MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmub1x Structured version   Visualization version   GIF version

Theorem lsmub1x 19249
Description: Subgroup sum is an upper bound of its arguments. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmless2.v 𝐵 = (Base‘𝐺)
lsmless2.s = (LSSum‘𝐺)
Assertion
Ref Expression
lsmub1x ((𝑇𝐵𝑈 ∈ (SubMnd‘𝐺)) → 𝑇 ⊆ (𝑇 𝑈))

Proof of Theorem lsmub1x
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 submrcl 18439 . . . . . 6 (𝑈 ∈ (SubMnd‘𝐺) → 𝐺 ∈ Mnd)
21ad2antlr 724 . . . . 5 (((𝑇𝐵𝑈 ∈ (SubMnd‘𝐺)) ∧ 𝑥𝑇) → 𝐺 ∈ Mnd)
3 simpll 764 . . . . . 6 (((𝑇𝐵𝑈 ∈ (SubMnd‘𝐺)) ∧ 𝑥𝑇) → 𝑇𝐵)
4 simpr 485 . . . . . 6 (((𝑇𝐵𝑈 ∈ (SubMnd‘𝐺)) ∧ 𝑥𝑇) → 𝑥𝑇)
53, 4sseldd 3927 . . . . 5 (((𝑇𝐵𝑈 ∈ (SubMnd‘𝐺)) ∧ 𝑥𝑇) → 𝑥𝐵)
6 lsmless2.v . . . . . 6 𝐵 = (Base‘𝐺)
7 eqid 2740 . . . . . 6 (+g𝐺) = (+g𝐺)
8 eqid 2740 . . . . . 6 (0g𝐺) = (0g𝐺)
96, 7, 8mndrid 18404 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑥𝐵) → (𝑥(+g𝐺)(0g𝐺)) = 𝑥)
102, 5, 9syl2anc 584 . . . 4 (((𝑇𝐵𝑈 ∈ (SubMnd‘𝐺)) ∧ 𝑥𝑇) → (𝑥(+g𝐺)(0g𝐺)) = 𝑥)
116submss 18446 . . . . . 6 (𝑈 ∈ (SubMnd‘𝐺) → 𝑈𝐵)
1211ad2antlr 724 . . . . 5 (((𝑇𝐵𝑈 ∈ (SubMnd‘𝐺)) ∧ 𝑥𝑇) → 𝑈𝐵)
138subm0cl 18448 . . . . . 6 (𝑈 ∈ (SubMnd‘𝐺) → (0g𝐺) ∈ 𝑈)
1413ad2antlr 724 . . . . 5 (((𝑇𝐵𝑈 ∈ (SubMnd‘𝐺)) ∧ 𝑥𝑇) → (0g𝐺) ∈ 𝑈)
15 lsmless2.s . . . . . 6 = (LSSum‘𝐺)
166, 7, 15lsmelvalix 19244 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵) ∧ (𝑥𝑇 ∧ (0g𝐺) ∈ 𝑈)) → (𝑥(+g𝐺)(0g𝐺)) ∈ (𝑇 𝑈))
172, 3, 12, 4, 14, 16syl32anc 1377 . . . 4 (((𝑇𝐵𝑈 ∈ (SubMnd‘𝐺)) ∧ 𝑥𝑇) → (𝑥(+g𝐺)(0g𝐺)) ∈ (𝑇 𝑈))
1810, 17eqeltrrd 2842 . . 3 (((𝑇𝐵𝑈 ∈ (SubMnd‘𝐺)) ∧ 𝑥𝑇) → 𝑥 ∈ (𝑇 𝑈))
1918ex 413 . 2 ((𝑇𝐵𝑈 ∈ (SubMnd‘𝐺)) → (𝑥𝑇𝑥 ∈ (𝑇 𝑈)))
2019ssrdv 3932 1 ((𝑇𝐵𝑈 ∈ (SubMnd‘𝐺)) → 𝑇 ⊆ (𝑇 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  wss 3892  cfv 6432  (class class class)co 7271  Basecbs 16910  +gcplusg 16960  0gc0g 17148  Mndcmnd 18383  SubMndcsubmnd 18427  LSSumclsm 19237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-0g 17150  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-submnd 18429  df-lsm 19239
This theorem is referenced by:  lsmsubm  19256  smndlsmidm  19259  lsmub1  19260
  Copyright terms: Public domain W3C validator