![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > minplyann | Structured version Visualization version GIF version |
Description: The minimal polynomial for 𝐴 annihilates 𝐴 (Contributed by Thierry Arnoux, 25-Apr-2025.) |
Ref | Expression |
---|---|
ply1annig1p.o | ⊢ 𝑂 = (𝐸 evalSub1 𝐹) |
ply1annig1p.p | ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) |
ply1annig1p.b | ⊢ 𝐵 = (Base‘𝐸) |
ply1annig1p.e | ⊢ (𝜑 → 𝐸 ∈ Field) |
ply1annig1p.f | ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) |
ply1annig1p.a | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
minplyann.1 | ⊢ 0 = (0g‘𝐸) |
minplyann.m | ⊢ 𝑀 = (𝐸 minPoly 𝐹) |
Ref | Expression |
---|---|
minplyann | ⊢ (𝜑 → ((𝑂‘(𝑀‘𝐴))‘𝐴) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1annig1p.o | . . . . 5 ⊢ 𝑂 = (𝐸 evalSub1 𝐹) | |
2 | ply1annig1p.p | . . . . 5 ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) | |
3 | ply1annig1p.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐸) | |
4 | ply1annig1p.e | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ Field) | |
5 | ply1annig1p.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) | |
6 | ply1annig1p.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
7 | minplyann.1 | . . . . 5 ⊢ 0 = (0g‘𝐸) | |
8 | eqid 2728 | . . . . 5 ⊢ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } | |
9 | eqid 2728 | . . . . 5 ⊢ (RSpan‘𝑃) = (RSpan‘𝑃) | |
10 | eqid 2728 | . . . . 5 ⊢ (idlGen1p‘(𝐸 ↾s 𝐹)) = (idlGen1p‘(𝐸 ↾s 𝐹)) | |
11 | minplyann.m | . . . . 5 ⊢ 𝑀 = (𝐸 minPoly 𝐹) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | minplyval 33409 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐴) = ((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 })) |
13 | eqid 2728 | . . . . . . 7 ⊢ (𝐸 ↾s 𝐹) = (𝐸 ↾s 𝐹) | |
14 | 13 | sdrgdrng 20685 | . . . . . 6 ⊢ (𝐹 ∈ (SubDRing‘𝐸) → (𝐸 ↾s 𝐹) ∈ DivRing) |
15 | 5, 14 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐸 ↾s 𝐹) ∈ DivRing) |
16 | 4 | fldcrngd 20644 | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ CRing) |
17 | sdrgsubrg 20686 | . . . . . . 7 ⊢ (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸)) | |
18 | 5, 17 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (SubRing‘𝐸)) |
19 | 1, 2, 3, 16, 18, 6, 7, 8 | ply1annidl 33406 | . . . . 5 ⊢ (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } ∈ (LIdeal‘𝑃)) |
20 | eqid 2728 | . . . . . 6 ⊢ (LIdeal‘𝑃) = (LIdeal‘𝑃) | |
21 | 2, 10, 20 | ig1pcl 26133 | . . . . 5 ⊢ (((𝐸 ↾s 𝐹) ∈ DivRing ∧ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } ∈ (LIdeal‘𝑃)) → ((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 }) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 }) |
22 | 15, 19, 21 | syl2anc 582 | . . . 4 ⊢ (𝜑 → ((idlGen1p‘(𝐸 ↾s 𝐹))‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 }) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 }) |
