MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsubm Structured version   Visualization version   GIF version

Theorem subsubm 17973
Description: A submonoid of a submonoid is a submonoid. (Contributed by Mario Carneiro, 21-Jun-2015.)
Hypothesis
Ref Expression
subsubm.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
subsubm (𝑆 ∈ (SubMnd‘𝐺) → (𝐴 ∈ (SubMnd‘𝐻) ↔ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)))

Proof of Theorem subsubm
StepHypRef Expression
1 eqid 2798 . . . . . . . 8 (Base‘𝐻) = (Base‘𝐻)
21submss 17966 . . . . . . 7 (𝐴 ∈ (SubMnd‘𝐻) → 𝐴 ⊆ (Base‘𝐻))
32adantl 485 . . . . . 6 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → 𝐴 ⊆ (Base‘𝐻))
4 subsubm.h . . . . . . . 8 𝐻 = (𝐺s 𝑆)
54submbas 17971 . . . . . . 7 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 = (Base‘𝐻))
65adantr 484 . . . . . 6 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → 𝑆 = (Base‘𝐻))
73, 6sseqtrrd 3956 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → 𝐴𝑆)
8 eqid 2798 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
98submss 17966 . . . . . 6 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
109adantr 484 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → 𝑆 ⊆ (Base‘𝐺))
117, 10sstrd 3925 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → 𝐴 ⊆ (Base‘𝐺))
12 eqid 2798 . . . . . . 7 (0g𝐺) = (0g𝐺)
134, 12subm0 17972 . . . . . 6 (𝑆 ∈ (SubMnd‘𝐺) → (0g𝐺) = (0g𝐻))
1413adantr 484 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → (0g𝐺) = (0g𝐻))
15 eqid 2798 . . . . . . 7 (0g𝐻) = (0g𝐻)
1615subm0cl 17968 . . . . . 6 (𝐴 ∈ (SubMnd‘𝐻) → (0g𝐻) ∈ 𝐴)
1716adantl 485 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → (0g𝐻) ∈ 𝐴)
1814, 17eqeltrd 2890 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → (0g𝐺) ∈ 𝐴)
194oveq1i 7145 . . . . . . 7 (𝐻s 𝐴) = ((𝐺s 𝑆) ↾s 𝐴)
20 ressabs 16555 . . . . . . 7 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆) → ((𝐺s 𝑆) ↾s 𝐴) = (𝐺s 𝐴))
2119, 20syl5eq 2845 . . . . . 6 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆) → (𝐻s 𝐴) = (𝐺s 𝐴))
227, 21syldan 594 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → (𝐻s 𝐴) = (𝐺s 𝐴))
23 eqid 2798 . . . . . . 7 (𝐻s 𝐴) = (𝐻s 𝐴)
2423submmnd 17970 . . . . . 6 (𝐴 ∈ (SubMnd‘𝐻) → (𝐻s 𝐴) ∈ Mnd)
2524adantl 485 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → (𝐻s 𝐴) ∈ Mnd)
2622, 25eqeltrrd 2891 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → (𝐺s 𝐴) ∈ Mnd)
27 submrcl 17959 . . . . . 6 (𝑆 ∈ (SubMnd‘𝐺) → 𝐺 ∈ Mnd)
2827adantr 484 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → 𝐺 ∈ Mnd)
29 eqid 2798 . . . . . 6 (𝐺s 𝐴) = (𝐺s 𝐴)
308, 12, 29issubm2 17961 . . . . 5 (𝐺 ∈ Mnd → (𝐴 ∈ (SubMnd‘𝐺) ↔ (𝐴 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝐴 ∧ (𝐺s 𝐴) ∈ Mnd)))
3128, 30syl 17 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → (𝐴 ∈ (SubMnd‘𝐺) ↔ (𝐴 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝐴 ∧ (𝐺s 𝐴) ∈ Mnd)))
3211, 18, 26, 31mpbir3and 1339 . . 3 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → 𝐴 ∈ (SubMnd‘𝐺))
3332, 7jca 515 . 2 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆))
34 simprr 772 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → 𝐴𝑆)
355adantr 484 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → 𝑆 = (Base‘𝐻))
3634, 35sseqtrd 3955 . . 3 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → 𝐴 ⊆ (Base‘𝐻))
3713adantr 484 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → (0g𝐺) = (0g𝐻))
3812subm0cl 17968 . . . . 5 (𝐴 ∈ (SubMnd‘𝐺) → (0g𝐺) ∈ 𝐴)
3938ad2antrl 727 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → (0g𝐺) ∈ 𝐴)
4037, 39eqeltrrd 2891 . . 3 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → (0g𝐻) ∈ 𝐴)
4121adantrl 715 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → (𝐻s 𝐴) = (𝐺s 𝐴))
4229submmnd 17970 . . . . 5 (𝐴 ∈ (SubMnd‘𝐺) → (𝐺s 𝐴) ∈ Mnd)
4342ad2antrl 727 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → (𝐺s 𝐴) ∈ Mnd)
4441, 43eqeltrd 2890 . . 3 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → (𝐻s 𝐴) ∈ Mnd)
454submmnd 17970 . . . . 5 (𝑆 ∈ (SubMnd‘𝐺) → 𝐻 ∈ Mnd)
4645adantr 484 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → 𝐻 ∈ Mnd)
471, 15, 23issubm2 17961 . . . 4 (𝐻 ∈ Mnd → (𝐴 ∈ (SubMnd‘𝐻) ↔ (𝐴 ⊆ (Base‘𝐻) ∧ (0g𝐻) ∈ 𝐴 ∧ (𝐻s 𝐴) ∈ Mnd)))
4846, 47syl 17 . . 3 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → (𝐴 ∈ (SubMnd‘𝐻) ↔ (𝐴 ⊆ (Base‘𝐻) ∧ (0g𝐻) ∈ 𝐴 ∧ (𝐻s 𝐴) ∈ Mnd)))
4936, 40, 44, 48mpbir3and 1339 . 2 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → 𝐴 ∈ (SubMnd‘𝐻))
5033, 49impbida 800 1 (𝑆 ∈ (SubMnd‘𝐺) → (𝐴 ∈ (SubMnd‘𝐻) ↔ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wss 3881  cfv 6324  (class class class)co 7135  Basecbs 16475  s cress 16476  0gc0g 16705  Mndcmnd 17903  SubMndcsubmnd 17947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949
This theorem is referenced by:  zrhpsgnmhm  20273  amgmlem  25575  nn0archi  30967  amgmwlem  45330  amgmlemALT  45331
  Copyright terms: Public domain W3C validator