![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > signstlen | Structured version Visualization version GIF version |
Description: Length of the zero skipping sign word. (Contributed by Thierry Arnoux, 8-Oct-2018.) |
Ref | Expression |
---|---|
signsv.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
signsv.w | ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} |
signsv.t | ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) |
signsv.v | ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) |
Ref | Expression |
---|---|
signstlen | ⊢ (𝐹 ∈ Word ℝ → (♯‘(𝑇‘𝐹)) = (♯‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 6910 | . . . . 5 ⊢ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹‘𝑖)))) ∈ V | |
2 | eqid 2799 | . . . . 5 ⊢ (𝑛 ∈ (0..^(♯‘𝐹)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹‘𝑖))))) = (𝑛 ∈ (0..^(♯‘𝐹)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹‘𝑖))))) | |
3 | 1, 2 | fnmpti 6233 | . . . 4 ⊢ (𝑛 ∈ (0..^(♯‘𝐹)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹‘𝑖))))) Fn (0..^(♯‘𝐹)) |
4 | signsv.p | . . . . . 6 ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) | |
5 | signsv.w | . . . . . 6 ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} | |
6 | signsv.t | . . . . . 6 ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) | |
7 | signsv.v | . . . . . 6 ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) | |
8 | 4, 5, 6, 7 | signstfv 31158 | . . . . 5 ⊢ (𝐹 ∈ Word ℝ → (𝑇‘𝐹) = (𝑛 ∈ (0..^(♯‘𝐹)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹‘𝑖)))))) |
9 | 8 | fneq1d 6192 | . . . 4 ⊢ (𝐹 ∈ Word ℝ → ((𝑇‘𝐹) Fn (0..^(♯‘𝐹)) ↔ (𝑛 ∈ (0..^(♯‘𝐹)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹‘𝑖))))) Fn (0..^(♯‘𝐹)))) |
10 | 3, 9 | mpbiri 250 | . . 3 ⊢ (𝐹 ∈ Word ℝ → (𝑇‘𝐹) Fn (0..^(♯‘𝐹))) |
11 | hashfn 13414 | . . 3 ⊢ ((𝑇‘𝐹) Fn (0..^(♯‘𝐹)) → (♯‘(𝑇‘𝐹)) = (♯‘(0..^(♯‘𝐹)))) | |
12 | 10, 11 | syl 17 | . 2 ⊢ (𝐹 ∈ Word ℝ → (♯‘(𝑇‘𝐹)) = (♯‘(0..^(♯‘𝐹)))) |
13 | lencl 13553 | . . 3 ⊢ (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℕ0) | |
14 | hashfzo0 13466 | . . 3 ⊢ ((♯‘𝐹) ∈ ℕ0 → (♯‘(0..^(♯‘𝐹))) = (♯‘𝐹)) | |
15 | 13, 14 | syl 17 | . 2 ⊢ (𝐹 ∈ Word ℝ → (♯‘(0..^(♯‘𝐹))) = (♯‘𝐹)) |
16 | 12, 15 | eqtrd 2833 | 1 ⊢ (𝐹 ∈ Word ℝ → (♯‘(𝑇‘𝐹)) = (♯‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 ≠ wne 2971 ifcif 4277 {cpr 4370 {ctp 4372 〈cop 4374 ↦ cmpt 4922 Fn wfn 6096 ‘cfv 6101 (class class class)co 6878 ↦ cmpt2 6880 ℝcr 10223 0cc0 10224 1c1 10225 − cmin 10556 -cneg 10557 ℕ0cn0 11580 ...cfz 12580 ..^cfzo 12720 ♯chash 13370 Word cword 13534 sgncsgn 14167 Σcsu 14757 ndxcnx 16181 Basecbs 16184 +gcplusg 16267 Σg cgsu 16416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-1st 7401 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-oadd 7803 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-card 9051 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-nn 11313 df-n0 11581 df-z 11667 df-uz 11931 df-fz 12581 df-fzo 12721 df-hash 13371 df-word 13535 |
This theorem is referenced by: signstres 31171 signsvtp 31180 signsvtn 31181 |
Copyright terms: Public domain | W3C validator |