| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsumwsubmcl | Structured version Visualization version GIF version | ||
| Description: Closure of the composite in any submonoid. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 1-Oct-2015.) |
| Ref | Expression |
|---|---|
| gsumwsubmcl | ⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) → (𝐺 Σg 𝑊) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7398 | . . . 4 ⊢ (𝑊 = ∅ → (𝐺 Σg 𝑊) = (𝐺 Σg ∅)) | |
| 2 | eqid 2730 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 3 | 2 | gsum0 18618 | . . . 4 ⊢ (𝐺 Σg ∅) = (0g‘𝐺) |
| 4 | 1, 3 | eqtrdi 2781 | . . 3 ⊢ (𝑊 = ∅ → (𝐺 Σg 𝑊) = (0g‘𝐺)) |
| 5 | 4 | eleq1d 2814 | . 2 ⊢ (𝑊 = ∅ → ((𝐺 Σg 𝑊) ∈ 𝑆 ↔ (0g‘𝐺) ∈ 𝑆)) |
| 6 | eqid 2730 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 7 | eqid 2730 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 8 | submrcl 18736 | . . . . 5 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝐺 ∈ Mnd) | |
| 9 | 8 | ad2antrr 726 | . . . 4 ⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝐺 ∈ Mnd) |
| 10 | lennncl 14506 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝑆 ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ) | |
| 11 | 10 | adantll 714 | . . . . . 6 ⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ) |
| 12 | nnm1nn0 12490 | . . . . . 6 ⊢ ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) − 1) ∈ ℕ0) | |
| 13 | 11, 12 | syl 17 | . . . . 5 ⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → ((♯‘𝑊) − 1) ∈ ℕ0) |
| 14 | nn0uz 12842 | . . . . 5 ⊢ ℕ0 = (ℤ≥‘0) | |
| 15 | 13, 14 | eleqtrdi 2839 | . . . 4 ⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → ((♯‘𝑊) − 1) ∈ (ℤ≥‘0)) |
| 16 | wrdf 14490 | . . . . . . 7 ⊢ (𝑊 ∈ Word 𝑆 → 𝑊:(0..^(♯‘𝑊))⟶𝑆) | |
| 17 | 16 | ad2antlr 727 | . . . . . 6 ⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
| 18 | 11 | nnzd 12563 | . . . . . . . 8 ⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℤ) |
| 19 | fzoval 13628 | . . . . . . . 8 ⊢ ((♯‘𝑊) ∈ ℤ → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1))) | |
| 20 | 18, 19 | syl 17 | . . . . . . 7 ⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1))) |
| 21 | 20 | feq2d 6675 | . . . . . 6 ⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (𝑊:(0..^(♯‘𝑊))⟶𝑆 ↔ 𝑊:(0...((♯‘𝑊) − 1))⟶𝑆)) |
| 22 | 17, 21 | mpbid 232 | . . . . 5 ⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝑊:(0...((♯‘𝑊) − 1))⟶𝑆) |
| 23 | 6 | submss 18743 | . . . . . 6 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
| 24 | 23 | ad2antrr 726 | . . . . 5 ⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝑆 ⊆ (Base‘𝐺)) |
| 25 | 22, 24 | fssd 6708 | . . . 4 ⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → 𝑊:(0...((♯‘𝑊) − 1))⟶(Base‘𝐺)) |
| 26 | 6, 7, 9, 15, 25 | gsumval2 18620 | . . 3 ⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (𝐺 Σg 𝑊) = (seq0((+g‘𝐺), 𝑊)‘((♯‘𝑊) − 1))) |
| 27 | 22 | ffvelcdmda 7059 | . . . 4 ⊢ ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ 𝑥 ∈ (0...((♯‘𝑊) − 1))) → (𝑊‘𝑥) ∈ 𝑆) |
| 28 | 7 | submcl 18746 | . . . . . 6 ⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥(+g‘𝐺)𝑦) ∈ 𝑆) |
| 29 | 28 | 3expb 1120 | . . . . 5 ⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(+g‘𝐺)𝑦) ∈ 𝑆) |
| 30 | 29 | ad4ant14 752 | . . . 4 ⊢ ((((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(+g‘𝐺)𝑦) ∈ 𝑆) |
| 31 | 15, 27, 30 | seqcl 13994 | . . 3 ⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (seq0((+g‘𝐺), 𝑊)‘((♯‘𝑊) − 1)) ∈ 𝑆) |
| 32 | 26, 31 | eqeltrd 2829 | . 2 ⊢ (((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) ∧ 𝑊 ≠ ∅) → (𝐺 Σg 𝑊) ∈ 𝑆) |
| 33 | 2 | subm0cl 18745 | . . 3 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → (0g‘𝐺) ∈ 𝑆) |
| 34 | 33 | adantr 480 | . 2 ⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) → (0g‘𝐺) ∈ 𝑆) |
| 35 | 5, 32, 34 | pm2.61ne 3011 | 1 ⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑊 ∈ Word 𝑆) → (𝐺 Σg 𝑊) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ⊆ wss 3917 ∅c0 4299 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 0cc0 11075 1c1 11076 − cmin 11412 ℕcn 12193 ℕ0cn0 12449 ℤcz 12536 ℤ≥cuz 12800 ...cfz 13475 ..^cfzo 13622 seqcseq 13973 ♯chash 14302 Word cword 14485 Basecbs 17186 +gcplusg 17227 0gc0g 17409 Σg cgsu 17410 Mndcmnd 18668 SubMndcsubmnd 18716 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 df-seq 13974 df-hash 14303 df-word 14486 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-0g 17411 df-gsum 17412 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 |
| This theorem is referenced by: gsumwcl 18773 gsumwspan 18780 frmdss2 18797 psgnunilem5 19431 cyc3genpm 33116 elrgspnlem4 33203 |
| Copyright terms: Public domain | W3C validator |