MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodfopne Structured version   Visualization version   GIF version

Theorem lmodfopne 20161
Description: The (functionalized) operations of a left module (over a nonzero ring) cannot be identical. (Contributed by NM, 31-May-2008.) (Revised by AV, 2-Oct-2021.)
Hypotheses
Ref Expression
lmodfopne.t · = ( ·sf𝑊)
lmodfopne.a + = (+𝑓𝑊)
lmodfopne.v 𝑉 = (Base‘𝑊)
lmodfopne.s 𝑆 = (Scalar‘𝑊)
lmodfopne.k 𝐾 = (Base‘𝑆)
lmodfopne.0 0 = (0g𝑆)
lmodfopne.1 1 = (1r𝑆)
Assertion
Ref Expression
lmodfopne ((𝑊 ∈ LMod ∧ 10 ) → +· )

Proof of Theorem lmodfopne
StepHypRef Expression
1 lmodfopne.t . . . . . 6 · = ( ·sf𝑊)
2 lmodfopne.a . . . . . 6 + = (+𝑓𝑊)
3 lmodfopne.v . . . . . 6 𝑉 = (Base‘𝑊)
4 lmodfopne.s . . . . . 6 𝑆 = (Scalar‘𝑊)
5 lmodfopne.k . . . . . 6 𝐾 = (Base‘𝑆)
6 lmodfopne.0 . . . . . 6 0 = (0g𝑆)
7 lmodfopne.1 . . . . . 6 1 = (1r𝑆)
81, 2, 3, 4, 5, 6, 7lmodfopnelem2 20160 . . . . 5 ((𝑊 ∈ LMod ∧ + = · ) → ( 0𝑉1𝑉))
9 simpl 483 . . . . . . . 8 (( 0𝑉1𝑉) → 0𝑉)
10 eqid 2738 . . . . . . . . . 10 (0g𝑊) = (0g𝑊)
113, 10lmod0vcl 20152 . . . . . . . . 9 (𝑊 ∈ LMod → (0g𝑊) ∈ 𝑉)
1211adantr 481 . . . . . . . 8 ((𝑊 ∈ LMod ∧ + = · ) → (0g𝑊) ∈ 𝑉)
13 eqid 2738 . . . . . . . . . 10 (+g𝑊) = (+g𝑊)
143, 13, 2plusfval 18333 . . . . . . . . 9 (( 0𝑉 ∧ (0g𝑊) ∈ 𝑉) → ( 0 + (0g𝑊)) = ( 0 (+g𝑊)(0g𝑊)))
1514eqcomd 2744 . . . . . . . 8 (( 0𝑉 ∧ (0g𝑊) ∈ 𝑉) → ( 0 (+g𝑊)(0g𝑊)) = ( 0 + (0g𝑊)))
169, 12, 15syl2anr 597 . . . . . . 7 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 0 (+g𝑊)(0g𝑊)) = ( 0 + (0g𝑊)))
17 oveq 7281 . . . . . . . 8 ( + = · → ( 0 + (0g𝑊)) = ( 0 · (0g𝑊)))
1817ad2antlr 724 . . . . . . 7 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 0 + (0g𝑊)) = ( 0 · (0g𝑊)))
1916, 18eqtrd 2778 . . . . . 6 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 0 (+g𝑊)(0g𝑊)) = ( 0 · (0g𝑊)))
20 lmodgrp 20130 . . . . . . . 8 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
2120adantr 481 . . . . . . 7 ((𝑊 ∈ LMod ∧ + = · ) → 𝑊 ∈ Grp)
223, 13, 10grprid 18610 . . . . . . 7 ((𝑊 ∈ Grp ∧ 0𝑉) → ( 0 (+g𝑊)(0g𝑊)) = 0 )
2321, 9, 22syl2an 596 . . . . . 6 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 0 (+g𝑊)(0g𝑊)) = 0 )
244, 5, 6lmod0cl 20149 . . . . . . . . . . 11 (𝑊 ∈ LMod → 0𝐾)
2524, 11jca 512 . . . . . . . . . 10 (𝑊 ∈ LMod → ( 0𝐾 ∧ (0g𝑊) ∈ 𝑉))
2625adantr 481 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ + = · ) → ( 0𝐾 ∧ (0g𝑊) ∈ 𝑉))
2726adantr 481 . . . . . . . 8 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 0𝐾 ∧ (0g𝑊) ∈ 𝑉))
28 eqid 2738 . . . . . . . . 9 ( ·𝑠𝑊) = ( ·𝑠𝑊)
293, 4, 5, 1, 28scafval 20142 . . . . . . . 8 (( 0𝐾 ∧ (0g𝑊) ∈ 𝑉) → ( 0 · (0g𝑊)) = ( 0 ( ·𝑠𝑊)(0g𝑊)))
3027, 29syl 17 . . . . . . 7 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 0 · (0g𝑊)) = ( 0 ( ·𝑠𝑊)(0g𝑊)))
3124ancli 549 . . . . . . . . . 10 (𝑊 ∈ LMod → (𝑊 ∈ LMod ∧ 0𝐾))
3231adantr 481 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ + = · ) → (𝑊 ∈ LMod ∧ 0𝐾))
3332adantr 481 . . . . . . . 8 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → (𝑊 ∈ LMod ∧ 0𝐾))
344, 28, 5, 10lmodvs0 20157 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 0𝐾) → ( 0 ( ·𝑠𝑊)(0g𝑊)) = (0g𝑊))
3533, 34syl 17 . . . . . . 7 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 0 ( ·𝑠𝑊)(0g𝑊)) = (0g𝑊))
36 simpr 485 . . . . . . . . . 10 (( 0𝑉1𝑉) → 1𝑉)
373, 13, 10grprid 18610 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ 1𝑉) → ( 1 (+g𝑊)(0g𝑊)) = 1 )
3821, 36, 37syl2an 596 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 1 (+g𝑊)(0g𝑊)) = 1 )
394, 5, 7lmod1cl 20150 . . . . . . . . . . . 12 (𝑊 ∈ LMod → 1𝐾)
4039adantr 481 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ + = · ) → 1𝐾)
413, 4, 5, 1, 28scafval 20142 . . . . . . . . . . 11 (( 1𝐾1𝑉) → ( 1 · 1 ) = ( 1 ( ·𝑠𝑊) 1 ))
4240, 36, 41syl2an 596 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 1 · 1 ) = ( 1 ( ·𝑠𝑊) 1 ))
433, 4, 28, 7lmodvs1 20151 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 1𝑉) → ( 1 ( ·𝑠𝑊) 1 ) = 1 )
4443ad2ant2rl 746 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 1 ( ·𝑠𝑊) 1 ) = 1 )
4542, 44eqtrd 2778 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 1 · 1 ) = 1 )
46 oveq 7281 . . . . . . . . . . . 12 ( + = · → ( 1 + 1 ) = ( 1 · 1 ))
4746eqcomd 2744 . . . . . . . . . . 11 ( + = · → ( 1 · 1 ) = ( 1 + 1 ))
4847ad2antlr 724 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 1 · 1 ) = ( 1 + 1 ))
4936, 36jca 512 . . . . . . . . . . . 12 (( 0𝑉1𝑉) → ( 1𝑉1𝑉))
5049adantl 482 . . . . . . . . . . 11 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 1𝑉1𝑉))
513, 13, 2plusfval 18333 . . . . . . . . . . 11 (( 1𝑉1𝑉) → ( 1 + 1 ) = ( 1 (+g𝑊) 1 ))
5250, 51syl 17 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 1 + 1 ) = ( 1 (+g𝑊) 1 ))
5348, 52eqtrd 2778 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 1 · 1 ) = ( 1 (+g𝑊) 1 ))
5438, 45, 533eqtr2d 2784 . . . . . . . 8 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 1 (+g𝑊)(0g𝑊)) = ( 1 (+g𝑊) 1 ))
5521adantr 481 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → 𝑊 ∈ Grp)
5612adantr 481 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → (0g𝑊) ∈ 𝑉)
5736adantl 482 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → 1𝑉)
583, 13grplcan 18637 . . . . . . . . 9 ((𝑊 ∈ Grp ∧ ((0g𝑊) ∈ 𝑉1𝑉1𝑉)) → (( 1 (+g𝑊)(0g𝑊)) = ( 1 (+g𝑊) 1 ) ↔ (0g𝑊) = 1 ))
5955, 56, 57, 57, 58syl13anc 1371 . . . . . . . 8 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → (( 1 (+g𝑊)(0g𝑊)) = ( 1 (+g𝑊) 1 ) ↔ (0g𝑊) = 1 ))
6054, 59mpbid 231 . . . . . . 7 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → (0g𝑊) = 1 )
6130, 35, 603eqtrd 2782 . . . . . 6 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → ( 0 · (0g𝑊)) = 1 )
6219, 23, 613eqtr3rd 2787 . . . . 5 (((𝑊 ∈ LMod ∧ + = · ) ∧ ( 0𝑉1𝑉)) → 1 = 0 )
638, 62mpdan 684 . . . 4 ((𝑊 ∈ LMod ∧ + = · ) → 1 = 0 )
6463ex 413 . . 3 (𝑊 ∈ LMod → ( + = ·1 = 0 ))
6564necon3d 2964 . 2 (𝑊 ∈ LMod → ( 10+· ))
6665imp 407 1 ((𝑊 ∈ LMod ∧ 10 ) → +· )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  Scalarcsca 16965   ·𝑠 cvsca 16966  0gc0g 17150  +𝑓cplusf 18323  Grpcgrp 18577  1rcur 19737  LModclmod 20123   ·sf cscaf 20124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-0g 17152  df-plusf 18325  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-mgp 19721  df-ur 19738  df-ring 19785  df-lmod 20125  df-scaf 20126
This theorem is referenced by:  clmopfne  24259
  Copyright terms: Public domain W3C validator