Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signslema Structured version   Visualization version   GIF version

Theorem signslema 33642
Description: Computational part of ~? signwlemn . (Contributed by Thierry Arnoux, 29-Sep-2018.)
Hypotheses
Ref Expression
signslema.1 (𝜑𝐸 ∈ ℕ0)
signslema.2 (𝜑𝐹 ∈ ℕ0)
signslema.3 (𝜑𝐺 ∈ ℕ0)
signslema.4 (𝜑𝐻 ∈ ℕ0)
signslema.5 (𝜑 → (𝐸 < 𝐺 ∧ ¬ 2 ∥ (𝐺𝐸)))
signslema.6 (𝜑 → ((𝐻𝐺) − (𝐹𝐸)) ∈ {0, 2})
Assertion
Ref Expression
signslema (𝜑 → (𝐹 < 𝐻 ∧ ¬ 2 ∥ (𝐻𝐹)))

Proof of Theorem signslema
StepHypRef Expression
1 signslema.5 . . . . . 6 (𝜑 → (𝐸 < 𝐺 ∧ ¬ 2 ∥ (𝐺𝐸)))
21simpld 495 . . . . 5 (𝜑𝐸 < 𝐺)
32adantr 481 . . . 4 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 0) → 𝐸 < 𝐺)
4 signslema.4 . . . . . . . . . 10 (𝜑𝐻 ∈ ℕ0)
54nn0cnd 12536 . . . . . . . . 9 (𝜑𝐻 ∈ ℂ)
6 signslema.2 . . . . . . . . . 10 (𝜑𝐹 ∈ ℕ0)
76nn0cnd 12536 . . . . . . . . 9 (𝜑𝐹 ∈ ℂ)
85, 7subcld 11573 . . . . . . . 8 (𝜑 → (𝐻𝐹) ∈ ℂ)
9 signslema.3 . . . . . . . . . 10 (𝜑𝐺 ∈ ℕ0)
109nn0cnd 12536 . . . . . . . . 9 (𝜑𝐺 ∈ ℂ)
11 signslema.1 . . . . . . . . . 10 (𝜑𝐸 ∈ ℕ0)
1211nn0cnd 12536 . . . . . . . . 9 (𝜑𝐸 ∈ ℂ)
1310, 12subcld 11573 . . . . . . . 8 (𝜑 → (𝐺𝐸) ∈ ℂ)
148, 13subeq0ad 11583 . . . . . . 7 (𝜑 → (((𝐻𝐹) − (𝐺𝐸)) = 0 ↔ (𝐻𝐹) = (𝐺𝐸)))
1514biimpa 477 . . . . . 6 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 0) → (𝐻𝐹) = (𝐺𝐸))
1615breq2d 5160 . . . . 5 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 0) → (0 < (𝐻𝐹) ↔ 0 < (𝐺𝐸)))
176nn0red 12535 . . . . . . 7 (𝜑𝐹 ∈ ℝ)
184nn0red 12535 . . . . . . 7 (𝜑𝐻 ∈ ℝ)
1917, 18posdifd 11803 . . . . . 6 (𝜑 → (𝐹 < 𝐻 ↔ 0 < (𝐻𝐹)))
2019adantr 481 . . . . 5 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 0) → (𝐹 < 𝐻 ↔ 0 < (𝐻𝐹)))
2111nn0red 12535 . . . . . . 7 (𝜑𝐸 ∈ ℝ)
229nn0red 12535 . . . . . . 7 (𝜑𝐺 ∈ ℝ)
2321, 22posdifd 11803 . . . . . 6 (𝜑 → (𝐸 < 𝐺 ↔ 0 < (𝐺𝐸)))
2423adantr 481 . . . . 5 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 0) → (𝐸 < 𝐺 ↔ 0 < (𝐺𝐸)))
2516, 20, 243bitr4rd 311 . . . 4 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 0) → (𝐸 < 𝐺𝐹 < 𝐻))
263, 25mpbid 231 . . 3 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 0) → 𝐹 < 𝐻)
27 0red 11219 . . . . 5 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → 0 ∈ ℝ)
2822, 21resubcld 11644 . . . . . 6 (𝜑 → (𝐺𝐸) ∈ ℝ)
2928adantr 481 . . . . 5 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → (𝐺𝐸) ∈ ℝ)
3018, 17resubcld 11644 . . . . . 6 (𝜑 → (𝐻𝐹) ∈ ℝ)
3130adantr 481 . . . . 5 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → (𝐻𝐹) ∈ ℝ)
322adantr 481 . . . . . 6 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → 𝐸 < 𝐺)
3323adantr 481 . . . . . 6 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → (𝐸 < 𝐺 ↔ 0 < (𝐺𝐸)))
3432, 33mpbid 231 . . . . 5 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → 0 < (𝐺𝐸))
35 2pos 12317 . . . . . . 7 0 < 2
