Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > submrcl | Structured version Visualization version GIF version |
Description: Reverse closure for submonoids. (Contributed by Mario Carneiro, 7-Mar-2015.) |
Ref | Expression |
---|---|
submrcl | ⊢ (𝑆 ∈ (SubMnd‘𝑀) → 𝑀 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-submnd 18085 | . 2 ⊢ SubMnd = (𝑠 ∈ Mnd ↦ {𝑡 ∈ 𝒫 (Base‘𝑠) ∣ ((0g‘𝑠) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑠)𝑦) ∈ 𝑡)}) | |
2 | 1 | mptrcl 6796 | 1 ⊢ (𝑆 ∈ (SubMnd‘𝑀) → 𝑀 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2114 ∀wral 3054 {crab 3058 𝒫 cpw 4498 ‘cfv 6349 (class class class)co 7182 Basecbs 16598 +gcplusg 16680 0gc0g 16828 Mndcmnd 18039 SubMndcsubmnd 18083 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5177 ax-nul 5184 ax-pr 5306 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-rab 3063 df-v 3402 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-nul 4222 df-if 4425 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4807 df-br 5041 df-opab 5103 df-mpt 5121 df-xp 5541 df-rel 5542 df-cnv 5543 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-iota 6307 df-fv 6357 df-submnd 18085 |
This theorem is referenced by: issubmndb 18098 submss 18102 subm0cl 18104 submcl 18105 submmnd 18106 subm0 18108 subsubm 18109 insubm 18111 resmhm2 18114 gsumsubm 18127 gsumwsubmcl 18129 submmulgcl 18400 oppgsubm 18620 lsmub1x 18901 lsmub2x 18902 lsmsubm 18908 submarchi 31029 |
Copyright terms: Public domain | W3C validator |