MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submrcl Structured version   Visualization version   GIF version

Theorem submrcl 18683
Description: Reverse closure for submonoids. (Contributed by Mario Carneiro, 7-Mar-2015.)
Assertion
Ref Expression
submrcl (𝑆 ∈ (SubMndβ€˜π‘€) β†’ 𝑀 ∈ Mnd)

Proof of Theorem submrcl
Dummy variables 𝑑 π‘₯ 𝑦 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-submnd 18672 . 2 SubMnd = (𝑠 ∈ Mnd ↦ {𝑑 ∈ 𝒫 (Baseβ€˜π‘ ) ∣ ((0gβ€˜π‘ ) ∈ 𝑑 ∧ βˆ€π‘₯ ∈ 𝑑 βˆ€π‘¦ ∈ 𝑑 (π‘₯(+gβ€˜π‘ )𝑦) ∈ 𝑑)})
21mptrcl 7008 1 (𝑆 ∈ (SubMndβ€˜π‘€) β†’ 𝑀 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∈ wcel 2107  βˆ€wral 3062  {crab 3433  π’« cpw 4603  β€˜cfv 6544  (class class class)co 7409  Basecbs 17144  +gcplusg 17197  0gc0g 17385  Mndcmnd 18625  SubMndcsubmnd 18670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-xp 5683  df-rel 5684  df-cnv 5685  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fv 6552  df-submnd 18672
This theorem is referenced by:  issubmndb  18686  submss  18690  subm0cl  18692  submcl  18693  submmnd  18694  subm0  18696  subsubm  18697  insubm  18699  resmhm2  18702  gsumsubm  18716  gsumwsubmcl  18718  submmulgcl  18997  oppgsubm  19229  lsmub1x  19514  lsmub2x  19515  lsmsubm  19521  submarchi  32332
  Copyright terms: Public domain W3C validator