23 | 12, 22 | eqeltrd 2829 | . . 3 ⊢ (𝜑 → (𝑀‘𝐴) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 }) |
24 | fveq2 6902 | . . . . . 6 ⊢ (𝑞 = (𝑀‘𝐴) → (𝑂‘𝑞) = (𝑂‘(𝑀‘𝐴))) | |
25 | 24 | fveq1d 6904 | . . . . 5 ⊢ (𝑞 = (𝑀‘𝐴) → ((𝑂‘𝑞)‘𝐴) = ((𝑂‘(𝑀‘𝐴))‘𝐴)) |
26 | 25 | eqeq1d 2730 | . . . 4 ⊢ (𝑞 = (𝑀‘𝐴) → (((𝑂‘𝑞)‘𝐴) = 0 ↔ ((𝑂‘(𝑀‘𝐴))‘𝐴) = 0 )) |
27 | 26 | elrab 3684 | . . 3 ⊢ ((𝑀‘𝐴) ∈ {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } ↔ ((𝑀‘𝐴) ∈ dom 𝑂 ∧ ((𝑂‘(𝑀‘𝐴))‘𝐴) = 0 )) |
28 | 23, 27 | sylib 217 | . 2 ⊢ (𝜑 → ((𝑀‘𝐴) ∈ dom 𝑂 ∧ ((𝑂‘(𝑀‘𝐴))‘𝐴) = 0 )) |
29 | 28 | simprd 494 | 1 ⊢ (𝜑 → ((𝑂‘(𝑀‘𝐴))‘𝐴) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {crab 3430 dom cdm 5682 ‘cfv 6553 (class class class)co 7426 Basecbs 17187 ↾s cress 17216 0gc0g 17428 SubRingcsubrg 20513 DivRingcdr 20631 Fieldcfield 20632 SubDRingcsdrg 20681 LIdealclidl 21109 RSpancrsp 21110 Poly1cpl1 22103 evalSub1 ces1 22239 idlGen1pcig1p 26085 minPoly cminply 33403 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-pre-sup 11224 ax-addf 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-iin 5003 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-isom 6562 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-of 7691 df-ofr 7692 df-om 7877 df-1st 7999 df-2nd 8000 df-supp 8172 df-tpos 8238 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-er 8731 df-map 8853 df-pm 8854 df-ixp 8923 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-fsupp 9394 df-sup 9473 df-inf 9474 df-oi 9541 df-card 9970 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-9 12320 df-n0 12511 df-z 12597 df-dec 12716 df-uz 12861 df-fz 13525 df-fzo 13668 df-seq 14007 df-hash 14330 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17188 df-ress 17217 df-plusg 17253 df-mulr 17254 df-starv 17255 df-sca 17256 df-vsca 17257 df-ip 17258 df-tset 17259 df-ple 17260 df-ds 17262 df-unif 17263 df-hom 17264 df-cco 17265 df-0g 17430 df-gsum 17431 df-prds 17436 df-pws 17438 df-mre 17573 df-mrc 17574 df-acs 17576 df-mgm 18607 df-sgrp 18686 df-mnd 18702 df-mhm 18747 df-submnd 18748 df-grp 18900 df-minusg 18901 df-sbg 18902 df-mulg 19031 df-subg 19085 df-ghm 19175 df-cntz 19275 df-cmn 19744 df-abl 19745 df-mgp 20082 df-rng 20100 df-ur 20129 df-srg 20134 df-ring 20182 df-cring 20183 df-oppr 20280 df-dvdsr 20303 df-unit 20304 df-invr 20334 df-rhm 20418 df-subrng 20490 df-subrg 20515 df-drng 20633 df-field 20634 df-sdrg 20682 df-lmod 20752 df-lss 20823 df-lsp 20863 df-sra 21065 df-rgmod 21066 df-lidl 21111 df-rlreg 21237 df-cnfld 21287 df-assa 21794 df-asp 21795 df-ascl 21796 df-psr 21849 df-mvr 21850 df-mpl 21851 df-opsr 21853 df-evls 22025 df-evl 22026 df-psr1 22106 df-vr1 22107 df-ply1 22108 df-coe1 22109 df-evls1 22241 df-evl1 22242 df-mdeg 26008 df-deg1 26009 df-mon1 26086 df-uc1p 26087 df-ig1p 26090 df-minply 33404 |
This theorem is referenced by: irredminply 33417 |
Copyright terms: Public domain | W3C validator |