Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lsmub1x | Structured version Visualization version GIF version |
Description: Subgroup sum is an upper bound of its arguments. (Contributed by Mario Carneiro, 19-Apr-2016.) |
Ref | Expression |
---|---|
lsmless2.v | ⊢ 𝐵 = (Base‘𝐺) |
lsmless2.s | ⊢ ⊕ = (LSSum‘𝐺) |
Ref | Expression |
---|---|
lsmub1x | ⊢ ((𝑇 ⊆ 𝐵 ∧ 𝑈 ∈ (SubMnd‘𝐺)) → 𝑇 ⊆ (𝑇 ⊕ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | submrcl 18439 | . . . . . 6 ⊢ (𝑈 ∈ (SubMnd‘𝐺) → 𝐺 ∈ Mnd) | |
2 | 1 | ad2antlr 724 | . . . . 5 ⊢ (((𝑇 ⊆ 𝐵 ∧ 𝑈 ∈ (SubMnd‘𝐺)) ∧ 𝑥 ∈ 𝑇) → 𝐺 ∈ Mnd) |
3 | simpll 764 | . . . . . 6 ⊢ (((𝑇 ⊆ 𝐵 ∧ 𝑈 ∈ (SubMnd‘𝐺)) ∧ 𝑥 ∈ 𝑇) → 𝑇 ⊆ 𝐵) | |
4 | simpr 485 | . . . . . 6 ⊢ (((𝑇 ⊆ 𝐵 ∧ 𝑈 ∈ (SubMnd‘𝐺)) ∧ 𝑥 ∈ 𝑇) → 𝑥 ∈ 𝑇) | |
5 | 3, 4 | sseldd 3927 | . . . . 5 ⊢ (((𝑇 ⊆ 𝐵 ∧ 𝑈 ∈ (SubMnd‘𝐺)) ∧ 𝑥 ∈ 𝑇) → 𝑥 ∈ 𝐵) |
6 | lsmless2.v | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
7 | eqid 2740 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
8 | eqid 2740 | . . . . . 6 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
9 | 6, 7, 8 | mndrid 18404 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → (𝑥(+g‘𝐺)(0g‘𝐺)) = 𝑥) |
10 | 2, 5, 9 | syl2anc 584 | . . . 4 ⊢ (((𝑇 ⊆ 𝐵 ∧ 𝑈 ∈ (SubMnd‘𝐺)) ∧ 𝑥 ∈ 𝑇) → (𝑥(+g‘𝐺)(0g‘𝐺)) = 𝑥) |
11 | 6 | submss 18446 | . . . . . 6 ⊢ (𝑈 ∈ (SubMnd‘𝐺) → 𝑈 ⊆ 𝐵) |
12 | 11 | ad2antlr 724 | . . . . 5 ⊢ (((𝑇 ⊆ 𝐵 ∧ 𝑈 ∈ (SubMnd‘𝐺)) ∧ 𝑥 ∈ 𝑇) → 𝑈 ⊆ 𝐵) |
13 | 8 | subm0cl 18448 | . . . . . 6 ⊢ (𝑈 ∈ (SubMnd‘𝐺) → (0g‘𝐺) ∈ 𝑈) |
14 | 13 | ad2antlr 724 | . . . . 5 ⊢ (((𝑇 ⊆ 𝐵 ∧ 𝑈 ∈ (SubMnd‘𝐺)) ∧ 𝑥 ∈ 𝑇) → (0g‘𝐺) ∈ 𝑈) |
15 | lsmless2.s | . . . . . 6 ⊢ ⊕ = (LSSum‘𝐺) | |
16 | 6, 7, 15 | lsmelvalix 19244 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ (𝑥 ∈ 𝑇 ∧ (0g‘𝐺) ∈ 𝑈)) → (𝑥(+g‘𝐺)(0g‘𝐺)) ∈ (𝑇 ⊕ 𝑈)) |
17 | 2, 3, 12, 4, 14, 16 | syl32anc 1377 | . . . 4 ⊢ (((𝑇 ⊆ 𝐵 ∧ 𝑈 ∈ (SubMnd‘𝐺)) ∧ 𝑥 ∈ 𝑇) → (𝑥(+g‘𝐺)(0g‘𝐺)) ∈ (𝑇 ⊕ 𝑈)) |
18 | 10, 17 | eqeltrrd 2842 | . . 3 ⊢ (((𝑇 ⊆ 𝐵 ∧ 𝑈 ∈ (SubMnd‘𝐺)) ∧ 𝑥 ∈ 𝑇) → 𝑥 ∈ (𝑇 ⊕ 𝑈)) |
19 | 18 | ex 413 | . 2 ⊢ ((𝑇 ⊆ 𝐵 ∧ 𝑈 ∈ (SubMnd‘𝐺)) → (𝑥 ∈ 𝑇 → 𝑥 ∈ (𝑇 ⊕ 𝑈))) |
20 | 19 | ssrdv 3932 | 1 ⊢ ((𝑇 ⊆ 𝐵 ∧ 𝑈 ∈ (SubMnd‘𝐺)) → 𝑇 ⊆ (𝑇 ⊕ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ⊆ wss 3892 ‘cfv 6432 (class class class)co 7271 Basecbs 16910 +gcplusg 16960 0gc0g 17148 Mndcmnd 18383 SubMndcsubmnd 18427 LSSumclsm 19237 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-sets 16863 df-slot 16881 df-ndx 16893 df-base 16911 df-ress 16940 df-plusg 16973 df-0g 17150 df-mgm 18324 df-sgrp 18373 df-mnd 18384 df-submnd 18429 df-lsm 19239 |
This theorem is referenced by: lsmsubm 19256 smndlsmidm 19259 lsmub1 19260 |
Copyright terms: Public domain | W3C validator |