MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submrcl Structured version   Visualization version   GIF version

Theorem submrcl 18837
Description: Reverse closure for submonoids. (Contributed by Mario Carneiro, 7-Mar-2015.)
Assertion
Ref Expression
submrcl (𝑆 ∈ (SubMnd‘𝑀) → 𝑀 ∈ Mnd)

Proof of Theorem submrcl
Dummy variables 𝑡 𝑥 𝑦 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-submnd 18819 . 2 SubMnd = (𝑠 ∈ Mnd ↦ {𝑡 ∈ 𝒫 (Base‘𝑠) ∣ ((0g𝑠) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑠)𝑦) ∈ 𝑡)})
21mptrcl 7038 1 (𝑆 ∈ (SubMnd‘𝑀) → 𝑀 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wral 3067  {crab 3443  𝒫 cpw 4622  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  0gc0g 17499  Mndcmnd 18772  SubMndcsubmnd 18817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fv 6581  df-submnd 18819
This theorem is referenced by:  issubmndb  18840  submss  18844  subm0cl  18846  submcl  18847  submmnd  18848  subm0  18850  subsubm  18851  insubm  18853  resmhm2  18856  gsumsubm  18870  gsumwsubmcl  18872  submmulgcl  19157  oppgsubm  19405  lsmub1x  19688  lsmub2x  19689  lsmsubm  19695  submarchi  33166
  Copyright terms: Public domain W3C validator