MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submrcl Structured version   Visualization version   GIF version

Theorem submrcl 18441
Description: Reverse closure for submonoids. (Contributed by Mario Carneiro, 7-Mar-2015.)
Assertion
Ref Expression
submrcl (𝑆 ∈ (SubMnd‘𝑀) → 𝑀 ∈ Mnd)

Proof of Theorem submrcl
Dummy variables 𝑡 𝑥 𝑦 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-submnd 18431 . 2 SubMnd = (𝑠 ∈ Mnd ↦ {𝑡 ∈ 𝒫 (Base‘𝑠) ∣ ((0g𝑠) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑠)𝑦) ∈ 𝑡)})
21mptrcl 6884 1 (𝑆 ∈ (SubMnd‘𝑀) → 𝑀 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  wral 3064  {crab 3068  𝒫 cpw 4533  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  0gc0g 17150  Mndcmnd 18385  SubMndcsubmnd 18429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-xp 5595  df-rel 5596  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fv 6441  df-submnd 18431
This theorem is referenced by:  issubmndb  18444  submss  18448  subm0cl  18450  submcl  18451  submmnd  18452  subm0  18454  subsubm  18455  insubm  18457  resmhm2  18460  gsumsubm  18473  gsumwsubmcl  18475  submmulgcl  18746  oppgsubm  18969  lsmub1x  19251  lsmub2x  19252  lsmsubm  19258  submarchi  31440
  Copyright terms: Public domain W3C validator