Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signslema Structured version   Visualization version   GIF version

Theorem signslema 34596
Description: Computational part of ~? signwlemn . (Contributed by Thierry Arnoux, 29-Sep-2018.)
Hypotheses
Ref Expression
signslema.1 (𝜑𝐸 ∈ ℕ0)
signslema.2 (𝜑𝐹 ∈ ℕ0)
signslema.3 (𝜑𝐺 ∈ ℕ0)
signslema.4 (𝜑𝐻 ∈ ℕ0)
signslema.5 (𝜑 → (𝐸 < 𝐺 ∧ ¬ 2 ∥ (𝐺𝐸)))
signslema.6 (𝜑 → ((𝐻𝐺) − (𝐹𝐸)) ∈ {0, 2})
Assertion
Ref Expression
signslema (𝜑 → (𝐹 < 𝐻 ∧ ¬ 2 ∥ (𝐻𝐹)))

Proof of Theorem signslema
StepHypRef Expression
1 signslema.5 . . . . . 6 (𝜑 → (𝐸 < 𝐺 ∧ ¬ 2 ∥ (𝐺𝐸)))
21simpld 494 . . . . 5 (𝜑𝐸 < 𝐺)
32adantr 480 . . . 4 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 0) → 𝐸 < 𝐺)
4 signslema.4 . . . . . . . . . 10 (𝜑𝐻 ∈ ℕ0)
54nn0cnd 12451 . . . . . . . . 9 (𝜑𝐻 ∈ ℂ)
6 signslema.2 . . . . . . . . . 10 (𝜑𝐹 ∈ ℕ0)
76nn0cnd 12451 . . . . . . . . 9 (𝜑𝐹 ∈ ℂ)
85, 7subcld 11479 . . . . . . . 8 (𝜑 → (𝐻𝐹) ∈ ℂ)
9 signslema.3 . . . . . . . . . 10 (𝜑𝐺 ∈ ℕ0)
109nn0cnd 12451 . . . . . . . . 9 (𝜑𝐺 ∈ ℂ)
11 signslema.1 . . . . . . . . . 10 (𝜑𝐸 ∈ ℕ0)
1211nn0cnd 12451 . . . . . . . . 9 (𝜑𝐸 ∈ ℂ)
1310, 12subcld 11479 . . . . . . . 8 (𝜑 → (𝐺𝐸) ∈ ℂ)
148, 13subeq0ad 11489 . . . . . . 7 (𝜑 → (((𝐻𝐹) − (𝐺𝐸)) = 0 ↔ (𝐻𝐹) = (𝐺𝐸)))
1514biimpa 476 . . . . . 6 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 0) → (𝐻𝐹) = (𝐺𝐸))
1615breq2d 5105 . . . . 5 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 0) → (0 < (𝐻𝐹) ↔ 0 < (𝐺𝐸)))
176nn0red 12450 . . . . . . 7 (𝜑𝐹 ∈ ℝ)
184nn0red 12450 . . . . . . 7 (𝜑𝐻 ∈ ℝ)
1917, 18posdifd 11711 . . . . . 6 (𝜑 → (𝐹 < 𝐻 ↔ 0 < (𝐻𝐹)))
2019adantr 480 . . . . 5 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 0) → (𝐹 < 𝐻 ↔ 0 < (𝐻𝐹)))
2111nn0red 12450 . . . . . . 7 (𝜑𝐸 ∈ ℝ)
229nn0red 12450 . . . . . . 7 (𝜑𝐺 ∈ ℝ)
2321, 22posdifd 11711 . . . . . 6 (𝜑 → (𝐸 < 𝐺 ↔ 0 < (𝐺𝐸)))
2423adantr 480 . . . . 5 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 0) → (𝐸 < 𝐺 ↔ 0 < (𝐺𝐸)))
2516, 20, 243bitr4rd 312 . . . 4 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 0) → (𝐸 < 𝐺𝐹 < 𝐻))
263, 25mpbid 232 . . 3 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 0) → 𝐹 < 𝐻)
27 0red 11122 . . . . 5 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → 0 ∈ ℝ)
2822, 21resubcld 11552 . . . . . 6 (𝜑 → (𝐺𝐸) ∈ ℝ)
2928adantr 480 . . . . 5 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → (𝐺𝐸) ∈ ℝ)
3018, 17resubcld 11552 . . . . . 6 (𝜑 → (𝐻𝐹) ∈ ℝ)
3130adantr 480 . . . . 5 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → (𝐻𝐹) ∈ ℝ)
322adantr 480 . . . . . 6 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → 𝐸 < 𝐺)
3323adantr 480 . . . . . 6 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → (𝐸 < 𝐺 ↔ 0 < (𝐺𝐸)))
3432, 33mpbid 232 . . . . 5 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → 0 < (𝐺𝐸))
35 2pos 12235 . . . . . . 7 0 < 2
