| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > submrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for submonoids. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| Ref | Expression |
|---|---|
| submrcl | ⊢ (𝑆 ∈ (SubMnd‘𝑀) → 𝑀 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-submnd 18676 | . 2 ⊢ SubMnd = (𝑠 ∈ Mnd ↦ {𝑡 ∈ 𝒫 (Base‘𝑠) ∣ ((0g‘𝑠) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑠)𝑦) ∈ 𝑡)}) | |
| 2 | 1 | mptrcl 6943 | 1 ⊢ (𝑆 ∈ (SubMnd‘𝑀) → 𝑀 ∈ Mnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 {crab 3396 𝒫 cpw 4553 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 +gcplusg 17179 0gc0g 17361 Mndcmnd 18626 SubMndcsubmnd 18674 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-xp 5629 df-rel 5630 df-cnv 5631 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fv 6494 df-submnd 18676 |
| This theorem is referenced by: issubmndb 18697 submss 18701 subm0cl 18703 submcl 18704 submmnd 18705 subm0 18707 subsubm 18708 insubm 18710 resmhm2 18713 gsumsubm 18727 gsumwsubmcl 18729 submmulgcl 19014 oppgsubm 19259 lsmub1x 19543 lsmub2x 19544 lsmsubm 19550 submarchi 33141 |
| Copyright terms: Public domain | W3C validator |