MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmub1x Structured version   Visualization version   GIF version

Theorem lsmub1x 19553
Description: Subgroup sum is an upper bound of its arguments. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmless2.v 𝐵 = (Base‘𝐺)
lsmless2.s = (LSSum‘𝐺)
Assertion
Ref Expression
lsmub1x ((𝑇𝐵𝑈 ∈ (SubMnd‘𝐺)) → 𝑇 ⊆ (𝑇 𝑈))

Proof of Theorem lsmub1x
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 submrcl 18705 . . . . . 6 (𝑈 ∈ (SubMnd‘𝐺) → 𝐺 ∈ Mnd)
21ad2antlr 727 . . . . 5 (((𝑇𝐵𝑈 ∈ (SubMnd‘𝐺)) ∧ 𝑥𝑇) → 𝐺 ∈ Mnd)
3 simpll 766 . . . . . 6 (((𝑇𝐵𝑈 ∈ (SubMnd‘𝐺)) ∧ 𝑥𝑇) → 𝑇𝐵)
4 simpr 484 . . . . . 6 (((𝑇𝐵𝑈 ∈ (SubMnd‘𝐺)) ∧ 𝑥𝑇) → 𝑥𝑇)
53, 4sseldd 3930 . . . . 5 (((𝑇𝐵𝑈 ∈ (SubMnd‘𝐺)) ∧ 𝑥𝑇) → 𝑥𝐵)
6 lsmless2.v . . . . . 6 𝐵 = (Base‘𝐺)
7 eqid 2731 . . . . . 6 (+g𝐺) = (+g𝐺)
8 eqid 2731 . . . . . 6 (0g𝐺) = (0g𝐺)
96, 7, 8mndrid 18658 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑥𝐵) → (𝑥(+g𝐺)(0g𝐺)) = 𝑥)
102, 5, 9syl2anc 584 . . . 4 (((𝑇𝐵𝑈 ∈ (SubMnd‘𝐺)) ∧ 𝑥𝑇) → (𝑥(+g𝐺)(0g𝐺)) = 𝑥)
116submss 18712 . . . . . 6 (𝑈 ∈ (SubMnd‘𝐺) → 𝑈𝐵)
1211ad2antlr 727 . . . . 5 (((𝑇𝐵𝑈 ∈ (SubMnd‘𝐺)) ∧ 𝑥𝑇) → 𝑈𝐵)
138subm0cl 18714 . . . . . 6 (𝑈 ∈ (SubMnd‘𝐺) → (0g𝐺) ∈ 𝑈)
1413ad2antlr 727 . . . . 5 (((𝑇𝐵𝑈 ∈ (SubMnd‘𝐺)) ∧ 𝑥𝑇) → (0g𝐺) ∈ 𝑈)
15 lsmless2.s . . . . . 6 = (LSSum‘𝐺)
166, 7, 15lsmelvalix 19548 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝑇𝐵𝑈𝐵) ∧ (𝑥𝑇 ∧ (0g𝐺) ∈ 𝑈)) → (𝑥(+g𝐺)(0g𝐺)) ∈ (𝑇 𝑈))
172, 3, 12, 4, 14, 16syl32anc 1380 . . . 4 (((𝑇𝐵𝑈 ∈ (SubMnd‘𝐺)) ∧ 𝑥𝑇) → (𝑥(+g𝐺)(0g𝐺)) ∈ (𝑇 𝑈))
1810, 17eqeltrrd 2832 . . 3 (((𝑇𝐵𝑈 ∈ (SubMnd‘𝐺)) ∧ 𝑥𝑇) → 𝑥 ∈ (𝑇 𝑈))
1918ex 412 . 2 ((𝑇𝐵𝑈 ∈ (SubMnd‘𝐺)) → (𝑥𝑇𝑥 ∈ (𝑇 𝑈)))
2019ssrdv 3935 1 ((𝑇𝐵𝑈 ∈ (SubMnd‘𝐺)) → 𝑇 ⊆ (𝑇 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wss 3897  cfv 6476  (class class class)co 7341  Basecbs 17115  +gcplusg 17156  0gc0g 17338  Mndcmnd 18637  SubMndcsubmnd 18685  LSSumclsm 19541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-0g 17340  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-lsm 19543
This theorem is referenced by:  lsmsubm  19560  smndlsmidm  19563  lsmub1  19564
  Copyright terms: Public domain W3C validator