MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submrcl Structured version   Visualization version   GIF version

Theorem submrcl 18714
Description: Reverse closure for submonoids. (Contributed by Mario Carneiro, 7-Mar-2015.)
Assertion
Ref Expression
submrcl (𝑆 ∈ (SubMnd‘𝑀) → 𝑀 ∈ Mnd)

Proof of Theorem submrcl
Dummy variables 𝑡 𝑥 𝑦 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-submnd 18696 . 2 SubMnd = (𝑠 ∈ Mnd ↦ {𝑡 ∈ 𝒫 (Base‘𝑠) ∣ ((0g𝑠) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑠)𝑦) ∈ 𝑡)})
21mptrcl 6946 1 (𝑆 ∈ (SubMnd‘𝑀) → 𝑀 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2113  wral 3048  {crab 3396  𝒫 cpw 4551  cfv 6488  (class class class)co 7354  Basecbs 17124  +gcplusg 17165  0gc0g 17347  Mndcmnd 18646  SubMndcsubmnd 18694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-xp 5627  df-rel 5628  df-cnv 5629  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fv 6496  df-submnd 18696
This theorem is referenced by:  issubmndb  18717  submss  18721  subm0cl  18723  submcl  18724  submmnd  18725  subm0  18727  subsubm  18728  insubm  18730  resmhm2  18733  gsumsubm  18747  gsumwsubmcl  18749  submmulgcl  19034  oppgsubm  19278  lsmub1x  19562  lsmub2x  19563  lsmsubm  19569  submarchi  33164
  Copyright terms: Public domain W3C validator