . . . . . . . 9
⊢ (𝑊 ∈ LMod →
(0g‘𝑊)
∈ 𝑉) |
| 12 | 11 | adantr 480 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ + = · )
→ (0g‘𝑊) ∈ 𝑉) |
| 13 | | eqid 2737 |
. . . . . . . . . 10
⊢
(+g‘𝑊) = (+g‘𝑊) |
| 14 | 3, 13, 2 | plusfval 18660 |
. . . . . . . . 9
⊢ (( 0 ∈ 𝑉 ∧
(0g‘𝑊)
∈ 𝑉) → ( 0 +
(0g‘𝑊)) =
( 0
(+g‘𝑊)(0g‘𝑊))) |
| 15 | 14 | eqcomd 2743 |
. . . . . . . 8
⊢ (( 0 ∈ 𝑉 ∧
(0g‘𝑊)
∈ 𝑉) → ( 0
(+g‘𝑊)(0g‘𝑊)) = ( 0 + (0g‘𝑊))) |
| 16 | 9, 12, 15 | syl2anr 597 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 0 (+g‘𝑊)(0g‘𝑊)) = ( 0 + (0g‘𝑊))) |
| 17 | | oveq 7437 |
. . . . . . . 8
⊢ ( + = · →
( 0 +
(0g‘𝑊)) =
( 0 ·
(0g‘𝑊))) |
| 18 | 17 | ad2antlr 727 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 0 + (0g‘𝑊)) = ( 0 ·
(0g‘𝑊))) |
| 19 | 16, 18 | eqtrd 2777 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 0 (+g‘𝑊)(0g‘𝑊)) = ( 0 ·
(0g‘𝑊))) |
| 20 | | lmodgrp 20865 |
. . . . . . . 8
⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
| 21 | 20 | adantr 480 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ + = · )
→ 𝑊 ∈
Grp) |
| 22 | 3, 13, 10 | grprid 18986 |
. . . . . . 7
⊢ ((𝑊 ∈ Grp ∧ 0 ∈ 𝑉) → ( 0 (+g‘𝑊)(0g‘𝑊)) = 0 ) |
| 23 | 21, 9, 22 | syl2an 596 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 0 (+g‘𝑊)(0g‘𝑊)) = 0 ) |
| 24 | 4, 5, 6 | lmod0cl 20886 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ LMod → 0 ∈ 𝐾) |
| 25 | 24, 11 | jca 511 |
. . . . . . . . . 10
⊢ (𝑊 ∈ LMod → ( 0 ∈ 𝐾 ∧
(0g‘𝑊)
∈ 𝑉)) |
| 26 | 25 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑊 ∈ LMod ∧ + = · )
→ ( 0 ∈ 𝐾 ∧ (0g‘𝑊) ∈ 𝑉)) |
| 27 | 26 | adantr 480 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 0 ∈ 𝐾 ∧ (0g‘𝑊) ∈ 𝑉)) |
| 28 | | eqid 2737 |
. . . . . . . . 9
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) |
| 29 | 3, 4, 5, 1, 28 | scafval 20879 |
. . . . . . . 8
⊢ (( 0 ∈ 𝐾 ∧
(0g‘𝑊)
∈ 𝑉) → ( 0 ·
(0g‘𝑊)) =
( 0 (
·𝑠 ‘𝑊)(0g‘𝑊))) |
| 30 | 27, 29 | syl 17 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 0 ·
(0g‘𝑊)) =
( 0 (
·𝑠 ‘𝑊)(0g‘𝑊))) |
| 31 | 24 | ancli 548 |
. . . . . . . . . 10
⊢ (𝑊 ∈ LMod → (𝑊 ∈ LMod ∧ 0 ∈ 𝐾)) |
| 32 | 31 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑊 ∈ LMod ∧ + = · )
→ (𝑊 ∈ LMod ∧
0 ∈
𝐾)) |
| 33 | 32 | adantr 480 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → (𝑊 ∈ LMod ∧ 0 ∈ 𝐾)) |
| 34 | 4, 28, 5, 10 | lmodvs0 20894 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ 0 ∈ 𝐾) → ( 0 (
·𝑠 ‘𝑊)(0g‘𝑊)) = (0g‘𝑊)) |
| 35 | 33, 34 | syl 17 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 0 (
·𝑠 ‘𝑊)(0g‘𝑊)) = (0g‘𝑊)) |
| 36 | | simpr 484 |
. . . . . . . . . 10
⊢ (( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉) → 1 ∈ 𝑉) |
| 37 | 3, 13, 10 | grprid 18986 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ Grp ∧ 1 ∈ 𝑉) → ( 1 (+g‘𝑊)(0g‘𝑊)) = 1 ) |
| 38 | 21, 36, 37 | syl2an 596 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 1 (+g‘𝑊)(0g‘𝑊)) = 1 ) |
| 39 | 4, 5, 7 | lmod1cl 20887 |
. . . . . . . . . . . 12
⊢ (𝑊 ∈ LMod → 1 ∈ 𝐾) |
| 40 | 39 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑊 ∈ LMod ∧ + = · )
→ 1
∈ 𝐾) |
| 41 | 3, 4, 5, 1, 28 | scafval 20879 |
. . . . . . . . . . 11
⊢ (( 1 ∈ 𝐾 ∧ 1 ∈ 𝑉) → ( 1 · 1 ) = ( 1 (
·𝑠 ‘𝑊) 1 )) |
| 42 | 40, 36, 41 | syl2an 596 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 1 · 1 ) = ( 1 (
·𝑠 ‘𝑊) 1 )) |
| 43 | 3, 4, 28, 7 | lmodvs1 20888 |
. . . . . . . . . . 11
⊢ ((𝑊 ∈ LMod ∧ 1 ∈ 𝑉) → ( 1 (
·𝑠 ‘𝑊) 1 ) = 1 ) |
| 44 | 43 | ad2ant2rl 749 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 1 (
·𝑠 ‘𝑊) 1 ) = 1 ) |
| 45 | 42, 44 | eqtrd 2777 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 1 · 1 ) = 1 ) |
| 46 | | oveq 7437 |
. . . . . . . . . . . 12
⊢ ( + = · →
( 1 + 1 ) = ( 1 · 1
)) |
| 47 | 46 | eqcomd 2743 |
. . . . . . . . . . 11
⊢ ( + = · →
( 1 · 1 ) = ( 1 + 1
)) |
| 48 | 47 | ad2antlr 727 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 1 · 1 ) = ( 1 + 1 )) |
| 49 | 36, 36 | jca 511 |
. . . . . . . . . . . 12
⊢ (( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉) → ( 1 ∈ 𝑉 ∧ 1 ∈ 𝑉)) |
| 50 | 49 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 1 ∈ 𝑉 ∧ 1 ∈ 𝑉)) |
| 51 | 3, 13, 2 | plusfval 18660 |
. . . . . . . . . . 11
⊢ (( 1 ∈ 𝑉 ∧ 1 ∈ 𝑉) → ( 1 + 1 ) = ( 1 (+g‘𝑊) 1 )) |
| 52 | 50, 51 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 1 + 1 ) = ( 1 (+g‘𝑊) 1 )) |
| 53 | 48, 52 | eqtrd 2777 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 1 · 1 ) = ( 1 (+g‘𝑊) 1 )) |
| 54 | 38, 45, 53 | 3eqtr2d 2783 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 1 (+g‘𝑊)(0g‘𝑊)) = ( 1 (+g‘𝑊) 1 )) |
| 55 | 21 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → 𝑊 ∈ Grp) |
| 56 | 12 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) →
(0g‘𝑊)
∈ 𝑉) |
| 57 | 36 | adantl 481 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → 1 ∈ 𝑉) |
| 58 | 3, 13 | grplcan 19018 |
. . . . . . . . 9
⊢ ((𝑊 ∈ Grp ∧
((0g‘𝑊)
∈ 𝑉 ∧ 1 ∈ 𝑉 ∧ 1 ∈ 𝑉)) → (( 1 (+g‘𝑊)(0g‘𝑊)) = ( 1 (+g‘𝑊) 1 ) ↔
(0g‘𝑊) =
1
)) |
| 59 | 55, 56, 57, 57, 58 | syl13anc 1374 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → (( 1 (+g‘𝑊)(0g‘𝑊)) = ( 1 (+g‘𝑊) 1 ) ↔
(0g‘𝑊) =
1
)) |
| 60 | 54, 59 | mpbid 232 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) →
(0g‘𝑊) =
1
) |
| 61 | 30, 35, 60 | 3eqtrd 2781 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 0 ·
(0g‘𝑊)) =
1
) |
| 62 | 19, 23, 61 | 3eqtr3rd 2786 |
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → 1 = 0 ) |
| 63 | 8, 62 | mpdan 687 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ + = · )
→ 1
= 0
) |
| 64 | 63 | ex 412 |
. . 3
⊢ (𝑊 ∈ LMod → ( + = · →
1 = 0
)) |
| 65 | 64 | necon3d 2961 |
. 2
⊢ (𝑊 ∈ LMod → ( 1 ≠ 0 → + ≠ ·
)) |
| 66 | 65 | imp 406 |
1
⊢ ((𝑊 ∈ LMod ∧ 1 ≠ 0 ) →
+ ≠
·
) |