36 breq2 5152 . . . . . . 7 (((𝐻𝐹) − (𝐺𝐸)) = 2 → (0 < ((𝐻𝐹) − (𝐺𝐸)) ↔ 0 < 2))
3735, 36mpbiri 257 . . . . . 6 (((𝐻𝐹) − (𝐺𝐸)) = 2 → 0 < ((𝐻𝐹) − (𝐺𝐸)))
3828, 30posdifd 11803 . . . . . . 7 (𝜑 → ((𝐺𝐸) < (𝐻𝐹) ↔ 0 < ((𝐻𝐹) − (𝐺𝐸))))
3938biimpar 478 . . . . . 6 ((𝜑 ∧ 0 < ((𝐻𝐹) − (𝐺𝐸))) → (𝐺𝐸) < (𝐻𝐹))
4037, 39sylan2 593 . . . . 5 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → (𝐺𝐸) < (𝐻𝐹))
4127, 29, 31, 34, 40lttrd 11377 . . . 4 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → 0 < (𝐻𝐹))
4219adantr 481 . . . 4 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → (𝐹 < 𝐻 ↔ 0 < (𝐻𝐹)))
4341, 42mpbird 256 . . 3 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → 𝐹 < 𝐻)
445, 10, 7, 12sub4d 11622 . . . . 5 (𝜑 → ((𝐻𝐺) − (𝐹𝐸)) = ((𝐻𝐹) − (𝐺𝐸)))
45 signslema.6 . . . . 5 (𝜑 → ((𝐻𝐺) − (𝐹𝐸)) ∈ {0, 2})
4644, 45eqeltrrd 2834 . . . 4 (𝜑 → ((𝐻𝐹) − (𝐺𝐸)) ∈ {0, 2})
47 ovex 7444 . . . . 5 ((𝐻𝐹) − (𝐺𝐸)) ∈ V
4847elpr 4651 . . . 4 (((𝐻𝐹) − (𝐺𝐸)) ∈ {0, 2} ↔ (((𝐻𝐹) − (𝐺𝐸)) = 0 ∨ ((𝐻𝐹) − (𝐺𝐸)) = 2))
4946, 48sylib 217 . . 3 (𝜑 → (((𝐻𝐹) − (𝐺𝐸)) = 0 ∨ ((𝐻𝐹) − (𝐺𝐸)) = 2))
5026, 43, 49mpjaodan 957 . 2 (𝜑𝐹 < 𝐻)
511simprd 496 . . . . 5 (𝜑 → ¬ 2 ∥ (𝐺𝐸))
5251adantr 481 . . . 4 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 0) → ¬ 2 ∥ (𝐺𝐸))
5315breq2d 5160 . . . 4 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 0) → (2 ∥ (𝐻𝐹) ↔ 2 ∥ (𝐺𝐸)))
5452, 53mtbird 324 . . 3 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 0) → ¬ 2 ∥ (𝐻𝐹))
55 2z 12596 . . . . . . 7 2 ∈ ℤ
569nn0zd 12586 . . . . . . . 8 (𝜑𝐺 ∈ ℤ)
5711nn0zd 12586 . . . . . . . 8 (𝜑𝐸 ∈ ℤ)
5856, 57zsubcld 12673 . . . . . . 7 (𝜑 → (𝐺𝐸) ∈ ℤ)
59 dvdsaddr 16248 . . . . . . 7 ((2 ∈ ℤ ∧ (𝐺𝐸) ∈ ℤ) → (2 ∥ (𝐺𝐸) ↔ 2 ∥ ((𝐺𝐸) + 2)))
6055, 58, 59sylancr 587 . . . . . 6 (𝜑 → (2 ∥ (𝐺𝐸) ↔ 2 ∥ ((𝐺𝐸) + 2)))
6151, 60mtbid 323 . . . . 5 (𝜑 → ¬ 2 ∥ ((𝐺𝐸) + 2))
6261adantr 481 . . . 4 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → ¬ 2 ∥ ((𝐺𝐸) + 2))
63 2cnd 12292 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
648, 13, 63subaddd 11591 . . . . . 6 (𝜑 → (((𝐻𝐹) − (𝐺𝐸)) = 2 ↔ ((𝐺𝐸) + 2) = (𝐻𝐹)))
6564biimpa 477 . . . . 5 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → ((𝐺𝐸) + 2) = (𝐻𝐹))
6665breq2d 5160 . . . 4 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → (2 ∥ ((𝐺𝐸) + 2) ↔ 2 ∥ (𝐻𝐹)))
6762, 66mtbid 323 . . 3 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → ¬ 2 ∥ (𝐻𝐹))
6854, 67, 49mpjaodan 957 . 2 (𝜑 → ¬ 2 ∥ (𝐻𝐹))
6950, 68jca 512 1 (𝜑 → (𝐹 < 𝐻 ∧ ¬ 2 ∥ (𝐻𝐹)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  {cpr 4630   class class class wbr 5148  (class class class)co 7411  cr 11111  0cc0 11112   + caddc 11115   < clt 11250  cmin 11446  2c2 12269  0cn0 12474  cz 12560  cdvds 16199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-nn 12215  df-2 12277  df-n0 12475  df-z 12561  df-dvds 16200
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator