Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gsumwsubmcl | Structured version Visualization version GIF version |
Description: Closure of the composite in any submonoid. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 1-Oct-2015.) |
Ref | Expression |
---|---|
gsumwsubmcl | ⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) → (𝐺 Σg 𝑊) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7283 | . . . 4 ⊢ (𝑊 = ∅ → (𝐺 Σg 𝑊) = (𝐺 Σg ∅)) | |
2 | eqid 2738 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
3 | 2 | gsum0 18368 | . . . 4 ⊢ (𝐺 Σg ∅) = (0g‘𝐺) |
4 | 1, 3 | eqtrdi 2794 | . . 3 ⊢ (𝑊 = ∅ → (𝐺 Σg 𝑊) = (0g‘𝐺)) |
5 | 4 | eleq1d 2823 | . 2 ⊢ (𝑊 = ∅ → ((𝐺 Σg 𝑊) ∈ 𝑆 ↔ (0g‘𝐺) ∈ 𝑆)) |
6 | eqid 2738 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
7 | eqid 2738 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
8 | submrcl 18441 | . . . . 5 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝐺 ∈ Mnd) | |
9 | 8 | ad2antrr 723 | . . . 4 ⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝐺 ∈ Mnd) |
10 | lennncl 14237 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ) | |
11 | 10 | adantll 711 | . . . . . 6 ⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ) |
12 | nnm1nn0 12274 | . . . . . 6 ⊢ ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) − 1) ∈ ℕ0) | |
13 | 11, 12 | syl 17 | . . . . 5 ⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → ((♯‘𝑊) − 1) ∈ ℕ0) |
14 | nn0uz 12620 | . . . . 5 ⊢ ℕ0 = (ℤ≥‘0) | |
15 | 13, 14 | eleqtrdi 2849 | . . . 4 ⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → ((♯‘𝑊) − 1) ∈ (ℤ≥‘0)) |
16 | wrdf 14222 | . . . . . . 7 ⊢ (𝑊 ∈ Word 𝑆 → 𝑊:(0..^(♯‘𝑊))⟶𝑆) | |
17 | 16 | ad2antlr 724 | . . . . . 6 ⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
18 | 11 | nnzd 12425 | . . . . . . . 8 ⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℤ) |
19 | fzoval 13388 | . . . . . . . 8 ⊢ ((♯‘𝑊) ∈ ℤ → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1))) | |
20 | 18, 19 | syl 17 | . . . . . . 7 ⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1))) |
21 | 20 | feq2d 6586 | . . . . . 6 ⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (𝑊:(0..^(♯‘𝑊))⟶𝑆 ↔ 𝑊:(0...((♯‘𝑊) − 1))⟶𝑆)) |
22 | 17, 21 | mpbid 231 | . . . . 5 ⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝑊:(0...((♯‘𝑊) − 1))⟶𝑆) |
23 | 6 | submss 18448 | . . . . . 6 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
24 | 23 | ad2antrr 723 | . . . . 5 ⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝑆 ⊆ (Base‘𝐺)) |
25 | 22, 24 | fssd 6618 | . . . 4 ⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝑊:(0...((♯‘𝑊) − 1))⟶(Base‘𝐺)) |
26 | 6, 7, 9, 15, 25 | gsumval2 18370 | . . 3 ⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (𝐺 Σg 𝑊) = (seq0((+g‘𝐺), 𝑊)‘((♯‘𝑊) − 1))) |
27 | 22 | ffvelrnda 6961 | . . . 4 ⊢ ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ 𝑥 ∈ (0...((♯‘𝑊) − 1))) → (𝑊‘𝑥) ∈ 𝑆) |
28 | 7 | submcl 18451 | . . . . . 6 ⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥(+g‘𝐺)𝑦) ∈ 𝑆) |
29 | 28 | 3expb 1119 | . . . . 5 ⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(+g‘𝐺)𝑦) ∈ 𝑆) |
30 | 29 | ad4ant14 749 | . . . 4 ⊢ ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(+g‘𝐺)𝑦) ∈ 𝑆) |
31 | 15, 27, 30 | seqcl 13743 | . . 3 ⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (seq0((+g‘𝐺), 𝑊)‘((♯‘𝑊) − 1)) ∈ 𝑆) |
32 | 26, 31 | eqeltrd 2839 | . 2 ⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (𝐺 Σg 𝑊) ∈ 𝑆) |
33 | 2 | subm0cl 18450 | . . 3 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → (0g‘𝐺) ∈ 𝑆) |
34 | 33 | adantr 481 | . 2 ⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) → (0g‘𝐺) ∈ 𝑆) |
35 | 5, 32, 34 | pm2.61ne 3030 | 1 ⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) → (𝐺 Σg 𝑊) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ⊆ wss 3887 ∅c0 4256 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 0cc0 10871 1c1 10872 − cmin 11205 ℕcn 11973 ℕ0cn0 12233 ℤcz 12319 ℤ≥cuz 12582 ...cfz 13239 ..^cfzo 13382 seqcseq 13721 ♯chash 14044 Word cword 14217 Basecbs 16912 +gcplusg 16962 0gc0g 17150 Σg cgsu 17151 Mndcmnd 18385 SubMndcsubmnd 18429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-seq 13722 df-hash 14045 df-word 14218 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-0g 17152 df-gsum 17153 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 |
This theorem is referenced by: gsumwcl 18477 gsumwspan 18485 frmdss2 18502 psgnunilem5 19102 cyc3genpm 31419 |
Copyright terms: Public domain | W3C validator |