Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signslema Structured version   Visualization version   GIF version

Theorem signslema 34560
Description: Computational part of ~? signwlemn . (Contributed by Thierry Arnoux, 29-Sep-2018.)
Hypotheses
Ref Expression
signslema.1 (𝜑𝐸 ∈ ℕ0)
signslema.2 (𝜑𝐹 ∈ ℕ0)
signslema.3 (𝜑𝐺 ∈ ℕ0)
signslema.4 (𝜑𝐻 ∈ ℕ0)
signslema.5 (𝜑 → (𝐸 < 𝐺 ∧ ¬ 2 ∥ (𝐺𝐸)))
signslema.6 (𝜑 → ((𝐻𝐺) − (𝐹𝐸)) ∈ {0, 2})
Assertion
Ref Expression
signslema (𝜑 → (𝐹 < 𝐻 ∧ ¬ 2 ∥ (𝐻𝐹)))

Proof of Theorem signslema
StepHypRef Expression
1 signslema.5 . . . . . 6 (𝜑 → (𝐸 < 𝐺 ∧ ¬ 2 ∥ (𝐺𝐸)))
21simpld 494 . . . . 5 (𝜑𝐸 < 𝐺)
32adantr 480 . . . 4 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 0) → 𝐸 < 𝐺)
4 signslema.4 . . . . . . . . . 10 (𝜑𝐻 ∈ ℕ0)
54nn0cnd 12512 . . . . . . . . 9 (𝜑𝐻 ∈ ℂ)
6 signslema.2 . . . . . . . . . 10 (𝜑𝐹 ∈ ℕ0)
76nn0cnd 12512 . . . . . . . . 9 (𝜑𝐹 ∈ ℂ)
85, 7subcld 11540 . . . . . . . 8 (𝜑 → (𝐻𝐹) ∈ ℂ)
9 signslema.3 . . . . . . . . . 10 (𝜑𝐺 ∈ ℕ0)
109nn0cnd 12512 . . . . . . . . 9 (𝜑𝐺 ∈ ℂ)
11 signslema.1 . . . . . . . . . 10 (𝜑𝐸 ∈ ℕ0)
1211nn0cnd 12512 . . . . . . . . 9 (𝜑𝐸 ∈ ℂ)
1310, 12subcld 11540 . . . . . . . 8 (𝜑 → (𝐺𝐸) ∈ ℂ)
148, 13subeq0ad 11550 . . . . . . 7 (𝜑 → (((𝐻𝐹) − (𝐺𝐸)) = 0 ↔ (𝐻𝐹) = (𝐺𝐸)))
1514biimpa 476 . . . . . 6 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 0) → (𝐻𝐹) = (𝐺𝐸))
1615breq2d 5122 . . . . 5 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 0) → (0 < (𝐻𝐹) ↔ 0 < (𝐺𝐸)))
176nn0red 12511 . . . . . . 7 (𝜑𝐹 ∈ ℝ)
184nn0red 12511 . . . . . . 7 (𝜑𝐻 ∈ ℝ)
1917, 18posdifd 11772 . . . . . 6 (𝜑 → (𝐹 < 𝐻 ↔ 0 < (𝐻𝐹)))
2019adantr 480 . . . . 5 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 0) → (𝐹 < 𝐻 ↔ 0 < (𝐻𝐹)))
2111nn0red 12511 . . . . . . 7 (𝜑𝐸 ∈ ℝ)
229nn0red 12511 . . . . . . 7 (𝜑𝐺 ∈ ℝ)
2321, 22posdifd 11772 . . . . . 6 (𝜑 → (𝐸 < 𝐺 ↔ 0 < (𝐺𝐸)))
2423adantr 480 . . . . 5 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 0) → (𝐸 < 𝐺 ↔ 0 < (𝐺𝐸)))
2516, 20, 243bitr4rd 312 . . . 4 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 0) → (𝐸 < 𝐺𝐹 < 𝐻))
263, 25mpbid 232 . . 3 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 0) → 𝐹 < 𝐻)
27 0red 11184 . . . . 5 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → 0 ∈ ℝ)
2822, 21resubcld 11613 . . . . . 6 (𝜑 → (𝐺𝐸) ∈ ℝ)
2928adantr 480 . . . . 5 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → (𝐺𝐸) ∈ ℝ)
3018, 17resubcld 11613 . . . . . 6 (𝜑 → (𝐻𝐹) ∈ ℝ)
3130adantr 480 . . . . 5 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → (𝐻𝐹) ∈ ℝ)
322adantr 480 . . . . . 6 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → 𝐸 < 𝐺)
3323adantr 480 . . . . . 6 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → (𝐸 < 𝐺 ↔ 0 < (𝐺𝐸)))
3432, 33mpbid 232 . . . . 5 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → 0 < (𝐺𝐸))
35 2pos 12296 . . . . . . 7 0 < 2
