| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > submrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for submonoids. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| Ref | Expression |
|---|---|
| submrcl | ⊢ (𝑆 ∈ (SubMnd‘𝑀) → 𝑀 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-submnd 18762 | . 2 ⊢ SubMnd = (𝑠 ∈ Mnd ↦ {𝑡 ∈ 𝒫 (Base‘𝑠) ∣ ((0g‘𝑠) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑠)𝑦) ∈ 𝑡)}) | |
| 2 | 1 | mptrcl 6995 | 1 ⊢ (𝑆 ∈ (SubMnd‘𝑀) → 𝑀 ∈ Mnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3051 {crab 3415 𝒫 cpw 4575 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 +gcplusg 17271 0gc0g 17453 Mndcmnd 18712 SubMndcsubmnd 18760 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-xp 5660 df-rel 5661 df-cnv 5662 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fv 6539 df-submnd 18762 |
| This theorem is referenced by: issubmndb 18783 submss 18787 subm0cl 18789 submcl 18790 submmnd 18791 subm0 18793 subsubm 18794 insubm 18796 resmhm2 18799 gsumsubm 18813 gsumwsubmcl 18815 submmulgcl 19100 oppgsubm 19345 lsmub1x 19627 lsmub2x 19628 lsmsubm 19634 submarchi 33184 |
| Copyright terms: Public domain | W3C validator |