| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > minplyann | Structured version Visualization version GIF version | ||
| Description: The minimal polynomial for 𝐴 annihilates 𝐴 (Contributed by Thierry Arnoux, 25-Apr-2025.) |
| Ref | Expression |
|---|---|
| ply1annig1p.o | ⊢ 𝑂 = (𝐸 evalSub1 𝐹) |
| ply1annig1p.p | ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) |
| ply1annig1p.b | ⊢ 𝐵 = (Base‘𝐸) |
| ply1annig1p.e | ⊢ (𝜑 → 𝐸 ∈ Field) |
| ply1annig1p.f | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
| ply1annig1p.a | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| minplyann.1 | ⊢ 0 = (0g‘𝐸) |
| minplyann.m | ⊢ 𝑀 = (𝐸 minPoly 𝐹) |
| Ref | Expression |
|---|---|
| minplyann | ⊢ (𝜑 → ((𝑂‘(𝑀‘𝐴))‘𝐴) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1annig1p.o | . . . . 5 ⊢ 𝑂 = (𝐸 evalSub1 𝐹) | |
| 2 | ply1annig1p.p | . . . . 5 ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) | |
| 3 | ply1annig1p.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐸) | |
| 4 | ply1annig1p.e | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ Field) | |
| 5 | ply1annig1p.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) | |
| 6 | ply1annig1p.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 7 | minplyann.1 | . . . . 5 ⊢ 0 = (0g‘𝐸) | |
| 8 | eqid 2729 | . . . . 5 ⊢ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } | |
| 9 | eqid 2729 | . . . . 5 ⊢ (RSpan‘𝑃) = (RSpan‘𝑃) | |
| 10 | eqid 2729 | . . . . 5 ⊢ (idlGen1p‘(𝐸 ↾s 𝐹)) = (idlGen1p‘(𝐸 ↾s 𝐹)) | |
| 11 | minplyann.m | . . . . 5 ⊢ 𝑀 = (𝐸 minPoly 𝐹) | |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | minplyval 33668 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐴) = ((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 })) |
| 13 | eqid 2729 | . . . . . . 7 ⊢ (𝐸 ↾s 𝐹) = (𝐸 ↾s 𝐹) | |
| 14 | 13 | sdrgdrng 20675 | . . . . . 6 ⊢ (𝐹 ∈ (SubDRing‘𝐸) → (𝐸 ↾s 𝐹) ∈ DivRing) |
| 15 | 5, 14 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ DivRing) |
| 16 | 4 | fldcrngd 20627 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ CRing) |
| 17 | sdrgsubrg 20676 | . . . . . . 7 ⊢ (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸)) | |
| 18 | 5, 17 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝐸)) |
| 19 | 1, 2, 3, 16, 18, 6, 7, 8 | ply1annidl 33665 | . . . . 5 ⊢ (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } ∈ (LIdeal‘𝑃)) |
| 20 | eqid 2729 | . . . . . 6 ⊢ (LIdeal‘𝑃) = (LIdeal‘𝑃) | |
| 21 | 2, 10, 20 | ig1pcl 26060 | . . . . 5 ⊢ (((𝐸 ↾s 𝐹) ∈ DivRing ∧ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } ∈ (LIdeal‘𝑃)) → ((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 }) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 }) |
| 22 | 15, 19, 21 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 }) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 }) |
| 23 | 12, 22 | eqeltrd 2828 | . . 3 ⊢ (𝜑 → (𝑀‘𝐴) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 }) |
| 24 | fveq2 6840 | . . . . . 6 ⊢ (𝑞 = (𝑀‘𝐴) → (𝑂‘𝑞) = (𝑂‘(𝑀‘𝐴))) | |
| 25 | 24 | fveq1d 6842 | . . . . 5 ⊢ (𝑞 = (𝑀‘𝐴) → ((𝑂‘𝑞)‘𝐴) = ((𝑂‘(𝑀‘𝐴))‘𝐴)) |
| 26 | 25 | eqeq1d 2731 | . . . 4 ⊢ (𝑞 = (𝑀‘𝐴) → (((𝑂‘𝑞)‘𝐴) = 0 ↔ ((𝑂‘(𝑀‘𝐴))‘𝐴) = 0 )) |
| 27 | 26 | elrab 3656 | . . 3 ⊢ ((𝑀‘𝐴) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } ↔ ((𝑀‘𝐴) ∈ dom 𝑂 ∧ ((𝑂‘(𝑀‘𝐴))‘𝐴) = 0 )) |
| 28 | 23, 27 | sylib 218 | . 2 ⊢ (𝜑 → ((𝑀‘𝐴) ∈ dom 𝑂 ∧ ((𝑂‘(𝑀‘𝐴))‘𝐴) = 0 )) |
| 29 | 28 | simprd 495 | 1 ⊢ (𝜑 → ((𝑂‘(𝑀‘𝐴))‘𝐴) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3402 dom cdm 5631 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 ↾s cress 17176 0gc0g 17378 SubRingcsubrg 20454 DivRingcdr 20614 Fieldcfield 20615 SubDRingcsdrg 20671 LIdealclidl 21092 RSpancrsp 21093 Poly1cpl1 22037 evalSub1 ces1 22176 idlGen1pcig1p 26011 minPoly cminply 33662 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-ofr 7634 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-fzo 13592 df-seq 13943 df-hash 14272 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-0g 17380 df-gsum 17381 df-prds 17386 df-pws 17388 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mulg 18976 df-subg 19031 df-ghm 19121 df-cntz 19225 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-srg 20072 df-ring 20120 df-cring 20121 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-rhm 20357 df-subrng 20431 df-subrg 20455 df-rlreg 20579 df-drng 20616 df-field 20617 df-sdrg 20672 df-lmod 20744 df-lss 20814 df-lsp 20854 df-sra 21056 df-rgmod 21057 df-lidl 21094 df-cnfld 21241 df-assa 21738 df-asp 21739 df-ascl 21740 df-psr 21794 df-mvr 21795 df-mpl 21796 df-opsr 21798 df-evls 21957 df-evl 21958 df-psr1 22040 df-vr1 22041 df-ply1 22042 df-coe1 22043 df-evls1 22178 df-evl1 22179 df-mdeg 25936 df-deg1 25937 df-mon1 26012 df-uc1p 26013 df-ig1p 26016 df-minply 33663 |
| This theorem is referenced by: minplyelirng 33678 irredminply 33679 |
| Copyright terms: Public domain | W3C validator |