36 breq2 5114 . . . . . . 7 (((𝐻𝐹) − (𝐺𝐸)) = 2 → (0 < ((𝐻𝐹) − (𝐺𝐸)) ↔ 0 < 2))
3735, 36mpbiri 258 . . . . . 6 (((𝐻𝐹) − (𝐺𝐸)) = 2 → 0 < ((𝐻𝐹) − (𝐺𝐸)))
3828, 30posdifd 11772 . . . . . . 7 (𝜑 → ((𝐺𝐸) < (𝐻𝐹) ↔ 0 < ((𝐻𝐹) − (𝐺𝐸))))
3938biimpar 477 . . . . . 6 ((𝜑 ∧ 0 < ((𝐻𝐹) − (𝐺𝐸))) → (𝐺𝐸) < (𝐻𝐹))
4037, 39sylan2 593 . . . . 5 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → (𝐺𝐸) < (𝐻𝐹))
4127, 29, 31, 34, 40lttrd 11342 . . . 4 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → 0 < (𝐻𝐹))
4219adantr 480 . . . 4 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → (𝐹 < 𝐻 ↔ 0 < (𝐻𝐹)))
4341, 42mpbird 257 . . 3 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → 𝐹 < 𝐻)
445, 10, 7, 12sub4d 11589 . . . . 5 (𝜑 → ((𝐻𝐺) − (𝐹𝐸)) = ((𝐻𝐹) − (𝐺𝐸)))
45 signslema.6 . . . . 5 (𝜑 → ((𝐻𝐺) − (𝐹𝐸)) ∈ {0, 2})
4644, 45eqeltrrd 2830 . . . 4 (𝜑 → ((𝐻𝐹) − (𝐺𝐸)) ∈ {0, 2})
47 ovex 7423 . . . . 5 ((𝐻𝐹) − (𝐺𝐸)) ∈ V
4847elpr 4617 . . . 4 (((𝐻𝐹) − (𝐺𝐸)) ∈ {0, 2} ↔ (((𝐻𝐹) − (𝐺𝐸)) = 0 ∨ ((𝐻𝐹) − (𝐺𝐸)) = 2))
4946, 48sylib 218 . . 3 (𝜑 → (((𝐻𝐹) − (𝐺𝐸)) = 0 ∨ ((𝐻𝐹) − (𝐺𝐸)) = 2))
5026, 43, 49mpjaodan 960 . 2 (𝜑𝐹 < 𝐻)
511simprd 495 . . . . 5 (𝜑 → ¬ 2 ∥ (𝐺𝐸))
5251adantr 480 . . . 4 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 0) → ¬ 2 ∥ (𝐺𝐸))
5315breq2d 5122 . . . 4 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 0) → (2 ∥ (𝐻𝐹) ↔ 2 ∥ (𝐺𝐸)))
5452, 53mtbird 325 . . 3 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 0) → ¬ 2 ∥ (𝐻𝐹))
55 2z 12572 . . . . . . 7 2 ∈ ℤ
569nn0zd 12562 . . . . . . . 8 (𝜑𝐺 ∈ ℤ)
5711nn0zd 12562 . . . . . . . 8 (𝜑𝐸 ∈ ℤ)
5856, 57zsubcld 12650 . . . . . . 7 (𝜑 → (𝐺𝐸) ∈ ℤ)
59 dvdsaddr 16280 . . . . . . 7 ((2 ∈ ℤ ∧ (𝐺𝐸) ∈ ℤ) → (2 ∥ (𝐺𝐸) ↔ 2 ∥ ((𝐺𝐸) + 2)))
6055, 58, 59sylancr 587 . . . . . 6 (𝜑 → (2 ∥ (𝐺𝐸) ↔ 2 ∥ ((𝐺𝐸) + 2)))
6151, 60mtbid 324 . . . . 5 (𝜑 → ¬ 2 ∥ ((𝐺𝐸) + 2))
6261adantr 480 . . . 4 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → ¬ 2 ∥ ((𝐺𝐸) + 2))
63 2cnd 12271 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
648, 13, 63subaddd 11558 . . . . . 6 (𝜑 → (((𝐻𝐹) − (𝐺𝐸)) = 2 ↔ ((𝐺𝐸) + 2) = (𝐻𝐹)))
6564biimpa 476 . . . . 5 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → ((𝐺𝐸) + 2) = (𝐻𝐹))
6665breq2d 5122 . . . 4 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → (2 ∥ ((𝐺𝐸) + 2) ↔ 2 ∥ (𝐻𝐹)))
6762, 66mtbid 324 . . 3 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → ¬ 2 ∥ (𝐻𝐹))
6854, 67, 49mpjaodan 960 . 2 (𝜑 → ¬ 2 ∥ (𝐻𝐹))
6950, 68jca 511 1 (𝜑 → (𝐹 < 𝐻 ∧ ¬ 2 ∥ (𝐻𝐹)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  {cpr 4594   class class class wbr 5110  (class class class)co 7390  cr 11074  0cc0 11075   + caddc 11078   < clt 11215  cmin 11412  2c2 12248  0cn0 12449  cz 12536  cdvds 16229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-dvds 16230
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator