MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsubm Structured version   Visualization version   GIF version

Theorem subsubm 18719
Description: A submonoid of a submonoid is a submonoid. (Contributed by Mario Carneiro, 21-Jun-2015.)
Hypothesis
Ref Expression
subsubm.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
subsubm (𝑆 ∈ (SubMnd‘𝐺) → (𝐴 ∈ (SubMnd‘𝐻) ↔ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)))

Proof of Theorem subsubm
StepHypRef Expression
1 eqid 2731 . . . . . . . 8 (Base‘𝐻) = (Base‘𝐻)
21submss 18712 . . . . . . 7 (𝐴 ∈ (SubMnd‘𝐻) → 𝐴 ⊆ (Base‘𝐻))
32adantl 481 . . . . . 6 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → 𝐴 ⊆ (Base‘𝐻))
4 subsubm.h . . . . . . . 8 𝐻 = (𝐺s 𝑆)
54submbas 18717 . . . . . . 7 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 = (Base‘𝐻))
65adantr 480 . . . . . 6 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → 𝑆 = (Base‘𝐻))
73, 6sseqtrrd 3967 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → 𝐴𝑆)
8 eqid 2731 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
98submss 18712 . . . . . 6 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
109adantr 480 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → 𝑆 ⊆ (Base‘𝐺))
117, 10sstrd 3940 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → 𝐴 ⊆ (Base‘𝐺))
12 eqid 2731 . . . . . . 7 (0g𝐺) = (0g𝐺)
134, 12subm0 18718 . . . . . 6 (𝑆 ∈ (SubMnd‘𝐺) → (0g𝐺) = (0g𝐻))
1413adantr 480 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → (0g𝐺) = (0g𝐻))
15 eqid 2731 . . . . . . 7 (0g𝐻) = (0g𝐻)
1615subm0cl 18714 . . . . . 6 (𝐴 ∈ (SubMnd‘𝐻) → (0g𝐻) ∈ 𝐴)
1716adantl 481 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → (0g𝐻) ∈ 𝐴)
1814, 17eqeltrd 2831 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → (0g𝐺) ∈ 𝐴)
194oveq1i 7351 . . . . . . 7 (𝐻s 𝐴) = ((𝐺s 𝑆) ↾s 𝐴)
20 ressabs 17154 . . . . . . 7 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆) → ((𝐺s 𝑆) ↾s 𝐴) = (𝐺s 𝐴))
2119, 20eqtrid 2778 . . . . . 6 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆) → (𝐻s 𝐴) = (𝐺s 𝐴))
227, 21syldan 591 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → (𝐻s 𝐴) = (𝐺s 𝐴))
23 eqid 2731 . . . . . . 7 (𝐻s 𝐴) = (𝐻s 𝐴)
2423submmnd 18716 . . . . . 6 (𝐴 ∈ (SubMnd‘𝐻) → (𝐻s 𝐴) ∈ Mnd)
2524adantl 481 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → (𝐻s 𝐴) ∈ Mnd)
2622, 25eqeltrrd 2832 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → (𝐺s 𝐴) ∈ Mnd)
27 submrcl 18705 . . . . . 6 (𝑆 ∈ (SubMnd‘𝐺) → 𝐺 ∈ Mnd)
2827adantr 480 . . . . 5 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → 𝐺 ∈ Mnd)
29 eqid 2731 . . . . . 6 (𝐺s 𝐴) = (𝐺s 𝐴)
308, 12, 29issubm2 18707 . . . . 5 (𝐺 ∈ Mnd → (𝐴 ∈ (SubMnd‘𝐺) ↔ (𝐴 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝐴 ∧ (𝐺s 𝐴) ∈ Mnd)))
3128, 30syl 17 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → (𝐴 ∈ (SubMnd‘𝐺) ↔ (𝐴 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝐴 ∧ (𝐺s 𝐴) ∈ Mnd)))
3211, 18, 26, 31mpbir3and 1343 . . 3 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → 𝐴 ∈ (SubMnd‘𝐺))
3332, 7jca 511 . 2 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝐴 ∈ (SubMnd‘𝐻)) → (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆))
34 simprr 772 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → 𝐴𝑆)
355adantr 480 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → 𝑆 = (Base‘𝐻))
3634, 35sseqtrd 3966 . . 3 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → 𝐴 ⊆ (Base‘𝐻))
3713adantr 480 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → (0g𝐺) = (0g𝐻))
3812subm0cl 18714 . . . . 5 (𝐴 ∈ (SubMnd‘𝐺) → (0g𝐺) ∈ 𝐴)
3938ad2antrl 728 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → (0g𝐺) ∈ 𝐴)
4037, 39eqeltrrd 2832 . . 3 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → (0g𝐻) ∈ 𝐴)
4121adantrl 716 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → (𝐻s 𝐴) = (𝐺s 𝐴))
4229submmnd 18716 . . . . 5 (𝐴 ∈ (SubMnd‘𝐺) → (𝐺s 𝐴) ∈ Mnd)
4342ad2antrl 728 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → (𝐺s 𝐴) ∈ Mnd)
4441, 43eqeltrd 2831 . . 3 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → (𝐻s 𝐴) ∈ Mnd)
454submmnd 18716 . . . . 5 (𝑆 ∈ (SubMnd‘𝐺) → 𝐻 ∈ Mnd)
4645adantr 480 . . . 4 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → 𝐻 ∈ Mnd)
471, 15, 23issubm2 18707 . . . 4 (𝐻 ∈ Mnd → (𝐴 ∈ (SubMnd‘𝐻) ↔ (𝐴 ⊆ (Base‘𝐻) ∧ (0g𝐻) ∈ 𝐴 ∧ (𝐻s 𝐴) ∈ Mnd)))
4846, 47syl 17 . . 3 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → (𝐴 ∈ (SubMnd‘𝐻) ↔ (𝐴 ⊆ (Base‘𝐻) ∧ (0g𝐻) ∈ 𝐴 ∧ (𝐻s 𝐴) ∈ Mnd)))
4936, 40, 44, 48mpbir3and 1343 . 2 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)) → 𝐴 ∈ (SubMnd‘𝐻))
5033, 49impbida 800 1 (𝑆 ∈ (SubMnd‘𝐺) → (𝐴 ∈ (SubMnd‘𝐻) ↔ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wss 3897  cfv 6476  (class class class)co 7341  Basecbs 17115  s cress 17136  0gc0g 17338  Mndcmnd 18637  SubMndcsubmnd 18685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-0g 17340  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687
This theorem is referenced by:  zrhpsgnmhm  21516  amgmlem  26922  nn0archi  33304  amgmwlem  49834  amgmlemALT  49835
  Copyright terms: Public domain W3C validator