MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsubm Structured version   Visualization version   GIF version

Theorem subsubm 18732
Description: A submonoid of a submonoid is a submonoid. (Contributed by Mario Carneiro, 21-Jun-2015.)
Hypothesis
Ref Expression
subsubm.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
subsubm (𝑆 ∈ (SubMnd‘𝐺) → (𝐴 ∈ (SubMnd‘𝐻) ↔ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)))

Proof of Theorem subsubm
StepHypRef Expression
1 eqid 2733 . . . . . . . 8 (Base‘𝐻) = (Base‘𝐻)
21submss 18725 . . . . . . 7 (𝐴 ∈ (SubMnd‘𝐻) → 𝐴 ⊆ (Base‘𝐻))
32adantl 481 . . . . . 6 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → 𝐴 ⊆ (Base‘𝐻))
4 subsubm.h . . . . . . . 8 𝐻 = (𝐺s 𝑆)
54submbas 18730 . . . . . . 7 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 = (Base‘𝐻))
65adantr 480 . . . . . 6 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → 𝑆 = (Base‘𝐻))
73, 6sseqtrrd 3968 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → 𝐴𝑆)
8 eqid 2733 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
98submss 18725 . . . . . 6 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
109adantr 480 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → 𝑆 ⊆ (Base‘𝐺))
117, 10sstrd 3941 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → 𝐴 ⊆ (Base‘𝐺))
12 eqid 2733 . . . . . . 7 (0g𝐺) = (0g𝐺)
134, 12subm0 18731 . . . . . 6 (𝑆 ∈ (SubMnd‘𝐺) → (0g𝐺) = (0g𝐻))
1413adantr 480 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → (0g𝐺) = (0g𝐻))
15 eqid 2733 . . . . . . 7 (0g𝐻) = (0g𝐻)
1615subm0cl 18727 . . . . . 6 (𝐴 ∈ (SubMnd‘𝐻) → (0g𝐻) ∈ 𝐴)
1716adantl 481 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → (0g𝐻) ∈ 𝐴)
1814, 17eqeltrd 2833 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → (0g𝐺) ∈ 𝐴)
194oveq1i 7365 . . . . . . 7 (𝐻s 𝐴) = ((𝐺s 𝑆) ↾s 𝐴)
20 ressabs 17166 . . . . . . 7 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆) → ((𝐺s 𝑆) ↾s 𝐴) = (𝐺s 𝐴))
2119, 20eqtrid 2780 . . . . . 6 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆) → (𝐻s 𝐴) = (𝐺s 𝐴))
227, 21syldan 591 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → (𝐻s 𝐴) = (𝐺s 𝐴))
23 eqid 2733 . . . . . . 7 (𝐻s 𝐴) = (𝐻s 𝐴)
2423submmnd 18729 . . . . . 6 (𝐴 ∈ (SubMnd‘𝐻) → (𝐻s 𝐴) ∈ Mnd)
2524adantl 481 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → (𝐻s 𝐴) ∈ Mnd)
2622, 25eqeltrrd 2834 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → (𝐺s 𝐴) ∈ Mnd)
27 submrcl 18718 . . . . . 6 (𝑆 ∈ (SubMnd‘𝐺) → 𝐺 ∈ Mnd)
2827adantr 480 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → 𝐺 ∈ Mnd)
29 eqid 2733 . . . . . 6 (𝐺s 𝐴) = (𝐺s 𝐴)
308, 12, 29issubm2 18720 . . . . 5 (𝐺 ∈ Mnd → (𝐴 ∈ (SubMnd‘𝐺) ↔ (𝐴 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝐴 ∧ (𝐺s 𝐴) ∈ Mnd)))
3128, 30syl 17 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → (𝐴 ∈ (SubMnd‘𝐺) ↔ (𝐴 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝐴 ∧ (𝐺s 𝐴) ∈ Mnd)))
3211, 18, 26, 31mpbir3and 1343 . . 3 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → 𝐴 ∈ (SubMnd‘𝐺))
3332, 7jca 511 . 2 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆))
34 simprr 772 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → 𝐴𝑆)
355adantr 480 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → 𝑆 = (Base‘𝐻))
3634, 35sseqtrd 3967 . . 3 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → 𝐴 ⊆ (Base‘𝐻))
3713adantr 480 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → (0g𝐺) = (0g𝐻))
3812subm0cl 18727 . . . . 5 (𝐴 ∈ (SubMnd‘𝐺) → (0g𝐺) ∈ 𝐴)
3938ad2antrl 728 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → (0g𝐺) ∈ 𝐴)
4037, 39eqeltrrd 2834 . . 3 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → (0g𝐻) ∈ 𝐴)
4121adantrl 716 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → (𝐻s 𝐴) = (𝐺s 𝐴))
4229submmnd 18729 . . . . 5 (𝐴 ∈ (SubMnd‘𝐺) → (𝐺s 𝐴) ∈ Mnd)
4342ad2antrl 728 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → (𝐺s 𝐴) ∈ Mnd)
4441, 43eqeltrd 2833 . . 3 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → (𝐻s 𝐴) ∈ Mnd)
454submmnd 18729 . . . . 5 (𝑆 ∈ (SubMnd‘𝐺) → 𝐻 ∈ Mnd)
4645adantr 480 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → 𝐻 ∈ Mnd)
471, 15, 23issubm2 18720 . . . 4 (𝐻 ∈ Mnd → (𝐴 ∈ (SubMnd‘𝐻) ↔ (𝐴 ⊆ (Base‘𝐻) ∧ (0g𝐻) ∈ 𝐴 ∧ (𝐻s 𝐴) ∈ Mnd)))
4846, 47syl 17 . . 3 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → (𝐴 ∈ (SubMnd‘𝐻) ↔ (𝐴 ⊆ (Base‘𝐻) ∧ (0g𝐻) ∈ 𝐴 ∧ (𝐻s 𝐴) ∈ Mnd)))
4936, 40, 44, 48mpbir3and 1343 . 2 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → 𝐴 ∈ (SubMnd‘𝐻))
5033, 49impbida 800 1 (𝑆 ∈ (SubMnd‘𝐺) → (𝐴 ∈ (SubMnd‘𝐻) ↔ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wss 3898  cfv 6489  (class class class)co 7355  Basecbs 17127  s cress 17148  0gc0g 17350  Mndcmnd 18650  SubMndcsubmnd 18698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-0g 17352  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-submnd 18700
This theorem is referenced by:  zrhpsgnmhm  21530  amgmlem  26947  nn0archi  33356  amgmwlem  49963  amgmlemALT  49964
  Copyright terms: Public domain W3C validator