![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsumwsubmcl | Structured version Visualization version GIF version |
Description: Closure of the composite in any submonoid. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 1-Oct-2015.) |
Ref | Expression |
---|---|
gsumwsubmcl | ⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) → (𝐺 Σg 𝑊) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7439 | . . . 4 ⊢ (𝑊 = ∅ → (𝐺 Σg 𝑊) = (𝐺 Σg ∅)) | |
2 | eqid 2735 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
3 | 2 | gsum0 18710 | . . . 4 ⊢ (𝐺 Σg ∅) = (0g‘𝐺) |
4 | 1, 3 | eqtrdi 2791 | . . 3 ⊢ (𝑊 = ∅ → (𝐺 Σg 𝑊) = (0g‘𝐺)) |
5 | 4 | eleq1d 2824 | . 2 ⊢ (𝑊 = ∅ → ((𝐺 Σg 𝑊) ∈ 𝑆 ↔ (0g‘𝐺) ∈ 𝑆)) |
6 | eqid 2735 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
7 | eqid 2735 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
8 | submrcl 18828 | . . . . 5 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝐺 ∈ Mnd) | |
9 | 8 | ad2antrr 726 | . . . 4 ⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝐺 ∈ Mnd) |
10 | lennncl 14569 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ) | |
11 | 10 | adantll 714 | . . . . . 6 ⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ) |
12 | nnm1nn0 12565 | . . . . . 6 ⊢ ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) − 1) ∈ ℕ0) | |
13 | 11, 12 | syl 17 | . . . . 5 ⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → ((♯‘𝑊) − 1) ∈ ℕ0) |
14 | nn0uz 12918 | . . . . 5 ⊢ ℕ0 = (ℤ≥‘0) | |
15 | 13, 14 | eleqtrdi 2849 | . . . 4 ⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → ((♯‘𝑊) − 1) ∈ (ℤ≥‘0)) |
16 | wrdf 14554 | . . . . . . 7 ⊢ (𝑊 ∈ Word 𝑆 → 𝑊:(0..^(♯‘𝑊))⟶𝑆) | |
17 | 16 | ad2antlr 727 | . . . . . 6 ⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
18 | 11 | nnzd 12638 | . . . . . . . 8 ⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℤ) |
19 | fzoval 13697 | . . . . . . . 8 ⊢ ((♯‘𝑊) ∈ ℤ → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1))) | |
20 | 18, 19 | syl 17 | . . . . . . 7 ⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1))) |
21 | 20 | feq2d 6723 | . . . . . 6 ⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (𝑊:(0..^(♯‘𝑊))⟶𝑆 ↔ 𝑊:(0...((♯‘𝑊) − 1))⟶𝑆)) |
22 | 17, 21 | mpbid 232 | . . . . 5 ⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝑊:(0...((♯‘𝑊) − 1))⟶𝑆) |
23 | 6 | submss 18835 | . . . . . 6 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
24 | 23 | ad2antrr 726 | . . . . 5 ⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝑆 ⊆ (Base‘𝐺)) |
25 | 22, 24 | fssd 6754 | . . . 4 ⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝑊:(0...((♯‘𝑊) − 1))⟶(Base‘𝐺)) |
26 | 6, 7, 9, 15, 25 | gsumval2 18712 | . . 3 ⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (𝐺 Σg 𝑊) = (seq0((+g‘𝐺), 𝑊)‘((♯‘𝑊) − 1))) |
27 | 22 | ffvelcdmda 7104 | . . . 4 ⊢ ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ 𝑥 ∈ (0...((♯‘𝑊) − 1))) → (𝑊‘𝑥) ∈ 𝑆) |
28 | 7 | submcl 18838 | . . . . . 6 ⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥(+g‘𝐺)𝑦) ∈ 𝑆) |
29 | 28 | 3expb 1119 | . . . . 5 ⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(+g‘𝐺)𝑦) ∈ 𝑆) |
30 | 29 | ad4ant14 752 | . . . 4 ⊢ ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(+g‘𝐺)𝑦) ∈ 𝑆) |
31 | 15, 27, 30 | seqcl 14060 | . . 3 ⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (seq0((+g‘𝐺), 𝑊)‘((♯‘𝑊) − 1)) ∈ 𝑆) |
32 | 26, 31 | eqeltrd 2839 | . 2 ⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (𝐺 Σg 𝑊) ∈ 𝑆) |
33 | 2 | subm0cl 18837 | . . 3 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → (0g‘𝐺) ∈ 𝑆) |
34 | 33 | adantr 480 | . 2 ⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) → (0g‘𝐺) ∈ 𝑆) |
35 | 5, 32, 34 | pm2.61ne 3025 | 1 ⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) → (𝐺 Σg 𝑊) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ⊆ wss 3963 ∅c0 4339 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 0cc0 11153 1c1 11154 − cmin 11490 ℕcn 12264 ℕ0cn0 12524 ℤcz 12611 ℤ≥cuz 12876 ...cfz 13544 ..^cfzo 13691 seqcseq 14039 ♯chash 14366 Word cword 14549 Basecbs 17245 +gcplusg 17298 0gc0g 17486 Σg cgsu 17487 Mndcmnd 18760 SubMndcsubmnd 18808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-fzo 13692 df-seq 14040 df-hash 14367 df-word 14550 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-0g 17488 df-gsum 17489 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 |
This theorem is referenced by: gsumwcl 18865 gsumwspan 18872 frmdss2 18889 psgnunilem5 19527 cyc3genpm 33155 elrgspnlem4 33235 |
Copyright terms: Public domain | W3C validator |