Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sscid | Structured version Visualization version GIF version |
Description: The subcategory subset relation is reflexive. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
sscid | ⊢ ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆 ∈ 𝑉) → 𝐻 ⊆cat 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnresdm 6553 | . . 3 ⊢ (𝐻 Fn (𝑆 × 𝑆) → (𝐻 ↾ (𝑆 × 𝑆)) = 𝐻) | |
2 | 1 | adantr 481 | . 2 ⊢ ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆 ∈ 𝑉) → (𝐻 ↾ (𝑆 × 𝑆)) = 𝐻) |
3 | sscres 17533 | . 2 ⊢ ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆 ∈ 𝑉) → (𝐻 ↾ (𝑆 × 𝑆)) ⊆cat 𝐻) | |
4 | 2, 3 | eqbrtrrd 5100 | 1 ⊢ ((𝐻 Fn (𝑆 × 𝑆) ∧ 𝑆 ∈ 𝑉) → 𝐻 ⊆cat 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 class class class wbr 5076 × cxp 5589 ↾ cres 5593 Fn wfn 6430 ⊆cat cssc 17517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5211 ax-sep 5225 ax-nul 5232 ax-pow 5290 ax-pr 5354 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-iun 4928 df-br 5077 df-opab 5139 df-mpt 5160 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-iota 6393 df-fun 6437 df-fn 6438 df-f 6439 df-f1 6440 df-fo 6441 df-f1o 6442 df-fv 6443 df-ov 7280 df-ixp 8684 df-ssc 17520 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |