Step | Hyp | Ref
| Expression |
1 | | lmodfopne.t |
. . . . . 6
β’ Β· = (
Β·sf βπ) |
2 | | lmodfopne.a |
. . . . . 6
β’ + =
(+πβπ) |
3 | | lmodfopne.v |
. . . . . 6
β’ π = (Baseβπ) |
4 | | lmodfopne.s |
. . . . . 6
β’ π = (Scalarβπ) |
5 | | lmodfopne.k |
. . . . . 6
β’ πΎ = (Baseβπ) |
6 | | lmodfopne.0 |
. . . . . 6
β’ 0 =
(0gβπ) |
7 | | lmodfopne.1 |
. . . . . 6
β’ 1 =
(1rβπ) |
8 | 1, 2, 3, 4, 5, 6, 7 | lmodfopnelem2 20312 |
. . . . 5
β’ ((π β LMod β§ + = Β· )
β ( 0 β π β§ 1 β π)) |
9 | | simpl 483 |
. . . . . . . 8
β’ (( 0 β π β§ 1 β π) β 0 β π) |
10 | | eqid 2737 |
. . . . . . . . . 10
β’
(0gβπ) = (0gβπ) |
11 | 3, 10 | lmod0vcl 20304 |
. . . . . . . . 9
β’ (π β LMod β
(0gβπ)
β π) |
12 | 11 | adantr 481 |
. . . . . . . 8
β’ ((π β LMod β§ + = Β· )
β (0gβπ) β π) |
13 | | eqid 2737 |
. . . . . . . . . 10
β’
(+gβπ) = (+gβπ) |
14 | 3, 13, 2 | plusfval 18464 |
. . . . . . . . 9
β’ (( 0 β π β§
(0gβπ)
β π) β ( 0 +
(0gβπ)) =
( 0
(+gβπ)(0gβπ))) |
15 | 14 | eqcomd 2743 |
. . . . . . . 8
β’ (( 0 β π β§
(0gβπ)
β π) β ( 0
(+gβπ)(0gβπ)) = ( 0 + (0gβπ))) |
16 | 9, 12, 15 | syl2anr 597 |
. . . . . . 7
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β ( 0 (+gβπ)(0gβπ)) = ( 0 + (0gβπ))) |
17 | | oveq 7357 |
. . . . . . . 8
β’ ( + = Β· β
( 0 +
(0gβπ)) =
( 0 Β·
(0gβπ))) |
18 | 17 | ad2antlr 725 |
. . . . . . 7
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β ( 0 + (0gβπ)) = ( 0 Β·
(0gβπ))) |
19 | 16, 18 | eqtrd 2777 |
. . . . . 6
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β ( 0 (+gβπ)(0gβπ)) = ( 0 Β·
(0gβπ))) |
20 | | lmodgrp 20282 |
. . . . . . . 8
β’ (π β LMod β π β Grp) |
21 | 20 | adantr 481 |
. . . . . . 7
β’ ((π β LMod β§ + = Β· )
β π β
Grp) |
22 | 3, 13, 10 | grprid 18741 |
. . . . . . 7
β’ ((π β Grp β§ 0 β π) β ( 0 (+gβπ)(0gβπ)) = 0 ) |
23 | 21, 9, 22 | syl2an 596 |
. . . . . 6
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β ( 0 (+gβπ)(0gβπ)) = 0 ) |
24 | 4, 5, 6 | lmod0cl 20301 |
. . . . . . . . . . 11
β’ (π β LMod β 0 β πΎ) |
25 | 24, 11 | jca 512 |
. . . . . . . . . 10
β’ (π β LMod β ( 0 β πΎ β§
(0gβπ)
β π)) |
26 | 25 | adantr 481 |
. . . . . . . . 9
β’ ((π β LMod β§ + = Β· )
β ( 0 β πΎ β§ (0gβπ) β π)) |
27 | 26 | adantr 481 |
. . . . . . . 8
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β ( 0 β πΎ β§ (0gβπ) β π)) |
28 | | eqid 2737 |
. . . . . . . . 9
β’ (
Β·π βπ) = ( Β·π
βπ) |
29 | 3, 4, 5, 1, 28 | scafval 20294 |
. . . . . . . 8
β’ (( 0 β πΎ β§
(0gβπ)
β π) β ( 0 Β·
(0gβπ)) =
( 0 (
Β·π βπ)(0gβπ))) |
30 | 27, 29 | syl 17 |
. . . . . . 7
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β ( 0 Β·
(0gβπ)) =
( 0 (
Β·π βπ)(0gβπ))) |
31 | 24 | ancli 549 |
. . . . . . . . . 10
β’ (π β LMod β (π β LMod β§ 0 β πΎ)) |
32 | 31 | adantr 481 |
. . . . . . . . 9
β’ ((π β LMod β§ + = Β· )
β (π β LMod β§
0 β
πΎ)) |
33 | 32 | adantr 481 |
. . . . . . . 8
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β (π β LMod β§ 0 β πΎ)) |
34 | 4, 28, 5, 10 | lmodvs0 20309 |
. . . . . . . 8
β’ ((π β LMod β§ 0 β πΎ) β ( 0 (
Β·π βπ)(0gβπ)) = (0gβπ)) |
35 | 33, 34 | syl 17 |
. . . . . . 7
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β ( 0 (
Β·π βπ)(0gβπ)) = (0gβπ)) |
36 | | simpr 485 |
. . . . . . . . . 10
β’ (( 0 β π β§ 1 β π) β 1 β π) |
37 | 3, 13, 10 | grprid 18741 |
. . . . . . . . . 10
β’ ((π β Grp β§ 1 β π) β ( 1 (+gβπ)(0gβπ)) = 1 ) |
38 | 21, 36, 37 | syl2an 596 |
. . . . . . . . 9
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β ( 1 (+gβπ)(0gβπ)) = 1 ) |
39 | 4, 5, 7 | lmod1cl 20302 |
. . . . . . . . . . . 12
β’ (π β LMod β 1 β πΎ) |
40 | 39 | adantr 481 |
. . . . . . . . . . 11
β’ ((π β LMod β§ + = Β· )
β 1
β πΎ) |
41 | 3, 4, 5, 1, 28 | scafval 20294 |
. . . . . . . . . . 11
β’ (( 1 β πΎ β§ 1 β π) β ( 1 Β· 1 ) = ( 1 (
Β·π βπ) 1 )) |
42 | 40, 36, 41 | syl2an 596 |
. . . . . . . . . 10
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β ( 1 Β· 1 ) = ( 1 (
Β·π βπ) 1 )) |
43 | 3, 4, 28, 7 | lmodvs1 20303 |
. . . . . . . . . . 11
β’ ((π β LMod β§ 1 β π) β ( 1 (
Β·π βπ) 1 ) = 1 ) |
44 | 43 | ad2ant2rl 747 |
. . . . . . . . . 10
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β ( 1 (
Β·π βπ) 1 ) = 1 ) |
45 | 42, 44 | eqtrd 2777 |
. . . . . . . . 9
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β ( 1 Β· 1 ) = 1 ) |
46 | | oveq 7357 |
. . . . . . . . . . . 12
β’ ( + = Β· β
( 1 + 1 ) = ( 1 Β· 1
)) |
47 | 46 | eqcomd 2743 |
. . . . . . . . . . 11
β’ ( + = Β· β
( 1 Β· 1 ) = ( 1 + 1
)) |
48 | 47 | ad2antlr 725 |
. . . . . . . . . 10
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β ( 1 Β· 1 ) = ( 1 + 1 )) |
49 | 36, 36 | jca 512 |
. . . . . . . . . . . 12
β’ (( 0 β π β§ 1 β π) β ( 1 β π β§ 1 β π)) |
50 | 49 | adantl 482 |
. . . . . . . . . . 11
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β ( 1 β π β§ 1 β π)) |
51 | 3, 13, 2 | plusfval 18464 |
. . . . . . . . . . 11
β’ (( 1 β π β§ 1 β π) β ( 1 + 1 ) = ( 1 (+gβπ) 1 )) |
52 | 50, 51 | syl 17 |
. . . . . . . . . 10
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β ( 1 + 1 ) = ( 1 (+gβπ) 1 )) |
53 | 48, 52 | eqtrd 2777 |
. . . . . . . . 9
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β ( 1 Β· 1 ) = ( 1 (+gβπ) 1 )) |
54 | 38, 45, 53 | 3eqtr2d 2783 |
. . . . . . . 8
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β ( 1 (+gβπ)(0gβπ)) = ( 1 (+gβπ) 1 )) |
55 | 21 | adantr 481 |
. . . . . . . . 9
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β π β Grp) |
56 | 12 | adantr 481 |
. . . . . . . . 9
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β
(0gβπ)
β π) |
57 | 36 | adantl 482 |
. . . . . . . . 9
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β 1 β π) |
58 | 3, 13 | grplcan 18768 |
. . . . . . . . 9
β’ ((π β Grp β§
((0gβπ)
β π β§ 1 β π β§ 1 β π)) β (( 1 (+gβπ)(0gβπ)) = ( 1 (+gβπ) 1 ) β
(0gβπ) =
1
)) |
59 | 55, 56, 57, 57, 58 | syl13anc 1372 |
. . . . . . . 8
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β (( 1 (+gβπ)(0gβπ)) = ( 1 (+gβπ) 1 ) β
(0gβπ) =
1
)) |
60 | 54, 59 | mpbid 231 |
. . . . . . 7
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β
(0gβπ) =
1
) |
61 | 30, 35, 60 | 3eqtrd 2781 |
. . . . . 6
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β ( 0 Β·
(0gβπ)) =
1
) |
62 | 19, 23, 61 | 3eqtr3rd 2786 |
. . . . 5
β’ (((π β LMod β§ + = Β· )
β§ ( 0
β π β§ 1 β π)) β 1 = 0 ) |
63 | 8, 62 | mpdan 685 |
. . . 4
β’ ((π β LMod β§ + = Β· )
β 1
= 0
) |
64 | 63 | ex 413 |
. . 3
β’ (π β LMod β ( + = Β· β
1 = 0
)) |
65 | 64 | necon3d 2962 |
. 2
β’ (π β LMod β ( 1 β 0 β + β Β·
)) |
66 | 65 | imp 407 |
1
β’ ((π β LMod β§ 1 β 0 ) β
+ β
Β·
) |