Proof of Theorem lmodfopne
Step | Hyp | Ref
| Expression |
1 | | lmodfopne.t |
. . . . . 6
⊢ · = (
·sf ‘𝑊) |
2 | | lmodfopne.a |
. . . . . 6
⊢ + =
(+𝑓‘𝑊) |
3 | | lmodfopne.v |
. . . . . 6
⊢ 𝑉 = (Base‘𝑊) |
4 | | lmodfopne.s |
. . . . . 6
⊢ 𝑆 = (Scalar‘𝑊) |
5 | | lmodfopne.k |
. . . . . 6
⊢ 𝐾 = (Base‘𝑆) |
6 | | lmodfopne.0 |
. . . . . 6
⊢ 0 =
(0g‘𝑆) |
7 | | lmodfopne.1 |
. . . . . 6
⊢ 1 =
(1r‘𝑆) |
8 | 1, 2, 3, 4, 5, 6, 7 | lmodfopnelem2 20160 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ + = · )
→ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉)) |
9 | | simpl 483 |
. . . . . . . 8
⊢ (( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉) → 0 ∈ 𝑉) |
10 | | eqid 2738 |
. . . . . . . . . 10
⊢
(0g‘𝑊) = (0g‘𝑊) |
11 | 3, 10 | lmod0vcl 20152 |
. . . . . . . . 9
⊢ (𝑊 ∈ LMod →
(0g‘𝑊)
∈ 𝑉) |
12 | 11 | adantr 481 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ + = · )
→ (0g‘𝑊) ∈ 𝑉) |
13 | | eqid 2738 |
. . . . . . . . . 10
⊢
(+g‘𝑊) = (+g‘𝑊) |
14 | 3, 13, 2 | plusfval 18333 |
. . . . . . . . 9
⊢ (( 0 ∈ 𝑉 ∧
(0g‘𝑊)
∈ 𝑉) → ( 0 +
(0g‘𝑊)) =
( 0
(+g‘𝑊)(0g‘𝑊))) |
15 | 14 | eqcomd 2744 |
. . . . . . . 8
⊢ (( 0 ∈ 𝑉 ∧
(0g‘𝑊)
∈ 𝑉) → ( 0
(+g‘𝑊)(0g‘𝑊)) = ( 0 + (0g‘𝑊))) |
16 | 9, 12, 15 | syl2anr 597 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 0 (+g‘𝑊)(0g‘𝑊)) = ( 0 + (0g‘𝑊))) |
17 | | oveq 7281 |
. . . . . . . 8
⊢ ( + = · →
( 0 +
(0g‘𝑊)) =
( 0 ·
(0g‘𝑊))) |
18 | 17 | ad2antlr 724 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 0 + (0g‘𝑊)) = ( 0 ·
(0g‘𝑊))) |
19 | 16, 18 | eqtrd 2778 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 0 (+g‘𝑊)(0g‘𝑊)) = ( 0 ·
(0g‘𝑊))) |
20 | | lmodgrp 20130 |
. . . . . . . 8
⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
21 | 20 | adantr 481 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ + = · )
→ 𝑊 ∈
Grp) |
22 | 3, 13, 10 | grprid 18610 |
. . . . . . 7
⊢ ((𝑊 ∈ Grp ∧ 0 ∈ 𝑉) → ( 0 (+g‘𝑊)(0g‘𝑊)) = 0 ) |
23 | 21, 9, 22 | syl2an 596 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 0 (+g‘𝑊)(0g‘𝑊)) = 0 ) |
24 | 4, 5, 6 | lmod0cl 20149 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ LMod → 0 ∈ 𝐾) |
25 | 24, 11 | jca 512 |
. . . . . . . . . 10
⊢ (𝑊 ∈ LMod → ( 0 ∈ 𝐾 ∧
(0g‘𝑊)
∈ 𝑉)) |
26 | 25 | adantr 481 |
. . . . . . . . 9
⊢ ((𝑊 ∈ LMod ∧ + = · )
→ ( 0 ∈ 𝐾 ∧ (0g‘𝑊) ∈ 𝑉)) |
27 | 26 | adantr 481 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 0 ∈ 𝐾 ∧ (0g‘𝑊) ∈ 𝑉)) |
28 | | eqid 2738 |
. . . . . . . . 9
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) |
29 | 3, 4, 5, 1, 28 | scafval 20142 |
. . . . . . . 8
⊢ (( 0 ∈ 𝐾 ∧
(0g‘𝑊)
∈ 𝑉) → ( 0 ·
(0g‘𝑊)) =
( 0 (
·𝑠 ‘𝑊)(0g‘𝑊))) |
30 | 27, 29 | syl 17 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 0 ·
(0g‘𝑊)) =
( 0 (
·𝑠 ‘𝑊)(0g‘𝑊))) |
31 | 24 | ancli 549 |
. . . . . . . . . 10
⊢ (𝑊 ∈ LMod → (𝑊 ∈ LMod ∧ 0 ∈ 𝐾)) |
32 | 31 | adantr 481 |
. . . . . . . . 9
⊢ ((𝑊 ∈ LMod ∧ + = · )
→ (𝑊 ∈ LMod ∧
0 ∈
𝐾)) |
33 | 32 | adantr 481 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → (𝑊 ∈ LMod ∧ 0 ∈ 𝐾)) |
34 | 4, 28, 5, 10 | lmodvs0 20157 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ 0 ∈ 𝐾) → ( 0 (
·𝑠 ‘𝑊)(0g‘𝑊)) = (0g‘𝑊)) |
35 | 33, 34 | syl 17 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 0 (
