| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > signstlen | Structured version Visualization version GIF version | ||
| Description: Length of the zero skipping sign word. (Contributed by Thierry Arnoux, 8-Oct-2018.) |
| Ref | Expression |
|---|---|
| signsv.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
| signsv.w | ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} |
| signsv.t | ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) |
| signsv.v | ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) |
| Ref | Expression |
|---|---|
| signstlen | ⊢ (𝐹 ∈ Word ℝ → (♯‘(𝑇‘𝐹)) = (♯‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7420 | . . . . 5 ⊢ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹‘𝑖)))) ∈ V | |
| 2 | eqid 2729 | . . . . 5 ⊢ (𝑛 ∈ (0..^(♯‘𝐹)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹‘𝑖))))) = (𝑛 ∈ (0..^(♯‘𝐹)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹‘𝑖))))) | |
| 3 | 1, 2 | fnmpti 6661 | . . . 4 ⊢ (𝑛 ∈ (0..^(♯‘𝐹)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹‘𝑖))))) Fn (0..^(♯‘𝐹)) |
| 4 | signsv.p | . . . . . 6 ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) | |
| 5 | signsv.w | . . . . . 6 ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} | |
| 6 | signsv.t | . . . . . 6 ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) | |
| 7 | signsv.v | . . . . . 6 ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) | |
| 8 | 4, 5, 6, 7 | signstfv 34554 | . . . . 5 ⊢ (𝐹 ∈ Word ℝ → (𝑇‘𝐹) = (𝑛 ∈ (0..^(♯‘𝐹)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹‘𝑖)))))) |
| 9 | 8 | fneq1d 6611 | . . . 4 ⊢ (𝐹 ∈ Word ℝ → ((𝑇‘𝐹) Fn (0..^(♯‘𝐹)) ↔ (𝑛 ∈ (0..^(♯‘𝐹)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹‘𝑖))))) Fn (0..^(♯‘𝐹)))) |
| 10 | 3, 9 | mpbiri 258 | . . 3 ⊢ (𝐹 ∈ Word ℝ → (𝑇‘𝐹) Fn (0..^(♯‘𝐹))) |
| 11 | hashfn 14340 | . . 3 ⊢ ((𝑇‘𝐹) Fn (0..^(♯‘𝐹)) → (♯‘(𝑇‘𝐹)) = (♯‘(0..^(♯‘𝐹)))) | |
| 12 | 10, 11 | syl 17 | . 2 ⊢ (𝐹 ∈ Word ℝ → (♯‘(𝑇‘𝐹)) = (♯‘(0..^(♯‘𝐹)))) |
| 13 | lencl 14498 | . . 3 ⊢ (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℕ0) | |
| 14 | hashfzo0 14395 | . . 3 ⊢ ((♯‘𝐹) ∈ ℕ0 → (♯‘(0..^(♯‘𝐹))) = (♯‘𝐹)) | |
| 15 | 13, 14 | syl 17 | . 2 ⊢ (𝐹 ∈ Word ℝ → (♯‘(0..^(♯‘𝐹))) = (♯‘𝐹)) |
| 16 | 12, 15 | eqtrd 2764 | 1 ⊢ (𝐹 ∈ Word ℝ → (♯‘(𝑇‘𝐹)) = (♯‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ifcif 4488 {cpr 4591 {ctp 4593 〈cop 4595 ↦ cmpt 5188 Fn wfn 6506 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 ℝcr 11067 0cc0 11068 1c1 11069 − cmin 11405 -cneg 11406 ℕ0cn0 12442 ...cfz 13468 ..^cfzo 13615 ♯chash 14295 Word cword 14478 sgncsgn 15052 Σcsu 15652 ndxcnx 17163 Basecbs 17179 +gcplusg 17220 Σg cgsu 17403 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-hash 14296 df-word 14479 |
| This theorem is referenced by: signstres 34566 signsvtp 34574 signsvtn 34575 |
| Copyright terms: Public domain | W3C validator |