Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumwsubmcl Structured version   Visualization version   GIF version

Theorem gsumwsubmcl 18013
 Description: Closure of the composite in any submonoid. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 1-Oct-2015.)
Assertion
Ref Expression
gsumwsubmcl ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) → (𝐺 Σg 𝑊) ∈ 𝑆)

Proof of Theorem gsumwsubmcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7153 . . . 4 (𝑊 = ∅ → (𝐺 Σg 𝑊) = (𝐺 Σg ∅))
2 eqid 2798 . . . . 5 (0g𝐺) = (0g𝐺)
32gsum0 17906 . . . 4 (𝐺 Σg ∅) = (0g𝐺)
41, 3eqtrdi 2849 . . 3 (𝑊 = ∅ → (𝐺 Σg 𝑊) = (0g𝐺))
54eleq1d 2874 . 2 (𝑊 = ∅ → ((𝐺 Σg 𝑊) ∈ 𝑆 ↔ (0g𝐺) ∈ 𝑆))
6 eqid 2798 . . . 4 (Base‘𝐺) = (Base‘𝐺)
7 eqid 2798 . . . 4 (+g𝐺) = (+g𝐺)
8 submrcl 17979 . . . . 5 (𝑆 ∈ (SubMnd‘𝐺) → 𝐺 ∈ Mnd)
98ad2antrr 725 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝐺 ∈ Mnd)
10 lennncl 13897 . . . . . . 7 ((𝑊 ∈ Word 𝑆𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
1110adantll 713 . . . . . 6 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
12 nnm1nn0 11944 . . . . . 6 ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) − 1) ∈ ℕ0)
1311, 12syl 17 . . . . 5 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → ((♯‘𝑊) − 1) ∈ ℕ0)
14 nn0uz 12288 . . . . 5 0 = (ℤ‘0)
1513, 14eleqtrdi 2900 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → ((♯‘𝑊) − 1) ∈ (ℤ‘0))
16 wrdf 13882 . . . . . . 7 (𝑊 ∈ Word 𝑆𝑊:(0..^(♯‘𝑊))⟶𝑆)
1716ad2antlr 726 . . . . . 6 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝑊:(0..^(♯‘𝑊))⟶𝑆)
1811nnzd 12094 . . . . . . . 8 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℤ)
19 fzoval 13054 . . . . . . . 8 ((♯‘𝑊) ∈ ℤ → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
2018, 19syl 17 . . . . . . 7 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
2120feq2d 6481 . . . . . 6 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (𝑊:(0..^(♯‘𝑊))⟶𝑆𝑊:(0...((♯‘𝑊) − 1))⟶𝑆))
2217, 21mpbid 235 . . . . 5 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝑊:(0...((♯‘𝑊) − 1))⟶𝑆)
236submss 17986 . . . . . 6 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
2423ad2antrr 725 . . . . 5 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝑆 ⊆ (Base‘𝐺))
2522, 24fssd 6510 . . . 4 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝑊:(0...((♯‘𝑊) − 1))⟶(Base‘𝐺))
266, 7, 9, 15, 25gsumval2 17908 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (𝐺 Σg 𝑊) = (seq0((+g𝐺), 𝑊)‘((♯‘𝑊) − 1)))
2722ffvelrnda 6838 . . . 4 ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ 𝑥 ∈ (0...((♯‘𝑊) − 1))) → (𝑊𝑥) ∈ 𝑆)
287submcl 17989 . . . . . 6 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑥𝑆𝑦𝑆) → (𝑥(+g𝐺)𝑦) ∈ 𝑆)
29283expb 1117 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(+g𝐺)𝑦) ∈ 𝑆)
3029ad4ant14 751 . . . 4 ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(+g𝐺)𝑦) ∈ 𝑆)
3115, 27, 30seqcl 13406 . . 3 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (seq0((+g𝐺), 𝑊)‘((♯‘𝑊) − 1)) ∈ 𝑆)
3226, 31eqeltrd 2890 . 2 (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (𝐺 Σg 𝑊) ∈ 𝑆)
332subm0cl 17988 . . 3 (𝑆 ∈ (SubMnd‘𝐺) → (0g𝐺) ∈ 𝑆)
3433adantr 484 . 2 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) → (0g𝐺) ∈ 𝑆)
355, 32, 34pm2.61ne 3072 1 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) → (𝐺 Σg 𝑊) ∈ 𝑆)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ≠ wne 2987   ⊆ wss 3883  ∅c0 4246  ⟶wf 6328  ‘cfv 6332  (class class class)co 7145  0cc0 10544  1c1 10545   − cmin 10877  ℕcn 11643  ℕ0cn0 11903  ℤcz 11989  ℤ≥cuz 12251  ...cfz 12905  ..^cfzo 13048  seqcseq 13384  ♯chash 13706  Word cword 13877  Basecbs 16495  +gcplusg 16577  0gc0g 16725   Σg cgsu 16726  Mndcmnd 17923  SubMndcsubmnd 17967 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5158  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-cnex 10600  ax-resscn 10601  ax-1cn 10602  ax-icn 10603  ax-addcl 10604  ax-addrcl 10605  ax-mulcl 10606  ax-mulrcl 10607  ax-mulcom 10608  ax-addass 10609  ax-mulass 10610  ax-distr 10611  ax-i2m1 10612  ax-1ne0 10613  ax-1rid 10614  ax-rnegex 10615  ax-rrecex 10616  ax-cnre 10617  ax-pre-lttri 10618  ax-pre-lttrn 10619  ax-pre-ltadd 10620  ax-pre-mulgt0 10621 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4805  df-int 4843  df-iun 4887  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7574  df-1st 7684  df-2nd 7685  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-1o 8103  df-oadd 8107  df-er 8290  df-en 8511  df-dom 8512  df-sdom 8513  df-fin 8514  df-card 9370  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-le 10688  df-sub 10879  df-neg 10880  df-nn 11644  df-2 11706  df-n0 11904  df-z 11990  df-uz 12252  df-fz 12906  df-fzo 13049  df-seq 13385  df-hash 13707  df-word 13878  df-ndx 16498  df-slot 16499  df-base 16501  df-sets 16502  df-ress 16503  df-plusg 16590  df-0g 16727  df-gsum 16728  df-mgm 17864  df-sgrp 17913  df-mnd 17924  df-submnd 17969 This theorem is referenced by:  gsumwcl  18015  gsumwspan  18023  frmdss2  18040  psgnunilem5  18635  cyc3genpm  30893
 Copyright terms: Public domain W3C validator