·𝑠 ‘𝑊)(0g‘𝑊)) = (0g‘𝑊)) |
36 | | simpr 485 |
. . . . . . . . . 10
⊢ (( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉) → 1 ∈ 𝑉) |
37 | 3, 13, 10 | grprid 18610 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ Grp ∧ 1 ∈ 𝑉) → ( 1 (+g‘𝑊)(0g‘𝑊)) = 1 ) |
38 | 21, 36, 37 | syl2an 596 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 1 (+g‘𝑊)(0g‘𝑊)) = 1 ) |
39 | 4, 5, 7 | lmod1cl 20150 |
. . . . . . . . . . . 12
⊢ (𝑊 ∈ LMod → 1 ∈ 𝐾) |
40 | 39 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑊 ∈ LMod ∧ + = · )
→ 1
∈ 𝐾) |
41 | 3, 4, 5, 1, 28 | scafval 20142 |
. . . . . . . . . . 11
⊢ (( 1 ∈ 𝐾 ∧ 1 ∈ 𝑉) → ( 1 · 1 ) = ( 1 (
·𝑠 ‘𝑊) 1 )) |
42 | 40, 36, 41 | syl2an 596 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 1 · 1 ) = ( 1 (
·𝑠 ‘𝑊) 1 )) |
43 | 3, 4, 28, 7 | lmodvs1 20151 |
. . . . . . . . . . 11
⊢ ((𝑊 ∈ LMod ∧ 1 ∈ 𝑉) → ( 1 (
·𝑠 ‘𝑊) 1 ) = 1 ) |
44 | 43 | ad2ant2rl 746 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 1 (
·𝑠 ‘𝑊) 1 ) = 1 ) |
45 | 42, 44 | eqtrd 2778 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 1 · 1 ) = 1 ) |
46 | | oveq 7281 |
. . . . . . . . . . . 12
⊢ ( + = · →
( 1 + 1 ) = ( 1 · 1
)) |
47 | 46 | eqcomd 2744 |
. . . . . . . . . . 11
⊢ ( + = · →
( 1 · 1 ) = ( 1 + 1
)) |
48 | 47 | ad2antlr 724 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 1 · 1 ) = ( 1 + 1 )) |
49 | 36, 36 | jca 512 |
. . . . . . . . . . . 12
⊢ (( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉) → ( 1 ∈ 𝑉 ∧ 1 ∈ 𝑉)) |
50 | 49 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 1 ∈ 𝑉 ∧ 1 ∈ 𝑉)) |
51 | 3, 13, 2 | plusfval 18333 |
. . . . . . . . . . 11
⊢ (( 1 ∈ 𝑉 ∧ 1 ∈ 𝑉) → ( 1 + 1 ) = ( 1 (+g‘𝑊) 1 )) |
52 | 50, 51 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 1 + 1 ) = ( 1 (+g‘𝑊) 1 )) |
53 | 48, 52 | eqtrd 2778 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 1 · 1 ) = ( 1 (+g‘𝑊) 1 )) |
54 | 38, 45, 53 | 3eqtr2d 2784 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 1 (+g‘𝑊)(0g‘𝑊)) = ( 1 (+g‘𝑊) 1 )) |
55 | 21 | adantr 481 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → 𝑊 ∈ Grp) |
56 | 12 | adantr 481 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) →
(0g‘𝑊)
∈ 𝑉) |
57 | 36 | adantl 482 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → 1 ∈ 𝑉) |
58 | 3, 13 | grplcan 18637 |
. . . . . . . . 9
⊢ ((𝑊 ∈ Grp ∧
((0g‘𝑊)
∈ 𝑉 ∧ 1 ∈ 𝑉 ∧ 1 ∈ 𝑉)) → (( 1 (+g‘𝑊)(0g‘𝑊)) = ( 1 (+g‘𝑊) 1 ) ↔
(0g‘𝑊) =
1
)) |
59 | 55, 56, 57, 57, 58 | syl13anc 1371 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → (( 1 (+g‘𝑊)(0g‘𝑊)) = ( 1 (+g‘𝑊) 1 ) ↔
(0g‘𝑊) =
1
)) |
60 | 54, 59 | mpbid 231 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) →
(0g‘𝑊) =
1
) |
61 | 30, 35, 60 | 3eqtrd 2782 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → ( 0 ·
(0g‘𝑊)) =
1
) |
62 | 19, 23, 61 | 3eqtr3rd 2787 |
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ + = · )
∧ ( 0
∈ 𝑉 ∧ 1 ∈ 𝑉)) → 1 = 0 ) |
63 | 8, 62 | mpdan 684 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ + = · )
→ 1
= 0
) |
64 | 63 | ex 413 |
. . 3
⊢ (𝑊 ∈ LMod → ( + = · →
1 = 0
)) |
65 | 64 | necon3d 2964 |
. 2
⊢ (𝑊 ∈ LMod → ( 1 ≠ 0 → + ≠ ·
)) |
66 | 65 | imp 407 |
1
⊢ ((𝑊 ∈ LMod ∧ 1 ≠ 0 ) →
+ ≠
·
) |