MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sscid Structured version   Visualization version   GIF version

Theorem sscid 17723
Description: The subcategory subset relation is reflexive. (Contributed by Mario Carneiro, 6-Jan-2017.)
Assertion
Ref Expression
sscid ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → 𝐻cat 𝐻)

Proof of Theorem sscid
StepHypRef Expression
1 fnresdm 6596 . . 3 (𝐻 Fn (𝑆 × 𝑆) → (𝐻 ↾ (𝑆 × 𝑆)) = 𝐻)
21adantr 480 . 2 ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → (𝐻 ↾ (𝑆 × 𝑆)) = 𝐻)
3 sscres 17722 . 2 ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → (𝐻 ↾ (𝑆 × 𝑆)) ⊆cat 𝐻)
42, 3eqbrtrrd 5113 1 ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆𝑉) → 𝐻cat 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2110   class class class wbr 5089   × cxp 5612  cres 5616   Fn wfn 6472  cat cssc 17706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-ixp 8817  df-ssc 17709
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator