MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmub1x Structured version   Visualization version   GIF version

Theorem lsmub1x 19640
Description: Subgroup sum is an upper bound of its arguments. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmless2.v 𝐵 = (Base‘𝐺)
lsmless2.s = (LSSum‘𝐺)
Assertion
Ref Expression
lsmub1x ((𝑇𝐵𝑈 ∈ (SubMnd‘𝐺)) → 𝑇 ⊆ (𝑇 𝑈))

Proof of Theorem lsmub1x
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 submrcl 18787 . . . . . 6 (𝑈 ∈ (SubMnd‘𝐺) → 𝐺 ∈ Mnd)
21ad2antlr 725 . . . . 5 (((𝑇𝐵𝑈 ∈ (SubMnd‘𝐺)) ∧ 𝑥𝑇) → 𝐺 ∈ Mnd)
3 simpll 765 . . . . . 6 (((𝑇𝐵𝑈 ∈ (SubMnd‘𝐺)) ∧ 𝑥𝑇) → 𝑇𝐵)
4 simpr 483 . . . . . 6 (((𝑇𝐵𝑈 ∈ (SubMnd‘𝐺)) ∧ 𝑥𝑇) → 𝑥𝑇)
53, 4sseldd 3979 . . . . 5 (((𝑇𝐵𝑈 ∈ (SubMnd‘𝐺)) ∧ 𝑥𝑇) → 𝑥𝐵)
6 lsmless2.v . . . . . 6 𝐵 = (Base‘𝐺)
7 eqid 2726 . . . . . 6 (+g𝐺) = (+g𝐺)
8 eqid 2726 . . . . . 6 (0g𝐺) = (0g𝐺)
96, 7, 8mndrid 18743 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑥𝐵) → (𝑥(+g𝐺)(0g𝐺)) = 𝑥)
102, 5, 9syl2anc 582 . . . 4 (((𝑇𝐵𝑈 ∈ (SubMnd‘𝐺)) ∧ 𝑥𝑇) → (𝑥(+g𝐺)(0g𝐺)) = 𝑥)
116submss 18794 . . . . . 6 (𝑈 ∈ (SubMnd‘𝐺) → 𝑈𝐵)
1211ad2antlr 725 . . . . 5 (((𝑇𝐵𝑈 ∈ (SubMnd‘𝐺)) ∧ 𝑥𝑇) → 𝑈𝐵)
138subm0cl 18796 . . . . . 6 (𝑈 ∈ (SubMnd‘𝐺) → (0g𝐺) ∈ 𝑈)
1413ad2antlr 725 . . . . 5 (((𝑇𝐵𝑈 ∈ (SubMnd‘𝐺)) ∧ 𝑥𝑇) → (0g𝐺) ∈ 𝑈)
15 lsmless2.s . . . . . 6 = (LSSum‘𝐺)
166, 7, 15lsmelvalix 19635 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵) ∧ (𝑥𝑇 ∧ (0g𝐺) ∈ 𝑈)) → (𝑥(+g𝐺)(0g𝐺)) ∈ (𝑇 𝑈))
172, 3, 12, 4, 14, 16syl32anc 1375 . . . 4 (((𝑇𝐵𝑈 ∈ (SubMnd‘𝐺)) ∧ 𝑥𝑇) → (𝑥(+g𝐺)(0g𝐺)) ∈ (𝑇 𝑈))
1810, 17eqeltrrd 2827 . . 3 (((𝑇𝐵𝑈 ∈ (SubMnd‘𝐺)) ∧ 𝑥𝑇) → 𝑥 ∈ (𝑇 𝑈))
1918ex 411 . 2 ((𝑇𝐵𝑈 ∈ (SubMnd‘𝐺)) → (𝑥𝑇𝑥 ∈ (𝑇 𝑈)))
2019ssrdv 3984 1 ((𝑇𝐵𝑈 ∈ (SubMnd‘𝐺)) → 𝑇 ⊆ (𝑇 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  wss 3946  cfv 6546  (class class class)co 7416  Basecbs 17208  +gcplusg 17261  0gc0g 17449  Mndcmnd 18722  SubMndcsubmnd 18767  LSSumclsm 19628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-nn 12259  df-2 12321  df-sets 17161  df-slot 17179  df-ndx 17191  df-base 17209  df-ress 17238  df-plusg 17274  df-0g 17451  df-mgm 18628  df-sgrp 18707  df-mnd 18723  df-submnd 18769  df-lsm 19630
This theorem is referenced by:  lsmsubm  19647  smndlsmidm  19650  lsmub1  19651
  Copyright terms: Public domain W3C validator