36 breq2 5097 . . . . . . 7 (((𝐻𝐹) − (𝐺𝐸)) = 2 → (0 < ((𝐻𝐹) − (𝐺𝐸)) ↔ 0 < 2))
3735, 36mpbiri 258 . . . . . 6 (((𝐻𝐹) − (𝐺𝐸)) = 2 → 0 < ((𝐻𝐹) − (𝐺𝐸)))
3828, 30posdifd 11711 . . . . . . 7 (𝜑 → ((𝐺𝐸) < (𝐻𝐹) ↔ 0 < ((𝐻𝐹) − (𝐺𝐸))))
3938biimpar 477 . . . . . 6 ((𝜑 ∧ 0 < ((𝐻𝐹) − (𝐺𝐸))) → (𝐺𝐸) < (𝐻𝐹))
4037, 39sylan2 593 . . . . 5 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → (𝐺𝐸) < (𝐻𝐹))
4127, 29, 31, 34, 40lttrd 11281 . . . 4 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → 0 < (𝐻𝐹))
4219adantr 480 . . . 4 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → (𝐹 < 𝐻 ↔ 0 < (𝐻𝐹)))
4341, 42mpbird 257 . . 3 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → 𝐹 < 𝐻)
445, 10, 7, 12sub4d 11528 . . . . 5 (𝜑 → ((𝐻𝐺) − (𝐹𝐸)) = ((𝐻𝐹) − (𝐺𝐸)))
45 signslema.6 . . . . 5 (𝜑 → ((𝐻𝐺) − (𝐹𝐸)) ∈ {0, 2})
4644, 45eqeltrrd 2834 . . . 4 (𝜑 → ((𝐻𝐹) − (𝐺𝐸)) ∈ {0, 2})
47 ovex 7385 . . . . 5 ((𝐻𝐹) − (𝐺𝐸)) ∈ V
4847elpr 4600 . . . 4 (((𝐻𝐹) − (𝐺𝐸)) ∈ {0, 2} ↔ (((𝐻𝐹) − (𝐺𝐸)) = 0 ∨ ((𝐻𝐹) − (𝐺𝐸)) = 2))
4946, 48sylib 218 . . 3 (𝜑 → (((𝐻𝐹) − (𝐺𝐸)) = 0 ∨ ((𝐻𝐹) − (𝐺𝐸)) = 2))
5026, 43, 49mpjaodan 960 . 2 (𝜑𝐹 < 𝐻)
511simprd 495 . . . . 5 (𝜑 → ¬ 2 ∥ (𝐺𝐸))
5251adantr 480 . . . 4 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 0) → ¬ 2 ∥ (𝐺𝐸))
5315breq2d 5105 . . . 4 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 0) → (2 ∥ (𝐻𝐹) ↔ 2 ∥ (𝐺𝐸)))
5452, 53mtbird 325 . . 3 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 0) → ¬ 2 ∥ (𝐻𝐹))
55 2z 12510 . . . . . . 7 2 ∈ ℤ
569nn0zd 12500 . . . . . . . 8 (𝜑𝐺 ∈ ℤ)
5711nn0zd 12500 . . . . . . . 8 (𝜑𝐸 ∈ ℤ)
5856, 57zsubcld 12588 . . . . . . 7 (𝜑 → (𝐺𝐸) ∈ ℤ)
59 dvdsaddr 16216 . . . . . . 7 ((2 ∈ ℤ ∧ (𝐺𝐸) ∈ ℤ) → (2 ∥ (𝐺𝐸) ↔ 2 ∥ ((𝐺𝐸) + 2)))
6055, 58, 59sylancr 587 . . . . . 6 (𝜑 → (2 ∥ (𝐺𝐸) ↔ 2 ∥ ((𝐺𝐸) + 2)))
6151, 60mtbid 324 . . . . 5 (𝜑 → ¬ 2 ∥ ((𝐺𝐸) + 2))
6261adantr 480 . . . 4 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → ¬ 2 ∥ ((𝐺𝐸) + 2))
63 2cnd 12210 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
648, 13, 63subaddd 11497 . . . . . 6 (𝜑 → (((𝐻𝐹) − (𝐺𝐸)) = 2 ↔ ((𝐺𝐸) + 2) = (𝐻𝐹)))
6564biimpa 476 . . . . 5 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → ((𝐺𝐸) + 2) = (𝐻𝐹))
6665breq2d 5105 . . . 4 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → (2 ∥ ((𝐺𝐸) + 2) ↔ 2 ∥ (𝐻𝐹)))
6762, 66mtbid 324 . . 3 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → ¬ 2 ∥ (𝐻𝐹))
6854, 67, 49mpjaodan 960 . 2 (𝜑 → ¬ 2 ∥ (𝐻𝐹))
6950, 68jca 511 1 (𝜑 → (𝐹 < 𝐻 ∧ ¬ 2 ∥ (𝐻𝐹)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2113  {cpr 4577   class class class wbr 5093  (class class class)co 7352  cr 11012  0cc0 11013   + caddc 11016   < clt 11153  cmin 11351  2c2 12187  0cn0 12388  cz 12475  cdvds 16165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-n0 12389  df-z 12476  df-dvds 16166
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator